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Abstract - V-belt drives are widely used in industrial and
agricultural machinery, yet conventional deterministic design
often ignores uncertainties in materials, operating conditions, and
tolerances. This study proposes a Reliability-Based Design
Optimization (RBDO) framework for V-belt drives, integrating
Inverse Reliability Analysis with a Genetic Algorithm and
validated by Monte Carlo Simulation. Design variables include
driver and driven pulley diameters, belt length, and number of
belts, with objectives of minimizing mass and maximizing
transmitted power under a reliability target of R* = 99.9%.
Results indicate that RBDO reduces system mass by 18.2% and
increases power from 4.75 kW to 5.65 kW compared to
deterministic optimization, while ensuring reliability. The
proposed framework provides a practical tool for lightweight,
reliable, and high-performance V-belt drive design.
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1. Introduction

V-belt drives are among the most common mechanical
transmission systems, widely employed in industrial
equipment, agricultural machinery, and domestic devices.
Traditional studies have primarily focused on the design
and performance evaluation of V-belt drives based on
fundamental parameters such as transmitted power, speed
ratio, belt tension, and service life [1, 2]. Classical
references and technical standards generally provide
deterministic design formulas to ensure reasonable sizing
and safe operation. However, these methods assume that
design parameters are fixed values, without accounting for
variations caused by operating conditions, material
properties, or manufacturing tolerances. As a result,
deterministic designs may lead to over-conservative or,
conversely, unsafe solutions [3 - 5].

In recent years, several studies have investigated the
optimization of V-belt drive design to improve efficiency
and reduce weight. Various optimization algorithms, such as
Genetic Algorithms (GA), Particle Swarm Optimization
(PSO), and gradient-based methods, have been applied to
determine optimal design parameters [6 - 9]. These
approaches have demonstrated significant potential in
enhancing performance and saving material. Nevertheless,
most of these works remain within the scope of deterministic
optimization, where only the mean values of design
variables are considered. Consequently, such designs may
lack reliability under uncertain operating conditions.

With the advancement of computational methods,
Reliability-Based Design Optimization (RBDO) has been
extensively studied and applied in diverse engineering

fields, including mechanical, structural, and aerospace
design [10 - 13]. Widely used reliability assessment
methods include the First-Order Reliability Method
(FORM), the Second-Order Reliability Method (SORM),
and sampling-based techniques such as Monte Carlo
Simulation (MCS). While FORM and SORM are
computationally efficient, their accuracy is limited when
the limit-state function exhibits strong nonlinearity.
Conversely, MCS provides highly accurate results but
requires significant computational effort, particularly when
coupled with iterative optimization processes [4, 6, 14, 15].

To overcome these limitations, recent studies have
introduced Inverse Reliability Analysis (IRA) as an effective
alternative. IRA transforms probabilistic constraints into
equivalent deterministic constraints in the standard normal
space, thereby significantly reducing computational cost
while maintaining high accuracy [16 - 18]. IRA has been
successfully applied in steel structure design, mechanical
components subjected to random loads, and nonlinear
dynamic systems. However, a comprehensive review of the
literature reveals that the application of IRA to V-belt drive
design and optimization remains limited. In particular, no
systematic study has combined IRA with MCS to
simultaneously optimize, validate, and conduct sensitivity
analysis for belt drive systems.

From the above discussion, it can be concluded that
although RBDO methods have been widely applied in
various engineering domains, there is still a research gap in
the context of V-belt drive design. Specifically, current
studies have not: (1) Developed a dedicated RBDO
framework for V-belt drives that incorporates key
uncertainties such as friction coefficient, belt tension;
(2) Applied IRA to simplify the optimization process while
preserving accuracy; (3) Performed a systematic
comparison between deterministic optimization and
RBDO approaches and (4) Integrated MCS verification to
evaluate the robustness of optimized designs and conduct
sensitivity analysis.

Therefore, this research is conducted to address these
limitations and to extend the application of RBDO in the
field of mechanical power transmission systems.

2. Theoretical Background
2.1. V-belt drives
2.1.1. Belt drive parameters

Belt drives are commonly used as the first transmission
stage in machinery due to their flexibility and vibration
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damping capability. Power and torque are transmitted
through frictional contact between the belt and the driving
and driven pulleys. The key design inputs include
transmitted power, motor speed, and output speed (or
desired transmission ratio). Based on these parameters, the
geometric design of the belt drive, such as pulley
diameters, center distance, wrap angle, and belt length, is
determined, as illustrated in Figure 1 [1].
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Figure 1. Geometrical parameters of the V-belt drive

Center distance between the two pulleys:
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Where, L is the belt length (mm), d; is the driver pulley
diameter, d, is the driven pulley diameter.

Belt wrap angle on the driver pulley:

o =180—57M )
A
Belt pulley width:
B=(z-1)e+2f (3)

Where, z is the number of V-belts, e is the distance between
two belt grooves, and f is the distance from the belt groove
to the pulley edge.

Maximum calculated stress (including tensile and
bending stress) occurring in the belt at the point where the
belt first contacts the driver pulley:

3 F efal
Orax = S efal 1
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Where, F is the circumferential force, S is the belt cross-
sectional area; oy is the bending stress in the belt on the
smaller pulley, oy is the stress caused by the centrifugal
force, a is the slip angle, f is the coefficient of friction
between the belt and pulley.

Limit stress according to strength:

N,
Ulim:O-limOm‘,WO ®)

Where, oiim is the fatigue limit corresponding to the
reference number of cycles No; N is the total number of
operating cycles of the belt; m is the fatigue strength
exponent.

2.1.2. Output power of the belt drive

Based on the belt tension equilibrium relationship,
considering the effects of slip, centrifugal force, and
adhesion conditions, the output power can be expressed as

a nonlinear function of the design variables (driver and
driven pulley radii) along with parameters such as the
friction coefficient, groove angle, initial tension, and wrap
angle. According to [5], the general expression for the
output power is written as follows:

1
Pout = P(dlsdz) :va(FO —p\/gXl—g P —

siny

l+e

Where: f is the friction coefficient, vy is the half-groove
angle of the V-belt, o is the wrap angle, Fy is the initial
tension, vy is the belt speed, and pv?; represents the effect
of the centrifugal force; & is the slip coefficient.

Assuming that f, y, Fo, and vb are constants, then
ar=ai(di,d2) plays a decisive role in power transmission
and is used as the basis for formulating the objective
function in the optimization problem.

2.1.3. Limit state function of the belt drive

The limit state function serves as the basis for
evaluating the reliability of a structure, defining the
boundary between safe operation and failure. For a belt
drive, the limit state function is typically constructed based
on the strength criterion, that is, by comparing the load-
carrying capacity with the applied load. A general form of
the limit state function for the belt drive under strength
conditions can be expressed as follows:

g(X): Olim ~ Omx

N, |F e (7)
Olimo N - E _'La to,+o,
eSin7 1

Where, g(X) > 0 indicates that the belt drive operates
safely, while g(X) < 0 indicates that the belt drive is in a
failure state.
2.2. Reliability-based  design
framework

2.2.1. RBDO problem formulation

The general form of the reliability-based design
optimization (RBDO) problem is expressed as:

Objective function: min 7(X)

optimization (RBDO)

Subject to:
h(Xm)<0 k=1, 2, . n,
Xi< X, <X i=L 2 .o (®)
Plg;(X,p)20)2R" j=1 2, .. n,

Where, X ={X;, X5, ... X, } is the design variable
(deterministic or random), p represents the random
parameter vector with mean value my, f(X) is the objective
function, hi(X,m,) denotes deterministic constraints,
gi(X, p) is the limit state function, n are the numbers of
design variables, n, is the numbers of probability
constraints, R;" is the desired reliability, X\, X" are the
lower and upper limits of the design variable.

The inverse reliability analysis method combined with the
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Genetic Algorithm (GA) is applied to solve the reliability-
based design optimization (RBDO) problem for Belt drives.

2.2.2. Inverse reliability analysis (IRA) in the standard
normal space

a. Transformation into the standard normal space

To perform the IRA, all random variables must first be
transformed into the standard normal space. In this study,
the random variables are assumed to be statistically
independent. Therefore, the mapping from the physical
space (X-space), as illustrated in Figure 2a, to the standard
normal space (U-space), shown in Figure 2b, is performed
using the marginal cumulative distribution functions
(CDFs) of each variable, according to:

Ul.:cI)’l(FX] (xi)) where X;=my +U,»SX[ )

Where, Fxi(-) is the cumulative distribution function of the
random variable X;, ®! () is the inverse of the standard
normal CDF, my; is the mean value of the variable Xj,
and Sy is the standard deviation of the variable X;.

This transformation enables the reliability analysis and
the most probable point (MPP) search to be conducted in a
normalized and uncorrelated space, which simplifies the
computation and enhances the numerical stability of the
algorithm. After the transformation, the MPP search is
performed in the U-space, where the limit state surface
g(U) =0 is identified, and the shortest distance from the origin
to this surface represents the reliability index P of the system.
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Figure 2. Distribution density function:a) Space X and b) Space U
b. Inverse reliability analysis (IRA)

Direct estimation of the failure probability using Monte
Carlo Simulation (MCS) often requires prohibitive
computational costs due to the need for a large number of
samples, especially when integrated into iterative
optimization processes. To overcome this limitation, the
inverse reliability analysis (IRA) method is employed as an
efficient alternative.

In IRA, instead of directly evaluating the failure
probability P = P(g(X) = 0), a target reliability index P

(equivalent to a required reliability level R*=®(f)) is

prescribed. The task is then to determine the Most Probable

Point (MPP) in the standard normal space, as illustrated in

Figure 3. The procedure to find MPP according to the

inverse reliability analysis method is illustrated in Figure 4.
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Figure 3. Most Probable Point (MPP) u* in
the standard normal space
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Figure 4. Procedure of the inverse reliability analysis method to
determine the Most Probable Point (MPP) in the standard
normal space

Specifically, the MPP is determined using the iterative
Hasofer—Lind-Rackwitz—Fiessler (HL-RF) algorithm,
with the following convergence conditions applied to
terminate the iteration process:

”ukH —uk“ <¢& and “Vg(uk+1>— Vg(uk]‘ <¢g

Where, the values are set as £1= € = 104,

After determining the Most Probable Point u* the value
of the limit state function g© is calculated using the
following expression:

g" = glu’) (10)
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After determining g’ the RBDO problem turns into a
deterministic optimization problem and the probabilistic
constraints P(gi(X, p) > 0)) > R;" of the RBDO problem (8)
become gi(X, p) > gF.

IRA is integrated into the optimization framework of
V-belt drives to convert the reliability constraint associated
with the belt strength limit state into a deterministic constraint.
This allows the Genetic Algorithm (GA) to efficiently
search for optimal design parameters while ensuring that
the required reliability level (R* = 99.9%) is satisfied.

In this study, the reliability-based design optimization
(RBDO) of V-belt drives is performed by integrating inverse
reliability analysis (IRA) and Genetic Algorithm (GA). The
overall RBDO framework is presented in Figure 5.

' ™y
Problem Defmition
- Objective:
+ Mass of V-belt drive
+ Output power of V-belt drive
- Design variables: d, dj, L, z
- Reliability constraint:

P(g(X)= 0)= R*

f

Inverse Reliability Analysis (IRA)]
— Most Probable Point {u*} )

|
GA Optimization Loop

+ Initialize population

- Fitness = objective + penalties
(deterministic + reliability)

+ Selection — Crossover (SBX) —

Mutation — Repair — Elitism

- Iterate until convergence

F Adjust B l
Optimal Solution x*

(dl’ d2’ La Z) i

!

Monte Carlo Simulation (MCS)
— Estimate R_MCS

-

Compare R_MCS with R*

Figure 5. Overall framework of the proposed reliability-based
design optimization (RBDO) approach integrating inverse
reliability analysis (IRA) and GA

To solve the nonlinear RBDO problem with
probabilistic constraints, the Genetic Algorithm (GA) is
employed to find the optimal solution. The GA was
configured with a population size of 100, a maximum of

200 generations, single-point crossover (p.=0.8), uniform
mutation (pm=0.05), and elitism retaining the top 1-2
individuals per generation. The algorithm was terminated
when no improvement in the best fitness was observed for
25 consecutive generations or when 200 generations were
reached. To ensure reproducibility, a fixed random seed
(seed = 2500) was used. To assess optimization stability,
the GA was executed 30 independent times; the mean and
standard deviation of the best fitness and design variables
are reported.
2.3. Variance-based global sensitivity analysis

In this study, the variance-based global sensitivity
analysis was performed using the Sobol method. This
formulation follows the classical definitions introduced by
Sobol [19] and subsequently refined by Saltelli et al. [20]
to enable the practical computation of variance-based
sensitivity indices.

Let Y={(Xi, Xa,..., Xx) be the model response, where
X are independent input variables with finite variance. The
total variance of Y can be decomposed as:

Var(Y):Zk:Vi +Zk:Zk:VU ot Vg
1

1 i<y

(11

where Vi= VarXi[Ex-i(Y|Xj)] represents the contribution
of the i variable alone, and higher-order terms Vij, Viiks ---
represent interaction effects.
The first-order Sobol index quantifies the main effect
of input X;:
v Vary lEXN,v (Y|Xi)J (12)
' Var(Y ) Var(Y )

where X; is the i-th input factor and X~; denotes the matrix
of all factors except Xi.

The total-effect Sobol index, representing the overall
contribution of X; including its interactions, is defined as:

oy Ve By (X))
i Var(Y)

In this work, both S; and Stj were estimated using the
Saltelli sampling scheme [20], which provides an efficient
Monte Carlo estimator for both indices using Nx(k+2)
model evaluations. To ensure convergence, tests were
conducted with N=5,000, 10,000 and 15,000 samples.

(13)

3. Numerical Example

A representative simulation example of a V-belt drive
in a conveyor transmission system is presented in Figure 6
to illustrate the proposed optimization model. The system
consists of a motor (1), V-belt drive (2), double-stage gear
reducer (3), chain drive (4), and conveyor system (5). The
V-belt drive has a rated power of P = 6.02 kW and input
speed nl =968 rpm.

Objective  function: The purpose of design
optimization is to obtain either the minimum or maximum
value of the objective function. For belt drive design
optimization, the mass and the output power of the belt
drive are selected as the objective functions:
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m= plB%(aﬁ2 + d22)+ P,zSL — min
S
o | e (14
=2yl -pifi-e) | > max
l+es‘i"y0!1

Where: p; is the density of the pulley material; p, is the
density of the belt material; p is the mass per unit length of
the belt; B is the pulley width; S is the cross-sectional area
of the belt; z is the number of belts.
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Figure 6. lllustration of a conveyor transmission system used as
a numerical example

(1) motor, (2) V-belt drive, (3) gear reducer, (4) chain drive, and
(5) conveyor belt.

Design variables: From the objective function of mass,
four main design variables that directly affect the mass of
the belt drive can be identified, including the diameter of
the smaller pulley di, the diameter of the larger pulley d»,
the center distance between the two pulleys A, and the
number of belts z. However, the belt length L is a discrete
value selected from standard tables for each specific belt
type. Therefore, to facilitate the optimization process and
ensure consistency with practical conditions, the belt
length L can be used as a substitute variable for the center
distance A. With this approach, the set of design variables
employed in the optimization problem includes:

X = [x] Xy X3 x4]T = [dl d, L Z]T
Subject to:

1. Driver pulley diameter: 140 < d; < 180;

2. Driven pulley diameter: 180 < d, < 450;

2. Belt length L: 1600 <L < 2800;

3. Number of belts z: 1 <z <6;

4. The center distance between the two pulleys must
satisfy the condition: 0.7(d, +d,)< A<2(d, +d,).

Accordingly, the constraint function can be expressed as:

h(x)=07(d,+4,)-

2
__E[L_fﬁﬁiiﬂ}+l (L‘Egﬁié)j‘zﬂé‘ﬁf <0
4 2 4 2

'W):%[L‘MJ*
+L\/[L—MT ~2(dy—d,)’ ~2(d, +d,)<0

4 2

5. Belt speed: Sm/s <V <35 m/s:

(o) = 2 _35<

60000

7wdin
hlx)=5-—"—<0
i) 60000

6. Minimum wrap angle: o1(di,d2) > Omin:
180 —57@ >120°

7. Probability of the limit state function under the
strength condition: P(g(X ) > 0) >R

P(g(X)>0)=

N si.r):;/al

’ F e x

=P GlimomWO_ Ef—+0v+0u >0|>R
S a

e

To ensure that the belt drive does not fail during
operation, its structure must achieve a minimum reliability
level of R*=99.9%. With this objective, the design process
is carried out based on the Reliability-Based Design
Optimization (RBDO) approach, in which the required
reliability R*=99.9% is imposed as the main constraint in
the optimization process.

In summary, the reliability-based design optimization
problem for the belt drive can be formulated as follows:

d,d,, L,z

- Design variables:

- Objective function:

m= pﬁ%(dlz +d22 )+ p,zSL — min
J 4
1_esin;/
E)ut=2Vb<FO_pV§Xl_§ -7 — max
1+esm70{1
(13)
- Subject to:
140<d, <180; 180<d, <450; 1600< L <2800

1<z<6
h(x)<0; hy(x)<0; hy(x)<0; h(x)<0

hs(x):180—57(dz+d1)2120

N, F ™ .
=P|| Oyt~ —| < t+o,+0, |[>0|=R
N S Eal 1
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Where: the calculated stress 6y, the circumferential force F,
the fatigue limit Gimo, ... are random variables whose
values are given in Table 1.

In the reliability-based design optimization (RBDO)
process, several parameters of the V-belt drive are
considered as random variables to capture the uncertainties
arising from material variability, manufacturing tolerances,
and operating conditions. These random variables include
the belt fatigue limit, friction coefficient, belt tension, and
geometric parameters, among others. Their statistical
properties, namely mean values and standard deviations,
are summarized in Table 1, which serves as the input data
for the reliability analysis and subsequent optimization
procedure.

Table 1. Statistical properties of the design parameters

Random variable Unit Mean Star'ldz}rd
value deviation

Belt tension force, F N 660 66

Fatigue limit, G1imo MPa 12 0.6

Elastlf: modulus of belt MPa 100 10

material, E

Centrifugal stress, ov MPa 0.1 0.01

Fatigue strength B 3 08

exponent, m

Friction coefficient

between belt and pulley, B 0.3 0.03

Belt cross-sectional area, S| mm? 138 13.8

Driver pulley diameter, di | mm 671 0. la_’1

Driven pulley diameter, d2 mm d. 5 0.1d 5

Belt length, L mm L 0.167L

Reference number of cevele 107 )

cycles, No y

Total number of 4

operating cycles, N cycles | 2.8x10 .

In the reliability analysis, all random variables listed in
Table 1 are assumed to follow normal probability
distributions, consistent with previous studies [3, 5, 14].
Although possible correlations may exist among certain
parameters, such as between the belt tension force and the
friction coefficient, these correlations are neglected in this
study to simplify the model. The random variables are
therefore considered statistically independent, which is a
reasonable assumption since each parameter is primarily
influenced by distinct physical sources of uncertainty.

4. Results and Discussion
4.1. Optimal design results

The bi-objective optimization problem is reformulated
using a weighted-sum method to balance system mass and
transmitted power. The equivalent scalar objective
function is expressed as
M(X) P(X)

—w,
M, £

min f(X)=w

Where, My and Py are the reference values obtained from
the deterministic baseline design, and wi, w» are the
weighting coefficients satisfying wi+w>=1.

In this study, Mo =37.82 kg and Py = 4.75 kW
correspond to the mass and transmitted power obtained
from the deterministic optimization solution, which are
used as reference values for normalization. This allows
both objectives to be dimensionless and comparable in the
weighted-sum formulation.

All optimization and reliability analyses were
implemented in MATLAB R2023b using a combination of
the Global Optimization Toolbox and user-defined
MATLAB functions.

Table 2 presents the optimal design results of the V-belt
drive obtained by two approaches: deterministic
optimization (DO) and reliability-based  design
optimization (RBDO). The design variables include the
driver pulley diameter (d), driven pulley diameter (d>),
belt length (L), and number of belts (z). The results indicate
that the RBDO design achieves a significantly lower
system mass (30.93 kg) compared to the deterministic
design (37.82 kg), corresponding to a reduction of
approximately 18.2%. In terms of reliability, the DO model
yields Rpo= 0.99625 £+ 0.00012, which does not satisfy the
target reliability level of R* =0.999. In contrast, the RBDO
approach ensures Rrgpo=0.99975 £ 0.000031, confirming
that the reliability constraint is fully satisfied. These results
indicate that the RBDO framework not only guarantees the
desired reliability but also produces a lighter and more
efficient belt drive design.

Specifically, the RBDO design delivers 5.65 kW
compared to 4.75 kW in DO, highlighting that accounting
for uncertainties not only improves safety but also
enhances performance.

Table 2. Optimal design results of the V-belt drive

Method
Design variables Unit RBDO
DO (R* = 99.9%)
di mm 149.06 168.62
d2 mm 349.07 298.25
L mm 1625.6 1614.3
z - 2 2

Mass kg 37.82 30.93

Output power kW 4.75 5.65
Reliability % 99.627 99.975

A sensitivity study was performed by varying wi in
the range [0.3, 0.7], while maintaining w,=1— w;. The
optimal solutions obtained for different weight
combinations exhibit smooth variation in both mass and
transmitted power, indicating stable convergence of the
Genetic Algorithm (GA). The selected RBDO solution
(w1 = wz= 0.5) lies near the center of the Pareto front,
confirming its robustness and balanced performance
between lightweight design and high transmission power.
Representative Pareto-optimal designs are summarized in
Table 3 to illustrate the trade-off between these
competing objectives.

The Pareto front clearly demonstrates the trade-off
between mass and transmitted power under the reliability
constraint, as shown in Table 3. The lightweight-favored
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design (Solution A) achieves the minimum mass but at the
cost of reduced power transmission, while the power-
favored design (Solution C) increases power output at the
expense of a heavier system.

Table 3. Pareto-optimal designs obtained from GA

Design . Solution B .
Parametors Solution A (RBDO) Solution C
w1 0.7 0.5 0.3
w2 0.3 0.5 0.7
Mass (kg) 28.85 30.93 33.50
Power (kW) 5.45 5.65 6.15
Reliability 0.99975 0.99975 0.99975
Trade-off Type ngfl;;r/\zreéﬁht- Balanced fz(\)fvgreerc-l

One notable advantage of the RBDO approach is the
reduction in the total mass of the V-belt drive while
maintaining the required reliability. Compared to the initial
design, the mass is reduced by approximately 18.2%,
which contributes to a lighter transmission system, reduced
load on bearings, material savings, and improved economic
efficiency. Furthermore, the increase in transmitted power
indicates higher operational effectiveness. Thus, RBDO
not only provides a safe design but also optimizes both
performance and cost.

4.2. Reliability  Verification
Simulation

using Monte Carlo

Table 4 summarizes the key statistical descriptors of the
limit-state function g(X) obtained from Monte Carlo
Simulation with N = 10° samples. The mean value
mgx) = 2.378 and standard deviation Sgx) =0.647 indicate
a positive and relatively stable safety margin. The
estimated reliability from MCS reaches Rrgpo = 0.99975,
which is almost identical to the target reliability
R*=99.9%. This confirms that the RBDO solution strictly
satisfies the probabilistic constraint and wvalidates the
effectiveness of IRA as an efficient surrogate for direct
MCS during optimization.

Table 4. Result of Monte Carlo simulation

Simulation Mean value Stal'ld?l‘d Reliability
samples deviation R
N Mg(X) Sex) RDBO
10° 2.378 0.647 0.99975

Figure 7 provides a visual illustration of the random
distribution of fatigue limit Gjim, maximum stress Gmax and
the limit-state function g(X)). The results show that for the
RBDO design, nearly all samples remain in the safe
domain (g(X) > 0). The histogram of g(X) exhibits a near-
Gaussian distribution with skewness close to zero and
kurtosis around three, indicating negligible tail effects and
a very low risk of extreme unsafe scenarios.

Monte Carlo validation was performed with N=10°
samples. The estimated reliability for the RBDO design
was Rrpeo = 0.99975 with a 95% confidence interval of
[0.99972, 0.99978] (normal approximation). Convergence
of the MCS estimate was assessed by plotting R(N) and its
95% CI for increasing sample sizes N={103, 5x10°, 104
5x10% 10°, 5x10°, 10}, as presented in Figure 8.
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Figure 7. Monte Carlo simulation: a) Fatigue limit otim and
Stress Omax, b) Limit-state function g(X)
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Figure 8. Convergence of the estimated reliability R(N)
4.3. Sensitivity Analysis

To further evaluate the reliability of the V-belt drive
under uncertainty, a global sensitivity analysis (GSA) was
performed using Sobol indices. The analysis considered
key random design variables, including pulley diameter
(di), belt tension (F), fatigue limit (Giim), bending stress (o),
centrifugal stress (oy), belt length (L), friction coefficient
(f) and elastic modulus (E).

The Sobol indices were estimated using the extended
sampling scheme of Saltelli, which allows simultaneous
estimation of both the first-order indices (S;) and the total-
effect indices (Sti). The base sample size was set to
N = 10%, resulting in a total of N x (k +2) = 10* x (9 +2)
= 1.1x10° model evaluations, where k = 9 random variables
were considered: orm, f, L, d1, d2, F, S, ov, and E.

To verify convergence, the S; and St results were
compared for sample sizes of N =5 x10° and N = 15x10°,
The indices showed only minor variations when N was
increased or decreased (absolute change < 0.02 and relative
change < 3% for most variables), indicating that the Sobol
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indices had sufficiently converged. Therefore, the
conclusions regarding the relative importance of the
random variables are considered robust with respect to the
chosen sampling configuration. The results are
summarized in Table 5 and Figure 9.

Table 5. Global sensitivity analysis results of random variables
using Sobol indices.

Random Si Sti
Variable (First- | (Total Remarks
order) | effect)
Fatigue limit (ciim)| 0.72 0.81 |Dominant factor
Friction Modera.t N efft'ect,
coefficient (f) 0.09 0.14 lnter-actlon with belt
tension

Beleogn () | 007 | 011 | v e
Driver pulley 001 0.02 Minor effect, mainly
diameter (d1) through wrap angle
Driven pulley 0.03 0.05 Slightly hig}.ler. effe.ct
diameter (dz) due to transmission ratio
Belt tension (F) | 0.05 0.09 iﬁggﬁgﬁ;&?ﬁﬁ?
R R R
Sctf:;:{gf)al 0.02 | 003 |Limited impact
Elastic modulus (E)] 0.01 0.02 | Very minor influence

The GSA results provide deeper insights into the
reliability behavior of V-belt drives. As shown in Table 4,
the fatigue limit of the belt material (Giim) is the most
critical parameter, accounting for approximately 72% of
the first-order effect and more than 80% of the total effect.
This confirms that variability in fatigue properties governs
the system’s service life and reliability. Accordingly,
material quality control and enhancement of fatigue
performance are the primary strategies for improving
system reliability.

09— 771
0.8} A S S SO

I First order Si
I Total - effect ST

0.7 f---
06}
0.5 -
0.4}
0.3 -

Sobol index value

02}----
0.1 f--mv

0
Glim f L dl dg F S Oy E

Figure 9. Global sensitivity analysis results using Sobol indices

The friction coefficient (f) and belt length (L) also
contribute  significantly, particularly through their
interaction with belt tension (F). This finding underscores
the importance of maintaining stable frictional contact
conditions and ensuring proper belt installation to achieve
reliable power transmission. In contrast, the geometric
parameters (d;, d») and elastic modulus (E) have relatively
minor effects, suggesting that variations within their design

ranges do not substantially compromise safety.
Nevertheless, their inclusion in the optimization process
remains essential to ensure robustness under practical
design constraints.

Overall, GSA complements the local sensitivity
analysis by identifying not only the most influential
random variables but also their interaction effects. These
insights offer valuable guidelines for material selection,
design improvement, and preventive maintenance, thereby
enhancing the robustness of the proposed RBDO
framework.

This analysis also reflects the inherent uncertainty in
the mechanical properties of the belt material, which is the
primary load-bearing component of the transmission
system. To further illustrate this point, the influence of the
standard deviation of the fatigue limit on the failure
probability was investigated. As presented in Figure 10,
increasing the standard deviation of the fatigue limit leads
to a substantial rise in failure probability, even when the
mean value remains constant. This emphasizes the
dominant role of material variability in determining system
reliability.

* 10
6 T T T T T T T T

3o
H H H H 1 ¥ 0.00025

Probability of Failure

i i i i
0.1 0.2 0.3 0.4 0.5 0.6 or 0.8 0.9 1
Standard Deviation

Figure 10. Effect of the standard deviation of the fatigue limit
on the failure probability

In summary, the fatigue limit of the belt material (ciim)
exhibits the most dominant effect on failure probability,
followed by the friction coefficient (f) and belt length (L).
This result is physically reasonable since the belt is
subjected to repeated bending and frictional contact,
making its fatigue properties the governing factor in overall
reliability. From a practical perspective, enhancing
reliability requires reducing the scatter in fatigue strength
by: (i) selecting materials with higher and more consistent
fatigue performance, (ii) optimizing manufacturing and
surface treatment processes to minimize defects, and (iii)
strengthening batch quality control. Additionally,
maintaining proper surface conditions (pulley surface
treatment, lubrication) and accurately controlling initial
belt tension are essential, while selecting an appropriate
belt length helps stabilize stress distribution.

Therefore, sensitivity analysis not only identifies the
most critical random variables but also provides actionable
guidelines for improving material selection, design
robustness, and maintenance strategies, thereby ensuring
high reliability in V-belt drive systems.
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5. Conclusions

This study developed a Reliability-Based Design
Optimization (RBDO) framework for V-belt drives by
integrating Inverse Reliability Analysis (IRA) with a
Genetic Algorithm (GA) and validating the results through
Monte Carlo Simulation (MCS). The findings reveal that
the RBDO approach not only ensures the required
reliability level (R* = 99.9%) but also provides significant
advantages over deterministic optimization. Specifically, it
reduces system mass by approximately 18.2%, increases
transmitted power from 4.75 kW to 5.65 kW, and improves
overall operational efficiency.

The sensitivity analysis highlights that the fatigue limit
of the belt material is the most critical factor influencing
reliability, underlining the importance of material
properties in the safe design and operation of belt drives.

Overall, the proposed RBDO framework demonstrates
its feasibility and effectiveness in designing lightweight,
reliable, and high-performance V-belt drives. Moreover, it
offers a promising basis for extending reliability-based
optimization to other mechanical power transmission
systems, enabling a better balance between performance,
safety, and economic efficiency.
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