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Abstract - V-belt drives are widely used in industrial and 

agricultural machinery, yet conventional deterministic design 

often ignores uncertainties in materials, operating conditions, and 

tolerances. This study proposes a Reliability-Based Design 

Optimization (RBDO) framework for V-belt drives, integrating 

Inverse Reliability Analysis with a Genetic Algorithm and 

validated by Monte Carlo Simulation. Design variables include 

driver and driven pulley diameters, belt length, and number of 

belts, with objectives of minimizing mass and maximizing 

transmitted power under a reliability target of R* = 99.9%. 

Results indicate that RBDO reduces system mass by 18.2% and 

increases power from 4.75 kW to 5.65 kW compared to 

deterministic optimization, while ensuring reliability. The 

proposed framework provides a practical tool for lightweight, 

reliable, and high-performance V-belt drive design. 

Key words - V-belt drive; Reliability-based design optimization; 

Inverse reliability analysis; Monte Carlo simulation 

1. Introduction 

V-belt drives are among the most common mechanical 

transmission systems, widely employed in industrial 

equipment, agricultural machinery, and domestic devices. 

Traditional studies have primarily focused on the design 

and performance evaluation of V-belt drives based on 

fundamental parameters such as transmitted power, speed 

ratio, belt tension, and service life [1, 2]. Classical 

references and technical standards generally provide 

deterministic design formulas to ensure reasonable sizing 

and safe operation. However, these methods assume that 

design parameters are fixed values, without accounting for 

variations caused by operating conditions, material 

properties, or manufacturing tolerances. As a result, 

deterministic designs may lead to over-conservative or, 

conversely, unsafe solutions [3 - 5]. 

In recent years, several studies have investigated the 

optimization of V-belt drive design to improve efficiency 

and reduce weight. Various optimization algorithms, such as 

Genetic Algorithms (GA), Particle Swarm Optimization 

(PSO), and gradient-based methods, have been applied to 

determine optimal design parameters [6 - 9]. These 

approaches have demonstrated significant potential in 

enhancing performance and saving material. Nevertheless, 

most of these works remain within the scope of deterministic 

optimization, where only the mean values of design 

variables are considered. Consequently, such designs may 

lack reliability under uncertain operating conditions. 

With the advancement of computational methods, 

Reliability-Based Design Optimization (RBDO) has been 

extensively studied and applied in diverse engineering 

fields, including mechanical, structural, and aerospace 

design [10 - 13]. Widely used reliability assessment 

methods include the First-Order Reliability Method 

(FORM), the Second-Order Reliability Method (SORM), 

and sampling-based techniques such as Monte Carlo 

Simulation (MCS). While FORM and SORM are 

computationally efficient, their accuracy is limited when 

the limit-state function exhibits strong nonlinearity. 

Conversely, MCS provides highly accurate results but 

requires significant computational effort, particularly when 

coupled with iterative optimization processes [4, 6, 14, 15]. 

To overcome these limitations, recent studies have 

introduced Inverse Reliability Analysis (IRA) as an effective 

alternative. IRA transforms probabilistic constraints into 

equivalent deterministic constraints in the standard normal 

space, thereby significantly reducing computational cost 

while maintaining high accuracy [16 - 18]. IRA has been 

successfully applied in steel structure design, mechanical 

components subjected to random loads, and nonlinear 

dynamic systems. However, a comprehensive review of the 

literature reveals that the application of IRA to V-belt drive 

design and optimization remains limited. In particular, no 

systematic study has combined IRA with MCS to 

simultaneously optimize, validate, and conduct sensitivity 

analysis for belt drive systems. 

From the above discussion, it can be concluded that 

although RBDO methods have been widely applied in 

various engineering domains, there is still a research gap in 

the context of V-belt drive design. Specifically, current 

studies have not: (1) Developed a dedicated RBDO 

framework for V-belt drives that incorporates key 

uncertainties such as friction coefficient, belt tension;  

(2) Applied IRA to simplify the optimization process while 

preserving accuracy; (3) Performed a systematic 

comparison between deterministic optimization and 

RBDO approaches and (4) Integrated MCS verification to 

evaluate the robustness of optimized designs and conduct 

sensitivity analysis. 

Therefore, this research is conducted to address these 

limitations and to extend the application of RBDO in the 

field of mechanical power transmission systems. 

2. Theoretical Background 

2.1. V-belt drives 

2.1.1. Belt drive parameters 

Belt drives are commonly used as the first transmission 

stage in machinery due to their flexibility and vibration 
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damping capability. Power and torque are transmitted 

through frictional contact between the belt and the driving 

and driven pulleys. The key design inputs include 

transmitted power, motor speed, and output speed (or 

desired transmission ratio). Based on these parameters, the 

geometric design of the belt drive, such as pulley 

diameters, center distance, wrap angle, and belt length, is 

determined, as illustrated in Figure 1 [1]. 

 

Figure 1. Geometrical parameters of the V-belt drive 

Center distance between the two pulleys: 
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Where, L is the belt length (mm), d1 is the driver pulley 

diameter, d2 is the driven pulley diameter. 

Belt wrap angle on the driver pulley: 
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Where, z is the number of V-belts, e is the distance between 

two belt grooves, and f is the distance from the belt groove 

to the pulley edge. 
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Where, F is the circumferential force, S is the belt cross-

sectional area; σu is the bending stress in the belt on the 

smaller pulley, σv is the stress caused by the centrifugal 

force, α is the slip angle, f is the coefficient of friction 

between the belt and pulley. 

Limit stress according to strength: 

m
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Where, σlim is the fatigue limit corresponding to the 

reference number of cycles N0; N is the total number of 

operating cycles of the belt; m is the fatigue strength 

exponent. 

2.1.2. Output power of the belt drive 

Based on the belt tension equilibrium relationship, 

considering the effects of slip, centrifugal force, and 

adhesion conditions, the output power can be expressed as 

a nonlinear function of the design variables (driver and 

driven pulley radii) along with parameters such as the 

friction coefficient, groove angle, initial tension, and wrap 

angle. According to [5], the general expression for the 

output power is written as follows: 
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Where: f is the friction coefficient, γ is the half-groove 

angle of the V-belt, α1 is the wrap angle, F0 is the initial 

tension, vb is the belt speed, and ρv2
2 represents the effect 

of the centrifugal force; ξ is the slip coefficient. 

Assuming that f, γ, F0, and vb are constants, then 

α1=α1(d1,d2) plays a decisive role in power transmission 

and is used as the basis for formulating the objective 

function in the optimization problem. 

2.1.3. Limit state function of the belt drive 

The limit state function serves as the basis for 

evaluating the reliability of a structure, defining the 

boundary between safe operation and failure. For a belt 

drive, the limit state function is typically constructed based 

on the strength criterion, that is, by comparing the load-

carrying capacity with the applied load. A general form of 

the limit state function for the belt drive under strength 

conditions can be expressed as follows: 
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Where, g(X) > 0 indicates that the belt drive operates 

safely, while g(X) ≤ 0 indicates that the belt drive is in a 

failure state. 

2.2. Reliability-based design optimization (RBDO) 

framework 

2.2.1. RBDO problem formulation 

The general form of the reliability-based design 

optimization (RBDO) problem is expressed as: 
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Where, X = X1, X2, … Xn  is the design variable 

(deterministic or random), p represents the random 

parameter vector with mean value mp, f(X) is the objective 

function, hk(X,mp) denotes deterministic constraints, 

gj(X, p) is the limit state function, n are the numbers of 

design variables, ng is the numbers of probability 

constraints, Rj
* is the desired reliability, Xi

l, Xi
n are the 

lower and upper limits of the design variable. 

The inverse reliability analysis method combined with the 
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Genetic Algorithm (GA) is applied to solve the reliability-

based design optimization (RBDO) problem for Belt drives. 

2.2.2. Inverse reliability analysis (IRA) in the standard 

normal space 

a. Transformation into the standard normal space 

To perform the IRA, all random variables must first be 

transformed into the standard normal space. In this study, 

the random variables are assumed to be statistically 

independent. Therefore, the mapping from the physical 

space (X-space), as illustrated in Figure 2a, to the standard 

normal space (U-space), shown in Figure 2b, is performed 

using the marginal cumulative distribution functions 

(CDFs) of each variable, according to: 
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Where, FXi(⋅) is the cumulative distribution function of the 

random variable Xi, -1 (⋅) is the inverse of the standard 

normal CDF, mxi is the mean value of the variable Xi,  

and Sxi is the standard deviation of the variable Xi. 

This transformation enables the reliability analysis and 

the most probable point (MPP) search to be conducted in a 

normalized and uncorrelated space, which simplifies the 

computation and enhances the numerical stability of the 

algorithm. After the transformation, the MPP search is 

performed in the U-space, where the limit state surface 

g(U) = 0 is identified, and the shortest distance from the origin 

to this surface represents the reliability index β of the system. 

(a)  

(b)  

Figure 2. Distribution density function:a) Space X and b) Space U 

b. Inverse reliability analysis (IRA) 

Direct estimation of the failure probability using Monte 

Carlo Simulation (MCS) often requires prohibitive 

computational costs due to the need for a large number of 

samples, especially when integrated into iterative 

optimization processes. To overcome this limitation, the 

inverse reliability analysis (IRA) method is employed as an 

efficient alternative. 

In IRA, instead of directly evaluating the failure 

probability P = P(g(X)  0), a target reliability index β 

(equivalent to a required reliability level R*=Φ(β)) is 

prescribed. The task is then to determine the Most Probable 

Point (MPP) in the standard normal space, as illustrated in 

Figure 3. The procedure to find MPP according to the 

inverse reliability analysis method is illustrated in Figure 4. 

 

Figure 3. Most Probable Point (MPP) u* in  

the standard normal space 

 

Figure 4. Procedure of the inverse reliability analysis method to 

determine the Most Probable Point (MPP) in the standard 

normal space 

Specifically, the MPP is determined using the iterative 

Hasofer–Lind–Rackwitz–Fiessler (HL–RF) algorithm, 

with the following convergence conditions applied to 

terminate the iteration process: 

1
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Where, the values are set as 1= 2 = 10-4. 

After determining the Most Probable Point u* the value 

of the limit state function gF is calculated using the 

following expression: 

( )*uggF =
     (10) 
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After determining gF the RBDO problem turns into a 

deterministic optimization problem and the probabilistic 

constraints P(gj(X, p)  0))  Rj
* of the RBDO problem (8) 

become gj(X, p)  gF. 

IRA is integrated into the optimization framework of 

V-belt drives to convert the reliability constraint associated 

with the belt strength limit state into a deterministic constraint. 

This allows the Genetic Algorithm (GA) to efficiently 

search for optimal design parameters while ensuring that 

the required reliability level (R* = 99.9%) is satisfied. 

In this study, the reliability-based design optimization 

(RBDO) of V-belt drives is performed by integrating inverse 

reliability analysis (IRA) and Genetic Algorithm (GA). The 

overall RBDO framework is presented in Figure 5. 

 

Figure 5. Overall framework of the proposed reliability-based 

design optimization (RBDO) approach integrating inverse 

reliability analysis (IRA) and GA 

To solve the nonlinear RBDO problem with 

probabilistic constraints, the Genetic Algorithm (GA) is 

employed to find the optimal solution. The GA was 

configured with a population size of 100, a maximum of 

200 generations, single-point crossover (pc=0.8), uniform 

mutation (pm=0.05), and elitism retaining the top 1–2 

individuals per generation. The algorithm was terminated 

when no improvement in the best fitness was observed for 

25 consecutive generations or when 200 generations were 

reached. To ensure reproducibility, a fixed random seed 

(seed = 2500) was used. To assess optimization stability, 

the GA was executed 30 independent times; the mean and 

standard deviation of the best fitness and design variables 

are reported. 

2.3. Variance-based global sensitivity analysis 

In this study, the variance-based global sensitivity 

analysis was performed using the Sobol method. This 

formulation follows the classical definitions introduced by 

Sobol [19] and subsequently refined by Saltelli et al. [20] 

to enable the practical computation of variance-based 

sensitivity indices. 

Let Y=f(X1, X2,…, Xk) be the model response, where 

Xi are independent input variables with finite variance. The 

total variance of Y can be decomposed as: 
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where Vi = VarXi[EX~i(Y∣Xi)] represents the contribution 

of the ith variable alone, and higher-order terms Vij,Vijk, … 

represent interaction effects. 

The first-order Sobol index quantifies the main effect 

of input Xi: 
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where Xi is the i-th input factor and X∼i denotes the matrix 

of all factors except Xi. 

The total-effect Sobol index, representing the overall 

contribution of Xi including its interactions, is defined as: 
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In this work, both Si and STi were estimated using the 

Saltelli sampling scheme [20], which provides an efficient 

Monte Carlo estimator for both indices using N×(k+2) 

model evaluations. To ensure convergence, tests were 

conducted with N=5,000, 10,000 and 15,000 samples. 

3. Numerical Example 

A representative simulation example of a V-belt drive 

in a conveyor transmission system is presented in Figure 6 

to illustrate the proposed optimization model. The system 

consists of a motor (1), V-belt drive (2), double-stage gear 

reducer (3), chain drive (4), and conveyor system (5). The 

V-belt drive has a rated power of P = 6.02 kW and input 

speed n1 = 968 rpm. 

Objective function: The purpose of design 

optimization is to obtain either the minimum or maximum 

value of the objective function. For belt drive design 

optimization, the mass and the output power of the belt 

drive are selected as the objective functions: 
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Where: ρ1 is the density of the pulley material; ρ2 is the 

density of the belt material; ρ is the mass per unit length of 

the belt; B is the pulley width; S is the cross-sectional area 

of the belt; z is the number of belts. 

 

Figure 6. Illustration of a conveyor transmission system used as 

a numerical example 

(1) motor, (2) V-belt drive, (3) gear reducer, (4) chain drive, and 

(5) conveyor belt. 

Design variables: From the objective function of mass, 

four main design variables that directly affect the mass of 

the belt drive can be identified, including the diameter of 

the smaller pulley d1, the diameter of the larger pulley d2, 

the center distance between the two pulleys A, and the 

number of belts z. However, the belt length L is a discrete 

value selected from standard tables for each specific belt 

type. Therefore, to facilitate the optimization process and 

ensure consistency with practical conditions, the belt 

length L can be used as a substitute variable for the center 

distance A. With this approach, the set of design variables 

employed in the optimization problem includes: 
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To ensure that the belt drive does not fail during 

operation, its structure must achieve a minimum reliability 

level of R*=99.9%. With this objective, the design process 

is carried out based on the Reliability-Based Design 

Optimization (RBDO) approach, in which the required 

reliability R*=99.9% is imposed as the main constraint in 

the optimization process. 

In summary, the reliability-based design optimization 

problem for the belt drive can be formulated as follows: 

- Design variables: zLdd ,,, 21
 

- Objective function: 
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Where: the calculated stress σv, the circumferential force F, 

the fatigue limit σlim0, … are random variables whose 

values are given in Table 1.

 In the reliability-based design optimization (RBDO) 

process, several parameters of the V-belt drive are 

considered as random variables to capture the uncertainties 

arising from material variability, manufacturing tolerances, 

and operating conditions. These random variables include 

the belt fatigue limit, friction coefficient, belt tension, and 

geometric parameters, among others. Their statistical 

properties, namely mean values and standard deviations, 

are summarized in Table 1, which serves as the input data 

for the reliability analysis and subsequent optimization 

procedure. 

Table 1. Statistical properties of the design parameters 

Random variable Unit 
Mean 

value 

Standard 

deviation 

Belt tension force, F N 660 66 

Fatigue limit, σlim0 MPa 12 0.6 

Elastic modulus of belt 

material, E 
MPa 100 10 

Centrifugal stress, σv MPa 0.1 0.01 

Fatigue strength 

exponent, m 
– 8 0.8 

Friction coefficient 

between belt and pulley, f 
– 0.3 0.03 

Belt cross-sectional area, S mm² 138 13.8 

Driver pulley diameter, d1 mm 1d
 11.0 d  

Driven pulley diameter, d2 mm 2d  
21.0 d  

Belt length, L mm L
 

L167.0
 

Reference number of 

cycles, N0 
cycle 107 - 

Total number of 

operating cycles, N 
cycles 2.8x107 -

 

In the reliability analysis, all random variables listed in 

Table 1 are assumed to follow normal probability 

distributions, consistent with previous studies [3, 5, 14]. 

Although possible correlations may exist among certain 

parameters, such as between the belt tension force and the 

friction coefficient, these correlations are neglected in this 

study to simplify the model. The random variables are 

therefore considered statistically independent, which is a 

reasonable assumption since each parameter is primarily 

influenced by distinct physical sources of uncertainty. 

4. Results and Discussion 

4.1. Optimal design results 

The bi-objective optimization problem is reformulated 

using a weighted-sum method to balance system mass and 

transmitted power. The equivalent scalar objective 

function is expressed as 
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Where, M0 and P0 are the reference values obtained from 

the deterministic baseline design, and w1, w2 are the 

weighting coefficients satisfying w1+w2=1. 

In this study, M0 =37.82 kg and P0 = 4.75 kW 

correspond to the mass and transmitted power obtained 

from the deterministic optimization solution, which are 

used as reference values for normalization. This allows 

both objectives to be dimensionless and comparable in the 

weighted-sum formulation. 

All optimization and reliability analyses were 

implemented in MATLAB R2023b using a combination of 

the Global Optimization Toolbox and user-defined 

MATLAB functions. 

Table 2 presents the optimal design results of the V-belt 

drive obtained by two approaches: deterministic 

optimization (DO) and reliability-based design 

optimization (RBDO). The design variables include the 

driver pulley diameter (d1), driven pulley diameter (d2), 

belt length (L), and number of belts (z). The results indicate 

that the RBDO design achieves a significantly lower 

system mass (30.93 kg) compared to the deterministic 

design (37.82 kg), corresponding to a reduction of 

approximately 18.2%. In terms of reliability, the DO model 

yields RD0= 0.99625 ± 0.00012, which does not satisfy the 

target reliability level of R* = 0.999. In contrast, the RBDO 

approach ensures RRBDO = 0.99975 ± 0.000031, confirming 

that the reliability constraint is fully satisfied. These results 

indicate that the RBDO framework not only guarantees the 

desired reliability but also produces a lighter and more 

efficient belt drive design. 

Specifically, the RBDO design delivers 5.65 kW 

compared to 4.75 kW in DO, highlighting that accounting 

for uncertainties not only improves safety but also 

enhances performance. 

Table 2. Optimal design results of the V-belt drive 

Design variables Unit 

Method 

DO 
RBDO 

(R* = 99.9%)

 d1 mm 149.06 168.62 

d2 mm 349.07 298.25 

L mm 1625.6 1614.3 

z - 2 2 

Mass kg 37.82 30.93 

Output power

 

kW 4.75 5.65 

Reliability 

 

% 99.627 99.975 

A sensitivity study was performed by varying w1 in 

the range [0.3, 0.7], while maintaining w2=1− w1. The 

optimal solutions obtained for different weight 

combinations exhibit smooth variation in both mass and 

transmitted power, indicating stable convergence of the 

Genetic Algorithm (GA). The selected RBDO solution 

(w1 = w2 = 0.5) lies near the center of the Pareto front, 

confirming its robustness and balanced performance 

between lightweight design and high transmission power. 

Representative Pareto-optimal designs are summarized in 

Table 3 to illustrate the trade-off between these 

competing objectives. 

The Pareto front clearly demonstrates the trade-off 

between mass and transmitted power under the reliability 

constraint, as shown in Table 3. The lightweight-favored 
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design (Solution A) achieves the minimum mass but at the 

cost of reduced power transmission, while the power-

favored design (Solution C) increases power output at the 

expense of a heavier system. 

Table 3. Pareto-optimal designs obtained from GA 

Design 
 

Parameters 
Solution A 

Solution B 

(RBDO) 
Solution C 

w1 0.7 0.5 0.3 

w2 0.3 0.5 0.7 

Mass (kg) 28.85 30.93 33.50 

Power (kW) 5.45 5.65 6.15 

Reliability 0.99975 0.99975 0.99975 

Trade-off Type 
Lightweight-

favored 
Balanced 

Power-

favored 

One notable advantage of the RBDO approach is the 

reduction in the total mass of the V-belt drive while 

maintaining the required reliability. Compared to the initial 

design, the mass is reduced by approximately 18.2%, 

which contributes to a lighter transmission system, reduced 

load on bearings, material savings, and improved economic 

efficiency. Furthermore, the increase in transmitted power 

indicates higher operational effectiveness. Thus, RBDO 

not only provides a safe design but also optimizes both 

performance and cost. 

4.2. Reliability Verification using Monte Carlo 

Simulation 

Table 4 summarizes the key statistical descriptors of the 

limit-state function g(X) obtained from Monte Carlo 

Simulation with N = 106 samples. The mean value 

mg(X) = 2.378 and standard deviation Sg(X) =0.647 indicate 

a positive and relatively stable safety margin. The 

estimated reliability from MCS reaches RRBDO = 0.99975, 

which is almost identical to the target reliability 

R*=99.9%. This confirms that the RBDO solution strictly 

satisfies the probabilistic constraint and validates the 

effectiveness of IRA as an efficient surrogate for direct 

MCS during optimization. 

Table 4. Result of Monte Carlo simulation 

Simulation 

samples 

N 

Mean value 

mg(X) 

Standard 

deviation 

Sg(X) 

Reliability 

RRDBO 

106 2.378 0.647 0.99975 

Figure 7 provides a visual illustration of the random 

distribution of fatigue limit σlim, maximum stress σmax and 

the limit-state function g(X)). The results show that for the 

RBDO design, nearly all samples remain in the safe 

domain (g(X) > 0). The histogram of g(X) exhibits a near-

Gaussian distribution with skewness close to zero and 

kurtosis around three, indicating negligible tail effects and 

a very low risk of extreme unsafe scenarios. 

Monte Carlo validation was performed with N=106 

samples. The estimated reliability for the RBDO design 

was RRDBO = 0.99975 with a 95% confidence interval of 

[0.99972, 0.99978] (normal approximation). Convergence 

of the MCS estimate was assessed by plotting R(N) and its 

95% CI for increasing sample sizes N={103, 5×103, 104, 

5×104, 105, 5×105, 106}, as presented in Figure 8. 

(a)  

(b)  

Figure 7. Monte Carlo simulation: a) Fatigue limit lim and 

Stress max; b) Limit-state function g(X) 

 

Figure 8. Convergence of the estimated reliability R(N) 

4.3. Sensitivity Analysis 

To further evaluate the reliability of the V-belt drive 

under uncertainty, a global sensitivity analysis (GSA) was 

performed using Sobol indices. The analysis considered 

key random design variables, including pulley diameter 

(di), belt tension (F), fatigue limit (σlim), bending stress (σu), 

centrifugal stress (σv), belt length (L), friction coefficient 

(f) and elastic modulus (E). 

The Sobol indices were estimated using the extended 

sampling scheme of Saltelli, which allows simultaneous 

estimation of both the first-order indices (Si) and the total-

effect indices (STi). The base sample size was set to 

N = 104, resulting in a total of N × (k + 2) = 104 × (9 + 2) 

= 1.1105 model evaluations, where k = 9 random variables 

were considered: σlim, f, L, d1, d2, F, S, σv, and E. 

To verify convergence, the Si and STi results were 

compared for sample sizes of N = 5 105 and N = 15105. 

The indices showed only minor variations when N was 

increased or decreased (absolute change ≤ 0.02 and relative 

change ≤ 3% for most variables), indicating that the Sobol 
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indices had sufficiently converged. Therefore, the 

conclusions regarding the relative importance of the 

random variables are considered robust with respect to the 

chosen sampling configuration. The results are 

summarized in Table 5 and Figure 9. 

Table 5. Global sensitivity analysis results of random variables 

using Sobol indices. 

Random 

Variable 

Si 

(First-

order) 

STi 

(Total 

effect) 

Remarks 

Fatigue limit (σlim) 0.72 0.81 Dominant factor 

Friction 

coefficient (f) 
0.09 0.14 

Moderate effect, 

interaction with belt 

tension 

Belt length (L) 0.07 0.11 
Influences wrap angle 

and stress distribution 

Driver pulley 

diameter (d1) 
0.01 0.02 

Minor effect, mainly 

through wrap angle 

Driven pulley 

diameter (d2) 
0.03 0.05 

Slightly higher effect 

due to transmission ratio 

Belt tension (F) 0.05 0.09 
Small effect, increases 

when interacting with ff 

Belt cross-

sectional area (S) 
0.04 0.06 

Relatively small 

influence 

Centrifugal 

stress (σv) 
0.02 0.03 Limited impact 

Elastic modulus (E) 0.01 0.02 Very minor influence 

The GSA results provide deeper insights into the 

reliability behavior of V-belt drives. As shown in Table 4, 

the fatigue limit of the belt material (σlim) is the most 

critical parameter, accounting for approximately 72% of 

the first-order effect and more than 80% of the total effect. 

This confirms that variability in fatigue properties governs 

the system’s service life and reliability. Accordingly, 

material quality control and enhancement of fatigue 

performance are the primary strategies for improving 

system reliability. 

 

Figure 9. Global sensitivity analysis results using Sobol indices 

The friction coefficient (f) and belt length (L) also 

contribute significantly, particularly through their 

interaction with belt tension (F). This finding underscores 

the importance of maintaining stable frictional contact 

conditions and ensuring proper belt installation to achieve 

reliable power transmission. In contrast, the geometric 

parameters (d1, d2) and elastic modulus (E) have relatively 

minor effects, suggesting that variations within their design 

ranges do not substantially compromise safety. 

Nevertheless, their inclusion in the optimization process 

remains essential to ensure robustness under practical 

design constraints. 

Overall, GSA complements the local sensitivity 

analysis by identifying not only the most influential 

random variables but also their interaction effects. These 

insights offer valuable guidelines for material selection, 

design improvement, and preventive maintenance, thereby 

enhancing the robustness of the proposed RBDO 

framework. 

This analysis also reflects the inherent uncertainty in 

the mechanical properties of the belt material, which is the 

primary load-bearing component of the transmission 

system. To further illustrate this point, the influence of the 

standard deviation of the fatigue limit on the failure 

probability was investigated. As presented in Figure 10, 

increasing the standard deviation of the fatigue limit leads 

to a substantial rise in failure probability, even when the 

mean value remains constant. This emphasizes the 

dominant role of material variability in determining system 

reliability. 

 

Figure 10. Effect of the standard deviation of the fatigue limit 

on the failure probability 

In summary, the fatigue limit of the belt material (σlim) 

exhibits the most dominant effect on failure probability, 

followed by the friction coefficient (f) and belt length (L). 

This result is physically reasonable since the belt is 

subjected to repeated bending and frictional contact, 

making its fatigue properties the governing factor in overall 

reliability. From a practical perspective, enhancing 

reliability requires reducing the scatter in fatigue strength 

by: (i) selecting materials with higher and more consistent 

fatigue performance, (ii) optimizing manufacturing and 

surface treatment processes to minimize defects, and (iii) 

strengthening batch quality control. Additionally, 

maintaining proper surface conditions (pulley surface 

treatment, lubrication) and accurately controlling initial 

belt tension are essential, while selecting an appropriate 

belt length helps stabilize stress distribution. 

Therefore, sensitivity analysis not only identifies the 

most critical random variables but also provides actionable 

guidelines for improving material selection, design 

robustness, and maintenance strategies, thereby ensuring 

high reliability in V-belt drive systems. 
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5. Conclusions 

This study developed a Reliability-Based Design 

Optimization (RBDO) framework for V-belt drives by 

integrating Inverse Reliability Analysis (IRA) with a 

Genetic Algorithm (GA) and validating the results through 

Monte Carlo Simulation (MCS). The findings reveal that 

the RBDO approach not only ensures the required 

reliability level (R* = 99.9%) but also provides significant 

advantages over deterministic optimization. Specifically, it 

reduces system mass by approximately 18.2%, increases 

transmitted power from 4.75 kW to 5.65 kW, and improves 

overall operational efficiency. 

The sensitivity analysis highlights that the fatigue limit 

of the belt material is the most critical factor influencing 

reliability, underlining the importance of material 

properties in the safe design and operation of belt drives. 

Overall, the proposed RBDO framework demonstrates 

its feasibility and effectiveness in designing lightweight, 

reliable, and high-performance V-belt drives. Moreover, it 

offers a promising basis for extending reliability-based 

optimization to other mechanical power transmission 

systems, enabling a better balance between performance, 

safety, and economic efficiency. 
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