
60 Huynh Le Huy, Khuat Thanh Tung, Le Thi My Hanh

A PRACTICAL APPROACH TO BUILDING LEGAL KNOWLEDGE GRAPHS

FROM LEGAL TEXTS FOR LEGAL CONSULTATION SYSTEMS

Huynh Le Huy1, Khuat Thanh Tung2,3, Le Thi My Hanh1*
1The University of Danang - University of Science and Technology, Vietnam
2Complex Adaptive Systems Lab, University of Technology Sydney, Australia

3NuverxAI - AI & Creative Innovation Company Limited, Vietnam

*Corresponding author: ltmhanh@dut.udn.vn

(Received: September 13, 2025; Revised: December 05, 2025; Accepted: December 08, 2025)

DOI: 10.31130/ud-jst.2025.23(12).465E

Abstract - In the context of applying artificial intelligence to the

legal domain, building legal question-answering (QA) systems

requires a structured, queryable, and inferable knowledge

foundation. This paper proposes a semi-automated method to

extract and map legal knowledge from the Penal Code of Vietnam

into a knowledge graph, supporting criminal law QA systems.

The solution includes five main steps: (1) extracting legal text

from the PDF files, (2) preprocessing and normalizing the text

into individual articles, (3) using large language models (LLMs)

to generate fundamental knowledge components based on the

predefined rule set, (4) mapping these components into nodes and

edges to construct the knowledge graph, and (5) optimizing and

visualizing the graph. Preliminary results show that the model can

accurately represent legal relationships such as violations,

penalties, applicable subjects, and inter-article references, which

will form the groundwork for the future automated legal QA

applications.

Key words - Legal knowledge extraction; Knowledge graph;

Neo4j; Large language models

1. Introducion

With the growing demand for legal information

retrieval, many studies have focused on developing

automated question-answering (QA) systems in the legal

field. Traditional approaches mostly rely on keyword-

based queries or expert rule systems, which often struggle

with deep semantic processing and exhibit reduced

accuracy when handling complex questions. Recently, the

emergence of large language models (LLMs) such as

OpenAI GPT [1] and Gemini [2] has opened new

opportunities for understanding and processing natural

language in legal contexts. At the same time, combining

these models with knowledge graphs has proven to be an

effective approach for enhancing reasoning and semantic

querying capabilities [3, 4].

However, a significant challenge lies in accurately

extracting and mapping knowledge from natural-language

legal documents into a structured, queryable knowledge

graph. Legal texts are often lengthy, employ complex

domain-specific language, and contain numerous cross-

references between articles, which makes knowledge

extraction difficult. Previous research efforts have

primarily focused on extracting isolated pieces of

information or constructing small-scale sample graphs.

These approaches have not yet fully leveraged LLMs for

large-scale automation, nor have they assessed their

effectiveness in supporting legal QA systems [5, 6].

To address these limitations, this paper proposes a five-

step semi-automated method that integrates PDF text

extraction, legal text preprocessing, knowledge generation

using the Gemini LLM in JSON format, mapping into the

Neo4j graph database, and constructing a complete legal

knowledge graph. Notably, this study is conducted on the

entire Penal Code of Vietnam, allowing for an evaluation

of the method's practicality and scalability.

The main contributions of this paper are:

(i) Proposing a semi-automated legal knowledge

extraction process based on LLMs and the Neo4j graph

database management system;

(ii) Building a practical knowledge graph from the

Penal Code of Vietnam;

(iii) Presenting a specific case study demonstrating the

benefits of using a knowledge graph in a legal QA system;

(iv) Analyzing the advantages, limitations, and

potential applications of the proposed method.

2. Background

2.1. Knowledge Graphs and Neo4j

A knowledge graph is a method of representing

structured knowledge, where entities (nodes) and their

relationships are organized into an interconnected graph.

Neo4j [7] is a popular Graph Database Management

System (DBMS) designed for storing, managing, and

querying graph-structured data. It is based on the property

graph model, where data is represented through nodes

(entities), relationships (connections between entities), and

properties (attributes of nodes and relationships). Neo4j is

widely used in domains such as social network analysis,

recommendation systems, fraud detection, and knowledge

graph construction [8].

In Neo4j, nodes can represent various real-world

entities such as people, places, legal articles, or criminal

behaviors, while relationships describe the links or

interactions among these entities. Both nodes and

relationships can carry multiple key-value pairs, allowing

for flexible and semantically rich data modeling.

Cypher [9] is Neo4j's declarative query language that

allows users to describe graph patterns intuitively.

Common operations in Cypher include creating nodes,

establishing relationships, querying patterns such as

finding shortest paths, or filtering nodes based on specific

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 12, 2025 61

attributes. Neo4j’s architecture is optimized for graph

traversal and pattern matching operations, ensuring high

performance even with complex queries.

Based on the powerful graph-processing capabilities,

Neo4j is particularly suitable for representing legal

knowledge, where legal documents inherently exhibit

graph-like structures (e.g., references between articles,

applicability relationships, regulatory conditions).

2.2. Characteristics of Vietnamese Legal Texts

Vietnamese legal documents, particularly the Penal

(Criminal) Code, possess unique characteristics that make

knowledge extraction particularly challenging. Firstly,

these texts are typically organized in a hierarchical

structure consisting of chapters, sections, articles, clauses,

and points. Each article may define multiple violations of

varying severity, corresponding penalties, and affected

subject groups. Additionally, legal language is highly

specialized, using domain-specific terminology and long,

complex sentence structures to ensure precision,

comprehensiveness, and legal clarity.

Another notable feature is the high level of cross-

referencing among articles within the same legal

document, as well as with related legal documents. These

interconnections create a dense, overlapping network of

legal provisions that are interdependent, further

complicating the process of extracting and reorganizing

knowledge. Therefore, an effective extraction method must

not only accurately identify individual legal entities but

also reconstruct complete and semantically correct

relationships across the entire legal document.

2.3. Knowledge Graphs in the Legal Domain

In the legal domain, articles, regulations, and legal

documents frequently reference, link, and constrain each

other, making graph-based modeling a natural and

effective approach. A typical legal knowledge graph

includes nodes representing legal articles (Article),

violations (Behavior), penalties (Penalty), and applicable

subjects (Subject), along with relationships such as

DEFINES BEHAVIOR, APPLIES TO, INCURS

PENALTY, or REFERENCES other articles. Constructing

such a legal knowledge graph enables deep semantic

queries, such as finding all penalties related to a specific

behavior, or identifying articles that reference a particular

legal concept.

Figure 1. Legal Knowledge Graph Illustration

In our proposed approach, Neo4j is used as the

knowledge base system to store and manage the legal

knowledge graph generated from the extraction process.

Nodes and relationships are constructed based on JSON

output from the knowledge generation model, while

Cypher queries are used to explore, analyze, and develop

legal QA applications. Figure 1 illustrates a simplified

example of a legal knowledge graph built using Neo4j:

- Orange nodes represent legal articles, including

attributes such as article ID and title.

- Green nodes denote the defined violations.

- Red nodes indicate the corresponding penalties.

- Purple nodes represent the applicable subjects

regulated by the article.

Relationships in the graph describe the connections

among entities, such as “DEFINES BEHAVIOR” from an

article to a behavior, “INCURS PENALTY” from a

behavior to a penalty, “APPLIES TO” from an article to a

subject, and “REFERENCES” between articles or other

entities. Modeling legal knowledge in graph form allows

the system to easily query and analyze complex legal

relationships, effectively supporting smart legal QA and

advisory applications.

3. Methodology

The process of extracting and mapping legal knowledge

into a knowledge graph proposed in this study consists of

five main steps, illustrated in Figure 2. The steps are

described in detail as follows:

3.1. Overview of the Knowledge Extraction and Mapping

Process

Figure 2. Overview of the Knowledge Extraction and

Mapping Process from Legal Documents

The process begins with extracting text from the PDF file

of the Penal Code of Vietnam (in Vietnamese), followed by

preprocessing and segmenting the content into individual

legal articles. These articles are then fed into a large language

model (Gemini) through a structured prompt, which includes

detailed instructions regarding the types of legal entities

(nodes) and the relationships (edges) between them, such as:

DEFINES_BEHAVIOR, :APPLIES_TO, etc. These rules are

predefined based on an analysis of the characteristics of

Vietnamese legal texts to ensure that the output is consistently

structured and suitable for mapping into a knowledge graph.

The generated results are JSON files containing lists of legal

entities and their relationships, which are then mapped into a

graph database such as Neo4j to construct a complete,

queryable, and visualizable knowledge graph.

62 Huynh Le Huy, Khuat Thanh Tung, Le Thi My Hanh

3.2. Extracting Legal Text from PDF

To extract text from the Criminal Code PDF file, the

study used the PyMuPDF library to preserve formatting

and full content. The extracted data is saved as plain .txt

files for further processing.

3.3. Legal Ontology Design and Prompt Engineering

Strategy

To ensure structured and consistent extraction of legal

knowledge from criminal law texts, we designed a

lightweight ontology and a guided prompt engineering

strategy. This ontology serves as the foundation for both

the legal knowledge graph schema and the JSON-based

outputs generated from large language models (LLMs).

Ontology Design

The ontology was developed based on an in-depth

analysis of the Vietnamese Penal Code (2015, amended

2017), focusing on recurring legal concepts and their

relationships. We defined five core entity types and six

relation types, reflecting the semantics commonly

embedded in legal provisions:

• Entity Types:

- Bo_Luat: The Penal Code itself (single root node).

- Dieu_Luat: Legal articles (e.g., Article 123).

- Hanh_Vi: Criminal behaviors or acts (e.g., murder,

theft).

- Hinh_Phat: Legal penalties (e.g., imprisonment, death

penalty).

- Doi_Tuong: Entities affected by or subject to the law

(e.g., individual, legal entity).

• Relation Types:

- CHỨA: from Bo_Luat to each Dieu_Luat.

- QUY_ĐỊNH_HÀNH_VI: from Dieu_Luat to Hanh_Vi.

- QUY_ĐỊNH_HÌNH_PHẠT: from Dieu_Luat to Hinh_Phat.

- ÁP_DỤNG_CHO: from Dieu_Luat to Doi_Tuong.

- THAM_CHIẾU_ĐẾN: connecting related articles.

- ĐƯỢC_THỰC_HIỆN_BỞI / XỬ_PHẠT_ĐỐI_VỚI:

linking behaviors or penalties to legal subjects.

This ontology is sufficient to express the majority of

legal logic found in the Penal Code, while remaining

simple enough to allow for scalable graph construction.

Prompt Engineering Strategy

We created a standardized prompt template to guide the

LLM in extracting knowledge in alignment with our

ontology. The prompt includes:

- Explicit listing of all allowed entity and relation types,

- Instructions to output only JSON data (no natural

language explanations),

- A predefined format for nodes and edges,

- Reuse of previously created nodes (based on semantic

equivalence),

- Insertion of each legal article’s text as input.

3.4. Preprocessing and Normalizing Legal Articles

The .txt document is split into individual articles based

on headings containing the phrase "Điều X" (Article X).

Each article is saved as a separate file to facilitate mapping

with corresponding knowledge graph nodes. This step also

includes Unicode normalization, removal of unnecessary

characters, and separation of the article’s title, content, and

penalty clauses (if any).

3.5. Knowledge Generation via Prompt and Gemini API

For each legal article, the system generates a

standardized and structured prompt to be processed by the

Gemini large language model. The prompt instructs the

model to identify key entities such as: Legal Article

(Dieu_Luat), Behavior (Hanh_Vi), Penalty (Hinh_Phat),

and Subject (Doi_Tuong), as well as the relationships

between them, including :DEFINES_BEHAVIOR,

:APPLIES_TO, :REFERENCES, and so on. The result

returned is a JSON file containing a list of nodes and

relationships, normalized according to the preprocessing

format for insertion into the Neo4j graph database.

3.6. Constructing the Knowledge Graph in Neo4j

Finally, the system utilizes Neo4j and the Cypher query

language to generate nodes and edges from the JSON files.

The nodes are labeled according to their respective entity

types, for example :(Dieu_Luat {ten: "Article 123"}),

(Hanh_Vi {mo_ta: "Murder"}), and relationships such as

(:Dieu_Luat) - [:DEFINES_BEHAVIOR]→ (:Hanh_Vi).

All data is stored in graph format and can be visualized

using the Neo4j Browser or other semantic query tools.

This proposed method adopts a semi-automated

approach, combining traditional text processing techniques

with large language models to extract and map legal

knowledge. Legal texts are represented by four main entity

types: Legal Article (Dieu_Luat), Violation (Hanh_Vi),

Penalty (Hinh_Phat), and Subject (Doi_Tuong), along with

their relationships such as :DEFINES_BEHAVIOR,

:APPLIES_TO, and :REFERENCES.

To ensure accurate input for knowledge extraction, the

Penal (Criminal) Code document is extracted using

PyMuPDF, then preprocessed and split into separate

articles. Each article is converted into an individual prompt

for the Gemini API, generating JSON files containing

nodes and edges. These JSON outputs are then mapped into

the Neo4j graph database using Cypher, forming a

complete legal knowledge graph capable of supporting

semantic queries and question answering.

4. Experimental Results

4.1. The Illustration of the Constructed Graph

Through the seamless integration of Neo4j and Python,

we efficiently imported and stored Subject-Relation-

Object triples into the graph database in a structured

manner. This process not only validated Neo4j’s

effectiveness in handling large-scale knowledge graph data

but also demonstrated its potential to automate the entire

pipeline from data extraction to organized storage.

To visualize the structure and content of the legal

knowledge graph, we utilized the built-in visualization

tools provided by Neo4j. However, due to the large scale

and complex nature of the comprehensive knowledge

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 12, 2025 63

graph, directly rendering the full dataset made it

challenging to extract detailed information within specific

legal domains. To address this issue, we adopted a focused

visualization strategy applied across the entire Vietnamese

Penal Code. The visualization process was performed

using Neo4j’s built-in tools, based on datasets extracted

and processed from legal documents.

Figure 3. Visualization of the overall knowledge graph of

the Penal Code of Vietnam

The visualization results show that the legal knowledge

graph constructed from the Vietnamese Penal Code

comprises a total of 738 nodes and 1,452 relationships. The

nodes are categorized into key groups, including: 1

Bo_Luat node, 314 Dieu_Luat (Article) nodes, 287

Hanh_Vi (Behavior) nodes, 57 Hinh_Phat (Penalty) nodes,

and 79 Doi_Tuong (Subject) nodes. In terms of

relationships, the system includes characteristic legal

relations such as: CHỨA (CONTAINS) - 334,

QUY_ĐỊNH_HÀNH_VI (DEFINES_BEHAVIOR) - 309,

QUY_ĐỊNH_HÌNH_PHẠT (DEFINES_PENALTY) - 328,

ÁP_DỤNG_CHO (APPLIES_TO) - 165,

XỬ_PHẠT_ĐỐI_VỚI (PENALTY_FOR) - 75,

THAM_CHIẾU_ĐẾN (REFERENCES) - 5, and

ĐƯỢC_THỰC_HIỆN_BỞI (PERFORMED_BY). These

statistics clearly reflect the richness and tightly interlinked

nature of legal entities within the Penal (Criminal) Code

document, demonstrating the capability to represent legal

knowledge in a structured, visual, and semantically

queryable format, which is ready to support intelligent

legal question-answering systems.

Figure 4. Local Subgraph Around Article 40

As illustrated in Figure 3, the interconnected network

of articles and their associated legal components, such as

prohibited behaviors, penalty regulations, adjudication

criteria, and subjects of criminal responsibility, can be

clearly observed. Visualizing the entire code not only

overcomes the limitations of traditional linear text

processing methods but also opens up the possibility for

multi-dimensional analysis of legal relationships,

providing strong support for in-depth research and

practical applications in the field of criminal law.

While the full visualization in Figure 3 provides a

comprehensive overview of the global structure of the

Penal Code knowledge graph, such a large-scale

representation can make it difficult to observe fine-grained

legal relationships at the article level. To address this, we

include an enlarged subgraph focusing on a single legal

provision, as shown in Figure 4. This detailed subgraph,

centered on Article 40, illustrates how the knowledge

graph encodes localized legal semantics through

connections to applicable subjects, prescribed penalties,

cross-referenced articles, and other legally relevant

entities. By zooming into a specific article, the

visualization makes the internal organization of the graph

more interpretable, revealing how individual legal

concepts interact and how semantic relationships are

embedded within the encoded structure. This focused view

not only complements the global visualization but also

highlights the practical value of knowledge graph

representations for legal reasoning and article-level

analysis.

4.2. Comparative Evaluation: LLM-based QA vs.

Knowledge Graph-Enhanced QA

Figure 5. Comparing Workflows for Legal Question

In the context of developing automated legal question-

answering systems, the presence or absence of a

knowledge graph results in a clear difference in answer

accuracy, completeness, and content controllability.

Without the use of a knowledge graph, the system relies

entirely on the semantic inference capabilities of large

language models such as Gemini or GPT-4o. For

example, a natural-language question like: "If a person

64 Huynh Le Huy, Khuat Thanh Tung, Le Thi My Hanh

commits murder, which article applies, and what is the

maximum penalty?" is submitted directly to the model.

The LLM then generates a response based solely on its

internal knowledge and training data. This workflow,

illustrated on the right side of Figure 5, highlights the

limitations of relying solely on LLMs, as the model may

produce incomplete answers (e.g., omitting the article

number) or incorrect ones (e.g., referencing the wrong

legal provision). These inaccuracies stem from the

probabilistic nature of LLMs, which are not connected to

an authoritative legal knowledge base.

Although in some cases the model can provide correct

answers, such as identifying Article 123 and the maximum

penalty of capital punishment, numerous inaccuracies still

occur. For example, the model may return incomplete

answers (e.g., stating only the penalty without referencing

the applicable article) or cite the wrong article, such as

Article 124, which refers to involuntary manslaughter,

while the question clearly addresses intentional murder.

Due to the probabilistic nature of LLMs and their lack of

connection to an authoritative legal knowledge base,

confusion between legal provisions is often unavoidable.

To ensure a fair and systematic comparison between

the two approaches, we constructed a benchmark

evaluation framework consisting of three components.

First, we created a test set of 25 natural-language legal

questions that cover a broad spectrum of Vietnamese

criminal law topics, such as murder, theft, bribery, rape,

and drug-related offenses. For each question, we

established a ground truth reference including the correct

legal article(s) and the maximum statutory penalty, based

on expert verification from the Vietnamese Penal Code

(2015, revised 2017). Second, each question was

independently submitted to two different QA pipelines:

(1) a baseline pipeline using only the LLM, and (2) an

enhanced pipeline that retrieves relevant legal facts from

a Neo4j-based knowledge graph and injects them into the

prompt before passing it to the LLM. Third, each answer

was manually assessed using two objective criteria: (i)

correctness of the cited article and (ii) correctness of the

stated penalty. This design allows us to quantify and

compare the legal reasoning performance of both systems

under identical input conditions.

To evaluate this, we experimented comparing the

performance of legal question answering in two scenarios:

using only a LLM and combining the LLM with a legal

knowledge graph. Specifically, we created a set of 25 real-

world legal questions written in natural language,

simulating common criminal law scenarios such as

intentional murder, property theft, extortion, rape, bribery,

drug possession, and engaging in sexual acts with minors.

Each question was paired with a ground truth consisting of

the applicable legal article and the maximum penalty,

based on the Vietnamese Penal Code (2015, revised 2017).

Although the current evaluation uses a test set of 25

manually curated questions, which provides an initial but

limited view of system performance, we acknowledge that

a larger benchmark dataset is necessary to fully capture the

diversity and complexity of legal queries. Future work will

expand this dataset to hundreds of questions covering

broader legal contexts and multiple levels of legal

reasoning. The results showed that the system using only

the LLM achieved approximately 84% accuracy for

complete and correct answers.

In contrast, when the system was integrated with the

knowledge graph, the QA process became more structured

and controllable. Instead of sending the question directly to

the LLM, the system first queried the knowledge graph,

which was built from the Penal (Criminal) Code, to identify

relevant entities and relationships. In the murder case, for

instance, the behavior "murder" was linked to Article 123,

and then further queried to retrieve the corresponding

maximum penalty, which is capital punishment. This

information was then incorporated into a context-enriched

prompt for the LLM, such as:

"According to the Vietnamese Penal Code, the behavior

'murder' is defined in Article 123, with the maximum

penalty being death. Based on this information, please

explain the relevant legal provisions."

With solid background knowledge provided, the model

merely elaborated and explained the validated information,

thus minimizing reasoning errors. The evaluation showed

that the accuracy rate increased to approximately 92%, and

the responses became more complete, consistent, and

legally grounded. The empirical outcomes confirm the role

of the knowledge graph not only as an effective repository

of legal information, but also as a critical support layer that

significantly improves the quality of output in intelligent

legal QA systems.

Figure 6. Comparison of Precision / Recall / F1-score between

LLM-only and KG+LLM pipelines

In addition to accuracy, we further extended the

evaluation with more objective quantitative metrics,

including Precision, Recall, and F1-score, to provide a

clearer comparison between the two QA pipelines. A

prediction was considered correct only when both the

cited article and the corresponding maximum penalty

matched the ground truth. As shown in Figure 6, the

LLM-only baseline achieved a Precision of 1.00, a Recall

of 0.86, and an F1-score of 0.9247. These results indicate

that while the LLM produces highly accurate answers

when confident, it frequently omits necessary legal

details, leading to lower recall.

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 12, 2025 65

In contrast, the KG-enhanced pipeline achieved the

same Precision of 1.00 but demonstrated a markedly higher

Recall of 0.92 and an improved F1-score of 0.9583. This

improvement reflects the stabilizing effect of incorporating

verified legal facts retrieved from the knowledge graph,

which helps the LLM avoid missing essential components

of the answer and reduces reasoning errors. Together, these

metrics provide a more comprehensive evaluation beyond

accuracy alone and demonstrate that integrating a legal

knowledge graph enhances both completeness and

reliability of legal question answering.

Although both models achieve perfect precision,

several failure patterns highlight their inherent limitations.

The KG+LLM system mainly fails when the Knowledge

Graph lacks complete or properly linked information. In

such cases, the model cannot retrieve the required article or

penalty, leading to missing or irrelevant outputs and a

noticeable drop in recall. This demonstrates the strong

dependency of KG-based reasoning on data completeness.

Conversely, the LLM-only system rarely predicts the

wrong article but often produces long and unstructured

explanations. This over-generation makes it difficult to

extract the maximum statutory penalty and may introduce

small inconsistencies when multiple sentencing tiers

exist. In addition, the LLM-only model sometimes

struggles with questions whose legal terms are

semantically similar. A notable example is the confusion

between cưỡng đoạt tài sản (Article 170) and cướp giật

tài sản (Article 171). Although both belong to related

categories of property offenses, the model may initially

drift toward the wrong legal group due to linguistic

similarity before eventually producing the correct article

through post-extraction. This semantic drift illustrates

how LLMs may prioritize contextual similarity over strict

legal classification.

Overall, the failure cases show that LLM-only suffers

from verbosity, semantic confusion, and extraction noise,

whereas KG+LLM is vulnerable to missing or incomplete

graph data. The results suggest that improving KG

coverage and enforcing more structured generation could

further enhance system robustness.

5. Discussions

Initial experimental results indicated that the proposed

method holds great potential for transforming legal texts

into knowledge graphs to support legal query and question-

answering applications. However, during implementation,

several strengths and limitations were observed. One clear

advantage of the method is its high level of automation: the

entire process, from preprocessing to graph generation,

requires minimal manual intervention, especially when a

standardized prompt format is established based on

carefully defined entity types and relationship categories

derived from the structure of legal documents. In addition,

the Gemini large language model demonstrated strong

performance in processing lengthy and complex legal texts,

showing the ability to accurately extract multiple behaviors

and penalties within a single article. The scalability of the

method is also promising, as it can be readily applied to

other legal codes such as the Civil Code or the Traffic Law,

which share similar structural characteristics.

Nonetheless, the method presents certain limitations. A

major challenge is its reliance on prompt engineering, as

the clarity and completeness of the defined entity types,

semantic roles, and relationship categories directly

influence the structure of the extracted knowledge.

Ambiguous or inconsistently phrased prompts may

produce redundant entities, missing penalties, or incorrect

relationships, reducing the robustness and reproducibility

of the system. Furthermore, some legal articles possess

unique structural characteristics that can lead to errors in

the knowledge generation process, such as mixing

behaviors with penalties or omitting important cross-

references. Another limitation is that knowledge validation

is still largely conducted manually, which hinders

scalability when applying the method to larger multi-

document legal corpora. To address this limitation, in

future work, we plan to automate the validation process

using rule-based consistency checks and embedding

similarity models to verify entity-relationship correctness,

thus minimizing manual validation efforts.

Another important direction emerging from the

experimental findings relates to the need for inter-

document integration and automated cross-legal

validation. While the current approach focuses primarily

on transforming individual articles within the Penal Code

into structured knowledge representations, many legal

questions in real-world scenarios require reasoning across

multiple legal documents, such as linking criminal liability

to corresponding civil compensation obligations or

aligning penal provisions with procedural requirements

defined in the Code of Criminal Procedure. Without

mechanisms for cross-referencing, the generated

knowledge graph remains isolated within a single legal

domain, limiting its ability to support more complex legal

reasoning tasks.

To improve scalability and enhance reasoning quality,

future extensions of this work should incorporate

systematic inter-document linking across major legal

codes, including the Civil Code, the Criminal Procedure

Code, and domain-specific regulations. This could be

achieved by harmonizing schema definitions, introducing

canonical identifiers for shared legal concepts, and

applying automated cross-checking techniques to detect

contradictions or semantic mismatches between related

provisions. Integrating such capabilities would not only

strengthen the structural consistency of the knowledge

graph but also provide a foundation for more advanced

applications, such as multi-domain legal question

answering and legal compliance analysis.

Despite these limitations, the proposed approach

demonstrates strong potential for building legal knowledge

bases that support semantic querying, developing legal

consultation chatbots powered by knowledge graphs, and

assisting in the analysis and detection of inconsistencies or

overlaps in the current legal document system.

66 Huynh Le Huy, Khuat Thanh Tung, Le Thi My Hanh

6. Conclusions and future work

In this paper, we proposed a semi-automated method

for extracting and mapping legal knowledge from legal

texts into a knowledge graph, to support intelligent legal

question-answering systems. The method consists of five

main steps: extracting text from PDF documents,

preprocessing, generating knowledge using a large

language model based on specifically defined entity types

and relationships, mapping the generated knowledge into a

knowledge graph, and visualizing the results. Initial

experimental results on the Vietnamese Penal Code

demonstrate the ability to accurately extract legal entities

such as behaviors, penalties, articles, and applicable

subjects, along with the relationships among them. The

resulting knowledge graph can significantly support the

development of legal query systems and legal advisory

chatbots.

Looking forward, we plan to pursue several directions

for further development. First, we will optimize prompt

design and address knowledge generation errors through a

deeper investigation into prompt engineering, entity and

relationship modeling in legal texts, and output quality

control from the LLM. Second, we aim to build an

automated evaluation framework to assess the accuracy of

extracted knowledge and reduce reliance on manual

validation. Third, we intend to integrate natural language

query technologies to develop a complete end-to-end legal

QA system, in which the knowledge graph serves as the

foundation for generating accurate and user-friendly

responses. Lastly, we will expand the dataset to apply this

method to other legal domains such as the Civil Code,

Traffic Law, Administrative Law, and related legal areas.

REFERENCES

[1] OpenAI, "GPT-4 Technical Report," arXiv preprint

arXiv:2303.08774, 2023.

[2] G. Team et al. "Gemini: A Family of Highly Capable Multimodal

Models," arXiv preprint, arXiv:2312.11805, 2023.

[3] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Neural approaches to

conversational AI: Question answering, task-oriented dialogues and
social chatbots,” Information Fusion, vol. 52, pp. 90-107, 2019.

[4] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on

knowledge graphs: Representation, acquisition, and applications,”

IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 2, pp. 494-514,

2021.

[5] T.-H.-Y. Vuong, M.-Q. Hoang, T.-M. Nguyen, H.-T. Nguyen, and

H.-T. Nguyen, “Constructing a Knowledge Graph for Vietnamese
Legal Cases with Heterogeneous Graphs,” arXiv preprint,

arXiv:2309.09069, 2023.

[6] B. Dong, H. Yu, and H. Li, “A Knowledge Graph Construction

Approach for Legal Domain,” Tehnički vjesnik, vol. 28, no. 2, pp.

357-362, 2021.

[7] Neo4j, "Neo4j Documentation," neo4j.com. [Online]. Available:

https://neo4j.com/docs/ [Accessed September 10, 2025].

[8] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New

Opportunities for Connected Data, 2nd ed. Sebastopol, CA:
O’Reilly Media, 2015.

[9] Neo4j, "Neo4j Cypher Manual," neo4j.com. [Online]. Available:

https://neo4j.com/developer/cypher/ [Accessed September 10,

2025].

https://neo4j.com/docs/
https://neo4j.com/developer/cypher/

