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Abstract - In the context of applying artificial intelligence to the 

legal domain, building legal question-answering (QA) systems 

requires a structured, queryable, and inferable knowledge 

foundation. This paper proposes a semi-automated method to 

extract and map legal knowledge from the Penal Code of Vietnam 

into a knowledge graph, supporting criminal law QA systems. 

The solution includes five main steps: (1) extracting legal text 

from the PDF files, (2) preprocessing and normalizing the text 

into individual articles, (3) using large language models (LLMs) 

to generate fundamental knowledge components based on the 

predefined rule set, (4) mapping these components into nodes and 

edges to construct the knowledge graph, and (5) optimizing and 

visualizing the graph. Preliminary results show that the model can 

accurately represent legal relationships such as violations, 

penalties, applicable subjects, and inter-article references, which 

will form the groundwork for the future automated legal QA 

applications. 

Key words - Legal knowledge extraction; Knowledge graph; 

Neo4j; Large language models 

1. Introducion 

With the growing demand for legal information 

retrieval, many studies have focused on developing 

automated question-answering (QA) systems in the legal 

field. Traditional approaches mostly rely on keyword-

based queries or expert rule systems, which often struggle 

with deep semantic processing and exhibit reduced 

accuracy when handling complex questions. Recently, the 

emergence of large language models (LLMs) such as 

OpenAI GPT [1] and Gemini [2] has opened new 

opportunities for understanding and processing natural 

language in legal contexts. At the same time, combining 

these models with knowledge graphs has proven to be an 

effective approach for enhancing reasoning and semantic 

querying capabilities [3, 4]. 

However, a significant challenge lies in accurately 

extracting and mapping knowledge from natural-language 

legal documents into a structured, queryable knowledge 

graph. Legal texts are often lengthy, employ complex 

domain-specific language, and contain numerous cross-

references between articles, which makes knowledge 

extraction difficult. Previous research efforts have 

primarily focused on extracting isolated pieces of 

information or constructing small-scale sample graphs. 

These approaches have not yet fully leveraged LLMs for 

large-scale automation, nor have they assessed their 

effectiveness in supporting legal QA systems [5, 6]. 

To address these limitations, this paper proposes a five-

step semi-automated method that integrates PDF text 

extraction, legal text preprocessing, knowledge generation 

using the Gemini LLM in JSON format, mapping into the 

Neo4j graph database, and constructing a complete legal 

knowledge graph. Notably, this study is conducted on the 

entire Penal Code of Vietnam, allowing for an evaluation 

of the method's practicality and scalability. 

The main contributions of this paper are: 

(i) Proposing a semi-automated legal knowledge 

extraction process based on LLMs and the Neo4j graph 

database management system; 

(ii) Building a practical knowledge graph from the 

Penal Code of Vietnam; 

(iii) Presenting a specific case study demonstrating the 

benefits of using a knowledge graph in a legal QA system; 

(iv) Analyzing the advantages, limitations, and 

potential applications of the proposed method. 

2. Background 

2.1. Knowledge Graphs and Neo4j 

A knowledge graph is a method of representing 

structured knowledge, where entities (nodes) and their 

relationships are organized into an interconnected graph. 

Neo4j [7] is a popular Graph Database Management 

System (DBMS) designed for storing, managing, and 

querying graph-structured data. It is based on the property 

graph model, where data is represented through nodes 

(entities), relationships (connections between entities), and 

properties (attributes of nodes and relationships). Neo4j is 

widely used in domains such as social network analysis, 

recommendation systems, fraud detection, and knowledge 

graph construction [8]. 

In Neo4j, nodes can represent various real-world 

entities such as people, places, legal articles, or criminal 

behaviors, while relationships describe the links or 

interactions among these entities. Both nodes and 

relationships can carry multiple key-value pairs, allowing 

for flexible and semantically rich data modeling. 

Cypher [9] is Neo4j's declarative query language that 

allows users to describe graph patterns intuitively. 

Common operations in Cypher include creating nodes, 

establishing relationships, querying patterns such as 

finding shortest paths, or filtering nodes based on specific 
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attributes. Neo4j’s architecture is optimized for graph 

traversal and pattern matching operations, ensuring high 

performance even with complex queries. 

Based on the powerful graph-processing capabilities, 

Neo4j is particularly suitable for representing legal 

knowledge, where legal documents inherently exhibit 

graph-like structures (e.g., references between articles, 

applicability relationships, regulatory conditions). 

2.2. Characteristics of Vietnamese Legal Texts 

Vietnamese legal documents, particularly the Penal 

(Criminal) Code, possess unique characteristics that make 

knowledge extraction particularly challenging. Firstly, 

these texts are typically organized in a hierarchical 

structure consisting of chapters, sections, articles, clauses, 

and points. Each article may define multiple violations of 

varying severity, corresponding penalties, and affected 

subject groups. Additionally, legal language is highly 

specialized, using domain-specific terminology and long, 

complex sentence structures to ensure precision, 

comprehensiveness, and legal clarity. 

Another notable feature is the high level of cross-

referencing among articles within the same legal 

document, as well as with related legal documents. These 

interconnections create a dense, overlapping network of 

legal provisions that are interdependent, further 

complicating the process of extracting and reorganizing 

knowledge. Therefore, an effective extraction method must 

not only accurately identify individual legal entities but 

also reconstruct complete and semantically correct 

relationships across the entire legal document. 

2.3. Knowledge Graphs in the Legal Domain 

In the legal domain, articles, regulations, and legal 

documents frequently reference, link, and constrain each 

other, making graph-based modeling a natural and 

effective approach. A typical legal knowledge graph 

includes nodes representing legal articles (Article), 

violations (Behavior), penalties (Penalty), and applicable 

subjects (Subject), along with relationships such as 

DEFINES BEHAVIOR, APPLIES TO, INCURS 

PENALTY, or REFERENCES other articles. Constructing 

such a legal knowledge graph enables deep semantic 

queries, such as finding all penalties related to a specific 

behavior, or identifying articles that reference a particular 

legal concept. 

 

Figure 1. Legal Knowledge Graph Illustration 

In our proposed approach, Neo4j is used as the 

knowledge base system to store and manage the legal 

knowledge graph generated from the extraction process. 

Nodes and relationships are constructed based on JSON 

output from the knowledge generation model, while 

Cypher queries are used to explore, analyze, and develop 

legal QA applications. Figure 1 illustrates a simplified 

example of a legal knowledge graph built using Neo4j: 

- Orange nodes represent legal articles, including 

attributes such as article ID and title. 

- Green nodes denote the defined violations. 

- Red nodes indicate the corresponding penalties. 

- Purple nodes represent the applicable subjects 

regulated by the article. 

Relationships in the graph describe the connections 

among entities, such as “DEFINES BEHAVIOR” from an 

article to a behavior, “INCURS PENALTY” from a 

behavior to a penalty, “APPLIES TO” from an article to a 

subject, and “REFERENCES” between articles or other 

entities. Modeling legal knowledge in graph form allows 

the system to easily query and analyze complex legal 

relationships, effectively supporting smart legal QA and 

advisory applications. 

3. Methodology 

The process of extracting and mapping legal knowledge 

into a knowledge graph proposed in this study consists of 

five main steps, illustrated in Figure 2. The steps are 

described in detail as follows: 

3.1. Overview of the Knowledge Extraction and Mapping 

Process 

 

Figure 2.  Overview of the Knowledge Extraction and  

Mapping Process from Legal Documents 

The process begins with extracting text from the PDF file 

of the Penal Code of Vietnam (in Vietnamese), followed by 

preprocessing and segmenting the content into individual 

legal articles. These articles are then fed into a large language 

model (Gemini) through a structured prompt, which includes 

detailed instructions regarding the types of legal entities 

(nodes) and the relationships (edges) between them, such as: 

DEFINES_BEHAVIOR, :APPLIES_TO, etc. These rules are 

predefined based on an analysis of the characteristics of 

Vietnamese legal texts to ensure that the output is consistently 

structured and suitable for mapping into a knowledge graph. 

The generated results are JSON files containing lists of legal 

entities and their relationships, which are then mapped into a 

graph database such as Neo4j to construct a complete, 

queryable, and visualizable knowledge graph. 
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3.2. Extracting Legal Text from PDF 

To extract text from the Criminal Code PDF file, the 

study used the PyMuPDF library to preserve formatting 

and full content. The extracted data is saved as plain .txt 

files for further processing. 

3.3. Legal Ontology Design and Prompt Engineering 

Strategy 

To ensure structured and consistent extraction of legal 

knowledge from criminal law texts, we designed a 

lightweight ontology and a guided prompt engineering 

strategy. This ontology serves as the foundation for both 

the legal knowledge graph schema and the JSON-based 

outputs generated from large language models (LLMs). 

Ontology Design 

The ontology was developed based on an in-depth 

analysis of the Vietnamese Penal Code (2015, amended 

2017), focusing on recurring legal concepts and their 

relationships. We defined five core entity types and six 

relation types, reflecting the semantics commonly 

embedded in legal provisions: 

• Entity Types: 

- Bo_Luat: The Penal Code itself (single root node). 

- Dieu_Luat: Legal articles (e.g., Article 123). 

- Hanh_Vi: Criminal behaviors or acts (e.g., murder, 

theft). 

- Hinh_Phat: Legal penalties (e.g., imprisonment, death 

penalty). 

- Doi_Tuong: Entities affected by or subject to the law 

(e.g., individual, legal entity). 

• Relation Types: 

- CHỨA: from Bo_Luat to each Dieu_Luat. 

- QUY_ĐỊNH_HÀNH_VI: from Dieu_Luat to Hanh_Vi. 

- QUY_ĐỊNH_HÌNH_PHẠT: from Dieu_Luat to Hinh_Phat. 

- ÁP_DỤNG_CHO: from Dieu_Luat to Doi_Tuong. 

- THAM_CHIẾU_ĐẾN: connecting related articles. 

- ĐƯỢC_THỰC_HIỆN_BỞI / XỬ_PHẠT_ĐỐI_VỚI: 

linking behaviors or penalties to legal subjects. 

This ontology is sufficient to express the majority of 

legal logic found in the Penal Code, while remaining 

simple enough to allow for scalable graph construction. 

Prompt Engineering Strategy 

We created a standardized prompt template to guide the 

LLM in extracting knowledge in alignment with our 

ontology. The prompt includes: 

- Explicit listing of all allowed entity and relation types, 

- Instructions to output only JSON data (no natural 

language explanations), 

- A predefined format for nodes and edges, 

- Reuse of previously created nodes (based on semantic 

equivalence), 

- Insertion of each legal article’s text as input. 

3.4. Preprocessing and Normalizing Legal Articles 

The .txt document is split into individual articles based 

on headings containing the phrase "Điều X" (Article X). 

Each article is saved as a separate file to facilitate mapping 

with corresponding knowledge graph nodes. This step also 

includes Unicode normalization, removal of unnecessary 

characters, and separation of the article’s title, content, and 

penalty clauses (if any). 

3.5. Knowledge Generation via Prompt and Gemini API 

For each legal article, the system generates a 

standardized and structured prompt to be processed by the 

Gemini large language model. The prompt instructs the 

model to identify key entities such as: Legal Article 

(Dieu_Luat), Behavior (Hanh_Vi), Penalty (Hinh_Phat), 

and Subject (Doi_Tuong), as well as the relationships 

between them, including :DEFINES_BEHAVIOR, 

:APPLIES_TO, :REFERENCES, and so on. The result 

returned is a JSON file containing a list of nodes and 

relationships, normalized according to the preprocessing 

format for insertion into the Neo4j graph database. 

3.6. Constructing the Knowledge Graph in Neo4j 

Finally, the system utilizes Neo4j and the Cypher query 

language to generate nodes and edges from the JSON files. 

The nodes are labeled according to their respective entity 

types, for example :(Dieu_Luat {ten: "Article 123"}), 

(Hanh_Vi {mo_ta: "Murder"}), and relationships such as 

(:Dieu_Luat) - [:DEFINES_BEHAVIOR]→ (:Hanh_Vi). 

All data is stored in graph format and can be visualized 

using the Neo4j Browser or other semantic query tools. 

This proposed method adopts a semi-automated 

approach, combining traditional text processing techniques 

with large language models to extract and map legal 

knowledge. Legal texts are represented by four main entity 

types: Legal Article (Dieu_Luat), Violation (Hanh_Vi), 

Penalty (Hinh_Phat), and Subject (Doi_Tuong), along with 

their relationships such as :DEFINES_BEHAVIOR, 

:APPLIES_TO, and :REFERENCES. 

To ensure accurate input for knowledge extraction, the 

Penal (Criminal) Code document is extracted using 

PyMuPDF, then preprocessed and split into separate 

articles. Each article is converted into an individual prompt 

for the Gemini API, generating JSON files containing 

nodes and edges. These JSON outputs are then mapped into 

the Neo4j graph database using Cypher, forming a 

complete legal knowledge graph capable of supporting 

semantic queries and question answering. 

4. Experimental Results  

4.1. The Illustration of the Constructed Graph  

Through the seamless integration of Neo4j and Python, 

we efficiently imported and stored Subject-Relation-

Object triples into the graph database in a structured 

manner. This process not only validated Neo4j’s 

effectiveness in handling large-scale knowledge graph data 

but also demonstrated its potential to automate the entire 

pipeline from data extraction to organized storage. 

To visualize the structure and content of the legal 

knowledge graph, we utilized the built-in visualization 

tools provided by Neo4j. However, due to the large scale 

and complex nature of the comprehensive knowledge 
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graph, directly rendering the full dataset made it 

challenging to extract detailed information within specific 

legal domains. To address this issue, we adopted a focused 

visualization strategy applied across the entire Vietnamese 

Penal Code. The visualization process was performed 

using Neo4j’s built-in tools, based on datasets extracted 

and processed from legal documents. 

 

Figure 3. Visualization of the overall knowledge graph of  

the Penal Code of Vietnam 

The visualization results show that the legal knowledge 

graph constructed from the Vietnamese Penal Code 

comprises a total of 738 nodes and 1,452 relationships. The 

nodes are categorized into key groups, including: 1 

Bo_Luat node, 314 Dieu_Luat (Article) nodes, 287 

Hanh_Vi (Behavior) nodes, 57 Hinh_Phat (Penalty) nodes, 

and 79 Doi_Tuong (Subject) nodes. In terms of 

relationships, the system includes characteristic legal 

relations such as: CHỨA (CONTAINS) - 334, 

QUY_ĐỊNH_HÀNH_VI (DEFINES_BEHAVIOR) - 309, 

QUY_ĐỊNH_HÌNH_PHẠT (DEFINES_PENALTY) - 328, 

ÁP_DỤNG_CHO (APPLIES_TO) - 165, 

XỬ_PHẠT_ĐỐI_VỚI (PENALTY_FOR) - 75, 

THAM_CHIẾU_ĐẾN (REFERENCES) - 5, and 

ĐƯỢC_THỰC_HIỆN_BỞI (PERFORMED_BY). These 

statistics clearly reflect the richness and tightly interlinked 

nature of legal entities within the Penal (Criminal) Code 

document, demonstrating the capability to represent legal 

knowledge in a structured, visual, and semantically 

queryable format, which is ready to support intelligent 

legal question-answering systems. 

 

Figure 4. Local Subgraph Around Article 40 

As illustrated in Figure 3, the interconnected network 

of articles and their associated legal components, such as 

prohibited behaviors, penalty regulations, adjudication 

criteria, and subjects of criminal responsibility, can be 

clearly observed. Visualizing the entire code not only 

overcomes the limitations of traditional linear text 

processing methods but also opens up the possibility for 

multi-dimensional analysis of legal relationships, 

providing strong support for in-depth research and 

practical applications in the field of criminal law. 

While the full visualization in Figure 3 provides a 

comprehensive overview of the global structure of the 

Penal Code knowledge graph, such a large-scale 

representation can make it difficult to observe fine-grained 

legal relationships at the article level. To address this, we 

include an enlarged subgraph focusing on a single legal 

provision, as shown in Figure 4. This detailed subgraph, 

centered on Article 40, illustrates how the knowledge 

graph encodes localized legal semantics through 

connections to applicable subjects, prescribed penalties, 

cross-referenced articles, and other legally relevant 

entities. By zooming into a specific article, the 

visualization makes the internal organization of the graph 

more interpretable, revealing how individual legal 

concepts interact and how semantic relationships are 

embedded within the encoded structure. This focused view 

not only complements the global visualization but also 

highlights the practical value of knowledge graph 

representations for legal reasoning and article-level 

analysis. 

4.2. Comparative Evaluation: LLM-based QA vs. 

Knowledge Graph-Enhanced QA 

 

Figure 5. Comparing Workflows for Legal Question 

In the context of developing automated legal question-

answering systems, the presence or absence of a 

knowledge graph results in a clear difference in answer 

accuracy, completeness, and content controllability. 

Without the use of a knowledge graph, the system relies 

entirely on the semantic inference capabilities of large 

language models such as Gemini or GPT-4o. For 

example, a natural-language question like: "If a person 
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commits murder, which article applies, and what is the 

maximum penalty?" is submitted directly to the model. 

The LLM then generates a response based solely on its 

internal knowledge and training data. This workflow, 

illustrated on the right side of Figure 5, highlights the 

limitations of relying solely on LLMs, as the model may 

produce incomplete answers (e.g., omitting the article 

number) or incorrect ones (e.g., referencing the wrong 

legal provision). These inaccuracies stem from the 

probabilistic nature of LLMs, which are not connected to 

an authoritative legal knowledge base. 

Although in some cases the model can provide correct 

answers, such as identifying Article 123 and the maximum 

penalty of capital punishment, numerous inaccuracies still 

occur. For example, the model may return incomplete 

answers (e.g., stating only the penalty without referencing 

the applicable article) or cite the wrong article, such as 

Article 124, which refers to involuntary manslaughter, 

while the question clearly addresses intentional murder. 

Due to the probabilistic nature of LLMs and their lack of 

connection to an authoritative legal knowledge base, 

confusion between legal provisions is often unavoidable. 

To ensure a fair and systematic comparison between 

the two approaches, we constructed a benchmark 

evaluation framework consisting of three components. 

First, we created a test set of 25 natural-language legal 

questions that cover a broad spectrum of Vietnamese 

criminal law topics, such as murder, theft, bribery, rape, 

and drug-related offenses. For each question, we 

established a ground truth reference including the correct 

legal article(s) and the maximum statutory penalty, based 

on expert verification from the Vietnamese Penal Code 

(2015, revised 2017). Second, each question was 

independently submitted to two different QA pipelines: 

(1) a baseline pipeline using only the LLM, and (2) an 

enhanced pipeline that retrieves relevant legal facts from 

a Neo4j-based knowledge graph and injects them into the 

prompt before passing it to the LLM. Third, each answer 

was manually assessed using two objective criteria: (i) 

correctness of the cited article and (ii) correctness of the 

stated penalty. This design allows us to quantify and 

compare the legal reasoning performance of both systems 

under identical input conditions. 

To evaluate this, we experimented comparing the 

performance of legal question answering in two scenarios: 

using only a LLM and combining the LLM with a legal 

knowledge graph. Specifically, we created a set of 25 real-

world legal questions written in natural language, 

simulating common criminal law scenarios such as 

intentional murder, property theft, extortion, rape, bribery, 

drug possession, and engaging in sexual acts with minors. 

Each question was paired with a ground truth consisting of 

the applicable legal article and the maximum penalty, 

based on the Vietnamese Penal Code (2015, revised 2017). 

Although the current evaluation uses a test set of 25 

manually curated questions, which provides an initial but 

limited view of system performance, we acknowledge that 

a larger benchmark dataset is necessary to fully capture the 

diversity and complexity of legal queries. Future work will 

expand this dataset to hundreds of questions covering 

broader legal contexts and multiple levels of legal 

reasoning. The results showed that the system using only 

the LLM achieved approximately 84% accuracy for 

complete and correct answers. 

In contrast, when the system was integrated with the 

knowledge graph, the QA process became more structured 

and controllable. Instead of sending the question directly to 

the LLM, the system first queried the knowledge graph, 

which was built from the Penal (Criminal) Code, to identify 

relevant entities and relationships. In the murder case, for 

instance, the behavior "murder" was linked to Article 123, 

and then further queried to retrieve the corresponding 

maximum penalty, which is capital punishment. This 

information was then incorporated into a context-enriched 

prompt for the LLM, such as: 

"According to the Vietnamese Penal Code, the behavior 

'murder' is defined in Article 123, with the maximum 

penalty being death. Based on this information, please 

explain the relevant legal provisions." 

With solid background knowledge provided, the model 

merely elaborated and explained the validated information, 

thus minimizing reasoning errors. The evaluation showed 

that the accuracy rate increased to approximately 92%, and 

the responses became more complete, consistent, and 

legally grounded. The empirical outcomes confirm the role 

of the knowledge graph not only as an effective repository 

of legal information, but also as a critical support layer that 

significantly improves the quality of output in intelligent 

legal QA systems. 

 

Figure 6. Comparison of Precision / Recall / F1-score between 

LLM-only and KG+LLM pipelines 

In addition to accuracy, we further extended the 

evaluation with more objective quantitative metrics, 

including Precision, Recall, and F1-score, to provide a 

clearer comparison between the two QA pipelines. A 

prediction was considered correct only when both the 

cited article and the corresponding maximum penalty 

matched the ground truth. As shown in Figure 6, the 

LLM-only baseline achieved a Precision of 1.00, a Recall 

of 0.86, and an F1-score of 0.9247. These results indicate 

that while the LLM produces highly accurate answers 

when confident, it frequently omits necessary legal 

details, leading to lower recall. 
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In contrast, the KG-enhanced pipeline achieved the 

same Precision of 1.00 but demonstrated a markedly higher 

Recall of 0.92 and an improved F1-score of 0.9583. This 

improvement reflects the stabilizing effect of incorporating 

verified legal facts retrieved from the knowledge graph, 

which helps the LLM avoid missing essential components 

of the answer and reduces reasoning errors. Together, these 

metrics provide a more comprehensive evaluation beyond 

accuracy alone and demonstrate that integrating a legal 

knowledge graph enhances both completeness and 

reliability of legal question answering. 

Although both models achieve perfect precision, 

several failure patterns highlight their inherent limitations. 

The KG+LLM system mainly fails when the Knowledge 

Graph lacks complete or properly linked information. In 

such cases, the model cannot retrieve the required article or 

penalty, leading to missing or irrelevant outputs and a 

noticeable drop in recall. This demonstrates the strong 

dependency of KG-based reasoning on data completeness. 

Conversely, the LLM-only system rarely predicts the 

wrong article but often produces long and unstructured 

explanations. This over-generation makes it difficult to 

extract the maximum statutory penalty and may introduce 

small inconsistencies when multiple sentencing tiers 

exist. In addition, the LLM-only model sometimes 

struggles with questions whose legal terms are 

semantically similar. A notable example is the confusion 

between cưỡng đoạt tài sản (Article 170) and cướp giật 

tài sản (Article 171). Although both belong to related 

categories of property offenses, the model may initially 

drift toward the wrong legal group due to linguistic 

similarity before eventually producing the correct article 

through post-extraction. This semantic drift illustrates 

how LLMs may prioritize contextual similarity over strict 

legal classification. 

Overall, the failure cases show that LLM-only suffers 

from verbosity, semantic confusion, and extraction noise, 

whereas KG+LLM is vulnerable to missing or incomplete 

graph data. The results suggest that improving KG 

coverage and enforcing more structured generation could 

further enhance system robustness. 

5. Discussions 

Initial experimental results indicated that the proposed 

method holds great potential for transforming legal texts 

into knowledge graphs to support legal query and question-

answering applications. However, during implementation, 

several strengths and limitations were observed. One clear 

advantage of the method is its high level of automation: the 

entire process, from preprocessing to graph generation, 

requires minimal manual intervention, especially when a 

standardized prompt format is established based on 

carefully defined entity types and relationship categories 

derived from the structure of legal documents. In addition, 

the Gemini large language model demonstrated strong 

performance in processing lengthy and complex legal texts, 

showing the ability to accurately extract multiple behaviors 

and penalties within a single article. The scalability of the  

method is also promising, as it can be readily applied to 

other legal codes such as the Civil Code or the Traffic Law, 

which share similar structural characteristics. 

Nonetheless, the method presents certain limitations. A 

major challenge is its reliance on prompt engineering, as 

the clarity and completeness of the defined entity types, 

semantic roles, and relationship categories directly 

influence the structure of the extracted knowledge. 

Ambiguous or inconsistently phrased prompts may 

produce redundant entities, missing penalties, or incorrect 

relationships, reducing the robustness and reproducibility 

of the system. Furthermore, some legal articles possess 

unique structural characteristics that can lead to errors in 

the knowledge generation process, such as mixing 

behaviors with penalties or omitting important cross-

references. Another limitation is that knowledge validation 

is still largely conducted manually, which hinders 

scalability when applying the method to larger multi-

document legal corpora. To address this limitation, in 

future work, we plan to automate the validation process 

using rule-based consistency checks and embedding 

similarity models to verify entity-relationship correctness, 

thus minimizing manual validation efforts. 

Another important direction emerging from the 

experimental findings relates to the need for inter-

document integration and automated cross-legal 

validation. While the current approach focuses primarily 

on transforming individual articles within the Penal Code 

into structured knowledge representations, many legal 

questions in real-world scenarios require reasoning across 

multiple legal documents, such as linking criminal liability 

to corresponding civil compensation obligations or 

aligning penal provisions with procedural requirements 

defined in the Code of Criminal Procedure. Without 

mechanisms for cross-referencing, the generated 

knowledge graph remains isolated within a single legal 

domain, limiting its ability to support more complex legal 

reasoning tasks. 

To improve scalability and enhance reasoning quality, 

future extensions of this work should incorporate 

systematic inter-document linking across major legal 

codes, including the Civil Code, the Criminal Procedure 

Code, and domain-specific regulations. This could be 

achieved by harmonizing schema definitions, introducing 

canonical identifiers for shared legal concepts, and 

applying automated cross-checking techniques to detect 

contradictions or semantic mismatches between related 

provisions. Integrating such capabilities would not only 

strengthen the structural consistency of the knowledge 

graph but also provide a foundation for more advanced 

applications, such as multi-domain legal question 

answering and legal compliance analysis. 

Despite these limitations, the proposed approach 

demonstrates strong potential for building legal knowledge 

bases that support semantic querying, developing legal 

consultation chatbots powered by knowledge graphs, and 

assisting in the analysis and detection of inconsistencies or 

overlaps in the current legal document system. 
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6. Conclusions and future work 

In this paper, we proposed a semi-automated method 

for extracting and mapping legal knowledge from legal 

texts into a knowledge graph, to support intelligent legal 

question-answering systems. The method consists of five 

main steps: extracting text from PDF documents, 

preprocessing, generating knowledge using a large 

language model based on specifically defined entity types 

and relationships, mapping the generated knowledge into a 

knowledge graph, and visualizing the results. Initial 

experimental results on the Vietnamese Penal Code 

demonstrate the ability to accurately extract legal entities 

such as behaviors, penalties, articles, and applicable 

subjects, along with the relationships among them. The 

resulting knowledge graph can significantly support the 

development of legal query systems and legal advisory 

chatbots. 

Looking forward, we plan to pursue several directions 

for further development. First, we will optimize prompt 

design and address knowledge generation errors through a 

deeper investigation into prompt engineering, entity and 

relationship modeling in legal texts, and output quality 

control from the LLM. Second, we aim to build an 

automated evaluation framework to assess the accuracy of 

extracted knowledge and reduce reliance on manual 

validation. Third, we intend to integrate natural language 

query technologies to develop a complete end-to-end legal 

QA system, in which the knowledge graph serves as the 

foundation for generating accurate and user-friendly 

responses. Lastly, we will expand the dataset to apply this 

method to other legal domains such as the Civil Code, 

Traffic Law, Administrative Law, and related legal areas. 
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