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Abstract — In this paper, the problem of controlling chaos in a
permanent magnet synchronous motor (PMSM) is addressed.
First, the chaotic dynamics of a PMSM model are presented
where the bifurcation diagram and the largest Lyapunov
exponent techniques are used to explore chaos. Then, novel and
efficient control laws based on the general input-state
linearization control technique are proposed for stabilization
and tracking control of the chaotic PMSM model. The proposed
control laws use the direct- and quadrature-axis stator voltage
components as controlled variables; therefore, they are
convenient to implement in real applications. Numerical
simulations are performed to demonstrate and verify the
effectiveness of the proposed control methods.
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1. Introduction

Over the past decades, the study of chaos has been
conducted over a wide range of scientific disciplines such
as physics, chemistry, biology, ecology, and others. The
occurrence of chaos in motor drive systems was first
investigated in the late 1980s [1, 2]. Since then, many
studies have reported the presence of chaos in DC drive
systems [3, 4], AC drive systems [5-7], and switched
reluctance drive systems [8]. A permanent magnet
synchronous motor (PMSM) was shown to exhibit
bifurcation and chaotic behavior for a certain range of its
parameters [9-10]. When a PMSM enters chaos, the motor
torque and speed oscillate unpredictably which can cause
serious issues in the drive system. To address this problem,
various control techniques have been proposed to suppress
chaotic oscillations. A nonlinear backstepping control law
was proposed by Harb [11] to stabilize the chaotic PMSM
model, with the simulation results compared to those
obtained using the nonlinear sliding mode control law.
Fixed-time adaptive control methods have been proposed
to ensure system stabilization within a pre-defined time
frame, regardless of initial conditions [12]. Lyapunov-
based model predictive control (LMPC) has also been
effectively applied in networked environments with data
loss, maintaining system performance through predictive
compensation [13]. Additionally, adaptive terminal sliding
mode controllers have demonstrated robust performance in
chaotic PMSMs under uncertainties and disturbances [14].
Ataei et al. [15] and Zribi et al. [16] introduced different
control laws for the chaotic PMSM model to achieve
negative Lyapunov exponents in the closed loop control
system, thereby eliminating chaos. To handle the
uncertainties in system parameters and disturbances in

external load torque, adaptive robust control methods have
been proposed [17, 18]. Another approach to suppress
chaos in the PMSM model is to introduce mutual
correlation among system variables. By selecting the
proper correlation factor, the controlled PMSM system is
driven from the chaotic state to a the stable state [19].

In this paper, both stabilization and tracking control
laws for the chaotic PMSM model are proposed using the
general input-state linearization control technique. The
objective of the stabilization control is to drive inherent
chaotic PMSM orbits asymptotically toward the origin. In
the tracking control, the angular speed of the PMSM model
is required to follow the desired speed while the other
system states remain asymptotically stable. The advantage
of the proposed control laws over previous methods is that
they use the direct and quadrature-axis stator voltage
components as the controlled variables, making them
convenient to implement in real applications.

2. Mathematical model of PMSMs

The mathematical model of PMSM on the d-g axis is
described as follows [10].

di, T =77
d_ltizi(ﬁd—Rid+a)Lqiq),
di - -
do 1 - T _T n
d_f_)zj[nﬂl//rlq+nﬂ (Ld_Lq)lu’lti_TL_ﬂa)}

where, @ (rad/s) is the angular speed of the motor;
i, (A) and ZI (A), respectively, are the direct and
quadrature stator current components; i, (V) and u, (V),
respectively, are the direct and quadrature stator voltage
components; 7, (Nm) is the load torque; J (Kgm?) is the
polar moment of inertia; Ly (mH) and L, (mH), are the
direct and quadrature stator inductors, respectively; R ()
is the winding resistance of the stator; w, (Wb) is the

permanent magnet flux; B (Nrad™'s) is the viscous damping
coefficient, and 7, is the number of pole-pair.

According to [10], by wusing the following
transformation:
x=I%,

_ (2)
t =1t
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where:

bk 0 0 ,
r={o x 0 |peit, =B 5
0 0 1/z a " R

and with assumption that the PMSM has a smooth-air-gap
(i.e., La= L, = L), the following dimensionless form of the
PMSM model is obtained:

di, L.

E=—1d+1qa)+ud,

di, o

E:—zq—zdw+ya)+uq, 3)

do .

E:U(lq—a))—TL.
in which, parameters of (3) are given by

ny’ L ny.L ny,L
O AR Ay T e T

Largest Lyapunov exponent

(®)

Figure 1. a) The bifurcation diagram showing all the peak
values of w corresponding to the variation of the bifurcation
parameter u; and b) the corresponding variation of the largest
Lyapunov exponent of the unforced PMSM model [10]

The nonlinear dynamic behaviors of (3) have been
investigated in [10-12]. The results have shown that in the
case of the unforced system (i.e., u, =u, =0 and 7. = 0),

and if the values of i and o are within a certain range,

PMSM exhibits chaotic oscillation. It is noted that all
simulation results presented in this paper were obtained
using Matlab software. The bifurcation diagram which

shows all peaks generated by (3) for a given value of the
bifurcation parameter, x is shown in Figure 1(a).
Additionally, the largest Lyapunov  exponent
corresponding to each value of the bifurcation parameter is
caculated and the obtained result is shown in Figure 1(b).
In these simulations, ¢ is set to 5.46. It is obvious that the
PMSM model enters chaotic oscillations (as indicated by a
positive value of the Lyapunov exponent) for x> 14.3. The
chaotic attractor and time series of the state variables that
display the chaotic behavior of the PMSM model for
1 =20 are shown in Figure 2.
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Figure 2. PMSM exhibits chaotic behavior for it = 20 and
o = 5.46: Phase portrait (top figure) and time series of
the state variables (three bottom figures)

3. Control of chaos in PMSMs
3.1. Input-state linearization control technique

Consider the class of nonlinear systems of the form
X = Ax+By(x)(u—a(x)), 4)



124

Le Hoa Nguyen

where u is the control input, y:D<cR"—R and
7#0,Vxe D, and the pair (A,B) is controllable. Then,

we can choose the control law as follows [20].

u=a(x)+Ax)V, (5)
where S(x) =%. That leads the closed-loop control
y(x

system to become:
X=Ax+Bv. (6)
Since, the system in (6) is linear time-invariant, one can
design control law v to stabilize or to impose the system
to any desirable performance.

3.2. Chaos suppression

In Section 2, it has been clearly shown that the unforced
PMSM model (ie., with u, =u =T, =0) displays

chaotic behavior which corresponds to the system being
unstable at the equilibrium point. Therefore, to eliminate
undesirable chaotic oscillations, the control law is designed
so that the closed loop control system is asymptotically
stable at the equilibrium point. Furthermore, to increase the
feasibility of the designed control system, the control law
must use the direct and quadrature stator voltages u, and

u,, as manipulated variables. To this end, the state

variables (zd, i a)) are assumed to be available for access.

It can be seen that the system described in (3) can be
written in the form of (4), where

i -1 0 0 10
1%
x=|i, ,u:{d},A: 0 -1 u|[,B=l0 1],
A%
® ! 0 o -o 00
y(x) =1, and a(x) =[‘."'”}. %)
i,w

According to (5), the control law then is chosen as
u - w+v
u=| ‘=] ®)
u, o+,
The closed loop control system leads to
,
X = Ax+Bv, where v= . )

To stabilize the linear system in (9), the state feedback
control law is chosen as

ok k]|
v=-Kx=- i|. (10)
k4 k5 kG !

4]

Substitute (10) into (9), we have

x=(A-BK)x, (11)
where,
-k —k,  —k
A-BK=| —k, —l1—k, p—k, (12)
0 o -0

It is obviously that, the system described in (9) with the
control law in (10) is asymptotically stable if the matrix
A —BK is Hurwitz. Therefore, the gain matrix K can be
found as follows:

We have,
det (AI-(A-BK)) =
A+1+k k, k,
=det k, A+1+ky —p+kg (13)
0 -o o

=2 +a,A’ +ad+a,
where,
ay =0 (1= u+ (1= p) b, + ks + kg + kiks + kg — e,k — ko)
a, =1+20— po+(1+ o)k +(1+0) ks + oky + k ks —k,k, »
a,=2+oc+k +ks.

According to Routh-Hurwitz stability criterion, to
guarantee the closed loop system in (11) to be
asymptotically stable, &, =1, 6 are selected such that the

following inequalities hold.

a, >0, i=0,1,2

a,a,—a, >0 (14

However, in order to achieve the desired performance
(e.g., speed of response, overshoot, control effort,
robustness, etc.) various techniques can be applied to
design the gain matrix K such as direct pole placement,
Ackermann’s formular or linear quadratic regulator
(LQR).

Combining (8) and (10), finally, the control signals are
given by

u, =’—1qa)—k‘lzd —k.zzq -k, 15)

u, =i,0—ki, -k, - ko.

To verify the effectiveness of the proposed control
laws in (15), a simulation is conducted for the cases
when 1 =20 and o =5.46. In this simulation, the control

gains k,i=1,6 are designed using the pole placement

technique to ensure fast convergence (i.e., short settling
time) and minimal overshoot in the system’s response.
Specifically, three desired poles of the closed loop system
(11) are selected as: 4, =—-10, A,, =—5+ ;2. The first pole,

with a large negative real part, contributes the rapid decay
of the transient response, while the other two poles,
which have small imaginary parts, introduce slight
oscilatory behavior, resulting in a small overshoot.
Finally, by using the place function in Matlab, the control
gains are obtained as follows: k=9, ¥k, =0,
ky=0, k,=0, k,=3.54, and k, =20.7714 . To eliminate
the effect of the initial states, the control laws are
applied to the system at ¢ = 20 s, the system state time
courses are shown in Figure 3. It can be seen from Figure
3 that the system states settle to a stable equilibrium
quickly.
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Figure 3. Time series of the state variables (ia, ig, ®),
which initially exhibit chaotic oscillations, quickly settle to
the origin when the control laws in (15) are applied at t = 20 s

3.3. Tracking control
For the tracking control, the objective is to design the
control signals u, and «, such that the chaotic oscillations

are damped out while forcing the angular speed to a
constant desired value & . At w=®, the system is in the

. j di
steady state (i.e., d_a) =0, di =0, Yy _ 0), therefore,
dt dt dt
from (3) we obtain the desired values /,, fq , as well as the

required steady state control signals #, and 4, that satisfy.

0=—i, +i,0+u,,

0=—i, —i,d+pud+i,, (16)
0= 0'(12 —c?)).
By setting #, =0, finally we have
=0, i =0, 0,=(1-p)d+ad". (17)
Define the following errors
ey =i, —i,, e, =i —I, e,=0-0. (18)

and change the control signals to
v, =u,—l,, v, =u,—,. (19)
Then, we obtain the error dynamics as

€, =€y +a)el.q +lqew +e e +Vd,

iq-w

€, = —we,; —¢, +(:u_ld )e3 —€4€,

(20)

+Vq,

é, = O'(eiq —ew).

It can be seen that the nonlinear system described in
(20) has an equilibrium point at the origin when
v, =v,=0. The control problem leads to the design

control signals v, and v such that the system in (20) is

asymptotically stable at the origin.

It is also clearly that (20) can be written in the form of
(4) as

X=AX+By(X)(V-a(x)). 1)
where,
] e —}c?) ’ix_ 10
X=|e, |, V= ; JA=|-0 -1 u—-i,|,B=|0 1],
e, ! 0 o -o 00
_ _ —e e
7(X)=1, and a(x):{ K "’] (22)
eidea)
Following (5), the control law is obtained as
v —e. e +w
‘_/ — d — iq- @ d . (23)
v, €€, +W,
The closed-loop control system then becomes
= = — Wd 1
X = AX+BW, where W = w | (24)
q

Similar to (10), the state feedback control law is
proposed to stabilize the system in (24) at the origin.

Kok R
w=-Kx=-| ' 2 “le, (25)
k, k, k,
e, |
Substitute (25) into (24), we have
x=(A-BK)X. (26)

The gain matrix K is chosen such that the matrix
A—-BK is Hurwitz. The procedure to find k,i=1, 6 is
similar to that mentioned in (13) and (14).

Finally, by considering (18), (19), (23), and (25), the
following control signals are finally obtained

u, ==, =i @=0) =k, i) =k (i, i)~k (@=d) +i, o7)
u, = (i, —i, - @)~k (i, —1,)— k@i, — i)~k (0— D) +i,.

To demonstrate the effectiveness of the proposed
control laws in (27), the control gains are selected as Igl =35,
k,=3, k,=3, k,=-5, k; =8, k, =20, and the desired
angular speed is chosen as follows:

5 t<50
®=48 50<¢<100.
0 t 2100

The control signals are put into effect when ¢>20s.
The simulation results are depicted in Figure 4. It can be
seen from Figure 4 that when the controller is activated, the
system states converge to the desired trajectory.

Moreover, when the desired angular speed is designed
to follow a sinusoidal or ramp function, the system states
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transition immediately from chaotic behavior to the desired
trajectory, as illustrated in Figure 5.
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Figure 4. Time series of the state variables (i4, ig, ), which
initially exhibit chaotic oscillations, quickly follow the desired
trajectories when the control laws in (27) are applied att = 20 s
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Figure 5. Time series of the motor’s angular speed,
which initially exhibit chaotic oscillations, quickly follow a)
the desired sinusoidal trajectory, and b) the desired ramp
trajactory when the control laws in (27) are applied at t = 20 s

4. Conclusion

In this study, we addressed the problem of controlling
chaos in the PMSM model. A clear picture of chaos in the
PMSM model was provided by exploring the Lyapunov
exponents and the bifurcation diagram. The appearance of

chaos in PMSM machines can lead to serious problems in
motion systems driven by PMSM. Therefore, it is essential
to suppress unwanted chaotic oscillations through
appropriate external control signals. Based on the input-
state linearization technique, the control laws for both
stabilization and tracking control problems were derived.
The numerical simulations demonstrate the effectiveness
of the proposed control methods. In addition, the proposed
control laws utilize measureable system states to compute
the direct and quadrature stator voltage components, which
tare used as controlled variables. Therefore, they are
straightforward to implement in real applications.
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