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Abstract – In this paper, the problem of controlling chaos in a 

permanent magnet synchronous motor (PMSM) is addressed. 

First, the chaotic dynamics of a PMSM model are presented 

where the bifurcation diagram and the largest Lyapunov 

exponent techniques are used to explore chaos. Then, novel and 

efficient control laws based on the general input-state 

linearization control technique are proposed for stabilization 

and tracking control of the chaotic PMSM model. The proposed 

control laws use the direct- and quadrature-axis stator voltage 

components as controlled variables; therefore, they are 

convenient to implement in real applications. Numerical 

simulations are performed to demonstrate and verify the 

effectiveness of the proposed control methods. 

Key words – Permanent magnet synchronous motor; chaotic 

dynamics; chaos control; input-state linearization technique. 

1. Introduction 

Over the past decades, the study of chaos has been 

conducted over a wide range of scientific disciplines such 

as physics, chemistry, biology, ecology, and others. The 

occurrence of chaos in motor drive systems was first 

investigated in the late 1980s [1, 2]. Since then, many 

studies have reported the presence of chaos in DC drive 

systems [3, 4], AC drive systems [5-7], and switched 

reluctance drive systems [8]. A permanent magnet 

synchronous motor (PMSM) was shown to exhibit 

bifurcation and chaotic behavior for a certain range of its 

parameters [9-10]. When a PMSM enters chaos, the motor 

torque and speed oscillate unpredictably which can cause  

serious issues in the drive system. To address this problem, 

various control techniques have been proposed to suppress 

chaotic oscillations. A nonlinear backstepping control law 

was proposed by Harb [11] to stabilize the chaotic PMSM 

model, with the simulation results compared to those 

obtained using the nonlinear sliding mode control law. 

Fixed-time adaptive control methods have been proposed 

to ensure system stabilization within a pre-defined time 

frame, regardless of initial conditions [12]. Lyapunov-

based model predictive control (LMPC) has also been 

effectively applied in networked environments with data 

loss, maintaining system performance through predictive 

compensation [13]. Additionally, adaptive terminal sliding 

mode controllers have demonstrated robust performance in 

chaotic PMSMs under uncertainties and disturbances [14]. 

Ataei et al. [15] and Zribi et al. [16] introduced different 

control laws for the chaotic PMSM model to achieve 

negative Lyapunov exponents in the closed loop control 

system, thereby eliminating chaos. To handle the 

uncertainties in system parameters and disturbances in 

external load torque, adaptive robust control methods have 

been proposed [17, 18]. Another approach to suppress 

chaos in the PMSM model is to introduce mutual 

correlation among system variables. By selecting the 

proper correlation factor, the controlled PMSM system is 

driven from the chaotic state to a the stable state [19]. 

In this paper, both stabilization and tracking control 

laws for the chaotic PMSM model are proposed using the 

general input-state linearization control technique. The 

objective of the stabilization control is to drive inherent 

chaotic PMSM orbits asymptotically toward the origin. In 

the tracking control, the angular speed of the PMSM model 

is required to follow the desired speed while the other 

system states remain asymptotically stable. The advantage 

of the proposed control laws over previous methods is that 

they use the direct and quadrature-axis stator voltage 

components as the controlled variables, making them 

convenient to implement in real applications. 

2. Mathematical model of PMSMs 

The mathematical model of PMSM on the d-q axis is 

described as follows [10]. 
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where,   (rad/s) is the angular speed of the motor; 

(A)di  and (A)qi , respectively, are the direct and 

quadrature stator current components; (V)du  and (V)qu , 

respectively, are the direct and quadrature stator voltage 

components; 
LT  (Nm) is the load torque; J (Kgm2) is the 

polar moment of inertia; Ld (mH) and Lq (mH), are the 

direct and quadrature stator inductors, respectively; R (Ω) 

is the winding resistance of the stator; ψr (Wb) is the 

permanent magnet flux; β (Nrad-1s) is the viscous damping 

coefficient, and np is the number of pole-pair. 

According to [10], by using the following 

transformation: 
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and with assumption that the PMSM has a smooth-air-gap 

(i.e., Ld = Lq = L), the following dimensionless form of the 

PMSM model is obtained: 
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in which, parameters of (3) are given by 
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Figure 1. a) The bifurcation diagram showing all the peak 

values of w corresponding to the variation of the bifurcation 

parameter u; and b) the corresponding variation of the largest 

Lyapunov exponent of the unforced PMSM model [10] 

The nonlinear dynamic behaviors of (3) have been 

investigated in [10-12]. The results have shown that in the 

case of the unforced system (i.e., 0d qu u= =  and TL = 0), 

and if the values of   and   are within a certain range, 

PMSM exhibits chaotic oscillation. It is noted that all 

simulation results presented in this paper were obtained 

using Matlab software. The bifurcation diagram which 

shows all peaks generated by (3) for a given value of the 

bifurcation parameter, μ is shown in Figure 1(a). 

Additionally, the largest Lyapunov exponent 

corresponding to each value of the bifurcation parameter is 

caculated and the obtained result is shown in Figure 1(b). 

In these simulations, σ is set to 5.46. It is obvious that the 

PMSM model enters chaotic oscillations (as indicated by a 

positive value of the Lyapunov exponent) for μ > 14.3. The 

chaotic attractor and time series of the state variables that 

display the chaotic behavior of the PMSM model for 

20 =  are shown in Figure 2. 

 

 

 

 

Figure 2. PMSM exhibits chaotic behavior for μ = 20 and  

σ = 5.46: Phase portrait (top figure) and time series of  

the state variables (three bottom figures) 

3. Control of chaos in PMSMs 

3.1. Input-state linearization control technique 

Consider the class of nonlinear systems of the form 

( )( ) ( )= + −x Ax B x u α x ,   (4) 
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where u  is the control input, : nD R R  →  and 

0, D   x , and the pair ( ),A B  is controllable. Then, 

we can choose the control law as follows [20]. 

( ) ( )= +u α x x v ,    (5) 

where 
1

( )
( )




=x
x

. That leads the closed-loop control 

system to become: 

= +x Ax Bv .     (6) 

Since, the system in (6) is linear time-invariant, one can 

design control law v  to stabilize or to impose the system 

to any desirable performance. 

3.2. Chaos suppression 

In Section 2, it has been clearly shown that the unforced 

PMSM model (i.e., with 0d q Lu u T= = = ) displays 

chaotic behavior which corresponds to the system being 

unstable at the equilibrium point. Therefore, to eliminate 

undesirable chaotic oscillations, the control law is designed 

so that the closed loop control system is asymptotically 

stable at the equilibrium point. Furthermore, to increase the 

feasibility of the designed control system, the control law 

must use the direct and quadrature stator voltages du  and 

qu , as manipulated variables. To this end, the state 

variables ( ), ,d qi i   are assumed to be available for access. 

It can be seen that the system described in (3) can be 

written in the form of (4), where 
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According to (5), the control law then is chosen as 
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The closed loop control system leads to 

= +x Ax Bv , where 
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To stabilize the linear system in (9), the state feedback 

control law is chosen as 
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Substitute (10) into (9), we have 

( )= −x A BK x ,    (11) 

where, 
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It is obviously that, the system described in (9) with the 

control law in (10) is asymptotically stable if the matrix 

−A BK  is Hurwitz. Therefore, the gain matrix K  can be 

found as follows: 

We have, 
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where, 

( )( )0 1 5 6 1 5 1 6 2 4 3 41 1a k k k k k k k k k k k  = − + − + + + + − − , 

( ) ( )1 1 5 6 1 5 2 41 2 1 1a k k k k k k k    = + − + + + + + + − , 

2 1 52a k k= + + + . 

According to Routh-Hurwitz stability criterion, to 

guarantee the closed loop system in (11) to be 

asymptotically stable, , 1, 6ik i =  are selected such that the 

following inequalities hold. 

1 2 0
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0
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− 
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However, in order to achieve the desired performance 

(e.g., speed of response, overshoot, control effort, 

robustness, etc.) various techniques can be applied to 

design the gain matrix K such as direct pole placement, 

Ackermann’s formular or linear quadratic regulator 

(LQR). 

Combining (8) and (10), finally, the control signals are 

given by 

1 2 3
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,

.

d q d q

q d d q

u i k i k i k

u i k i k i k
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To verify the effectiveness of the proposed control 

laws in (15), a simulation is conducted for the cases  

when 20 =  and 5.46 = . In this simulation, the control 

gains , 1, 6ik i =  are designed using the pole placement 

technique to ensure fast convergence (i.e., short settling 

time) and minimal overshoot in the system’s response. 

Specifically, three desired poles of the closed loop system 

(11) are selected as: 1 10 = − , 
2,3 5 2j = −  . The first pole, 

with a large negative real part,  contributes the rapid decay 

of the transient response, while the other two poles,  

which have small imaginary parts, introduce slight 

oscilatory behavior, resulting in a small overshoot.  

Finally, by using the place function in Matlab, the control 

gains are obtained as follows: 1 9k = , 2 0k = ,  

3 0k = , 4 0k = , 5 3.54k = , and 6 20.7714k = . To eliminate 

the effect of the initial states, the control laws are  

applied to the system at t = 20 s, the system state time 

courses are shown in Figure 3. It can be seen from Figure 

3 that the system states settle to a stable equilibrium 

quickly. 
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Figure 3. Time series of the state variables (id, iq, ω),  

which initially exhibit chaotic oscillations, quickly settle to  

the origin when the control laws in (15) are applied at t = 20 s 

3.3. Tracking control 

For the tracking control, the objective is to design the 

control signals du  and 
qu  such that the chaotic oscillations 

are damped out while forcing the angular speed to a 

constant desired value ̂ . At ˆ = , the system is in the 

steady state (i.e., 0
d

dt


= , 0ddi

dt
= , 0

qdi

dt
= ), therefore, 

from (3) we obtain the desired values ˆ
di , ˆ

qi , as well as the 

required steady state control signals ˆ
du  and ˆ

qu  that satisfy. 
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By setting ˆ 0du = , finally we have 
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It can be seen that the nonlinear system described in 

(20) has an equilibrium point at the origin when 

0d qv v= = . The control problem leads to the design 

control signals dv  and 
qv  such that the system in (20) is 

asymptotically stable at the origin. 

It is also clearly that (20) can be written in the form of 

(4) as 
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where, 
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Following (5), the control law is obtained as 
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The closed-loop control system then becomes 

= +x Ax Bw , where 
d

q
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w
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Similar to (10), the state feedback control law is 

proposed to stabilize the system in (24) at the origin. 
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Substitute (25) into (24), we have 

( )= −x A BK x .    (26) 

The gain matrix K  is chosen such that the matrix 

−A BK  is Hurwitz. The procedure to find , 1, 6ik i =  is 

similar to that mentioned in (13) and (14). 

Finally, by considering (18), (19), (23), and (25), the 

following control signals are finally obtained 
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To demonstrate the effectiveness of the proposed 

control laws in (27), the control gains are selected as 1 5k = , 

2 3k = , 3 3k = , 4 5k = − , 5 8k = , 6 20k = , and the desired 

angular speed is chosen as follows: 

5 50

ˆ 8 50 100

0 100

t

t

t






=  
 

. 

The control signals are put into effect when 20t  s. 

The simulation results are depicted in Figure 4. It can be 

seen from Figure 4 that when the controller is activated, the 

system states converge to the desired trajectory. 

Moreover, when the desired angular speed is designed 

to follow a sinusoidal or ramp function,  the system states 
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transition immediately from chaotic behavior to the desired 

trajectory, as illustrated in Figure 5. 

 

 

 

Figure 4. Time series of the state variables (id, iq, ω), which 

initially exhibit chaotic oscillations, quickly follow the desired 

trajectories when the control laws in (27) are applied at t = 20 s 

 

a) 

 

b) 

Figure 5. Time series of the motor’s angular speed, 

which initially exhibit chaotic oscillations, quickly follow a)  

the desired sinusoidal trajectory, and b) the desired ramp 

trajactory when the control laws in (27) are applied at t = 20 s 

4. Conclusion 

In this study, we addressed the problem of controlling 

chaos in the PMSM model. A clear picture of chaos in the 

PMSM model was provided by exploring the Lyapunov 

exponents and the bifurcation diagram. The appearance of 

chaos in PMSM machines can lead to serious problems in 

motion systems driven by PMSM. Therefore, it is essential 

to suppress unwanted chaotic oscillations through 

appropriate external control signals. Based on the input-

state linearization technique, the control laws for both 

stabilization and tracking control problems were derived. 

The numerical simulations demonstrate the effectiveness 

of the proposed control methods. In addition, the proposed 

control laws utilize measureable system states to compute 

the direct and quadrature stator voltage components, which 

tare used as controlled variables. Therefore, they are 

straightforward to implement in real applications. 
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