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Abstract - Currently, electricity demand in Vietnam is rising
rapidly due to industrialization, modernization, and population
growth, creating risks of shortages, especially in the dry season
when hydropower declines. To ensure supply, coal and oil
generation is often dispatched, increasing costs and pollution.
Renewable energy is expanding but faces issues of price volatility
and supply reliability. A zonal electricity market design is
therefore seen as a promising solution to optimize pricing, attract
investment, and promote clean energy development, contributing
to carbon reduction. This paper proposes a two-step zonal market
model: first, node indices are computed under different scenarios
using DC Optimal Power Flow (DC-OPF); second, nodes are
grouped into bidding zones via Spectral Clustering. The model is
tested on a 118-bus system with solar and rainy-day datasets to
identify efficient and practical zonal configurations.

Key words - clustering, bidding zone, DC-OPF, locational
marginal price, bus connection

1. Introduction

Vietnam’s electricity market is currently transitioning
from a monopoly model to a competitive market, aiming
toward a fully competitive generation and wholesale
system. However, the current electricity pricing
mechanism does not adequately reflect regional
differences in generation and transmission costs. This
results in uniform pricing, which fails to incentivize
investment and does not accurately reflect grid
infrastructure constraints. Several regions of Vietnam’s
power system frequently face transmission congestion,
especially along lines from the Central to the North and
from the South to the Central regions. The absence of a
zonal pricing mechanism prevents generators in surplus
regions from operating at full capacity, while deficit
regions still rely on distant sources, leading to higher
transmission losses and increased risk of supply-demand
imbalance. In this context, market zoning becomes
essential for improving operational efficiency,
transparency, and investment signals.

Countries like the U.S., Australia, and Brazil have
implemented clustering models based on Locational
Marginal Pricing (LMP) [1] combined with grid topology
to form independent price zones [2]. Notably, Italy-whose
elongated geography is similar to Vietnam-has adopted a
zonal electricity market with 21 price zones [3]. This
approach  better reflects transmission congestion,
encourages local generation development, and ensures
greater transparency and pricing accuracy. This study

employs the DC Optimal Power Flow (DC-OPF) model to
determine LMPs-key indicators reflecting the marginal
cost of delivering electricity to each node. While DC-OPF
is a standard tool that models optimal power dispatch under
linear constraints [4], it is not a clustering algorithm; it does
not segment the grid into coherent zones as it overlooks
network connectivity and nodal similarity.

An alternative is K-means clustering [5], favored for its
simplicity and speed. Yet, K-means relies solely on
Euclidean distance and fails to incorporate physical
network structure, congestion, or grid topology, leading to
technically inaccurate zones in complex power systems
like Vietnam.

This paper proposes a market zoning method for
Vietnam’s electricity market based on the Spectral
Clustering algorithm, with a key contribution of
simultaneously combining economic data (locational
marginal price — LMP) and technical data (physical linkage
matrix and congestion matrix) to identify price zones that
accurately reflect the actual operation of the system. This
method addresses the limitations of traditional approaches
such as pure OPF or K-means, which have not fully
considered the physical connections between nodes and
congestion phenomena in the grid. The model has been
tested on the IEEE 118-bus system under four typical
operating scenarios (High Sun, Low Sun, High Rain, Low
Rain), thereby constructing a unified zoning scheme that
ensures feasibility and accuracy when applied to Vietnam’s
power system. The research results not only provide a
scientific basis for designing zonal pricing mechanisms but
also contribute to policy orientation, infrastructure
investment incentives, reduction of transmission losses,
and improvement of market transparency.

2. Optimal Power Flow (OPF)

The Optimal Power Flow (OPF) algorithm for calculating
market indices has been developed. This model is fully
described in [6], [7]. OPF captures key aspects of actual
transmission network operations, such as explicit N-1 security
criteria, the capability to incorporate special contingencies like
double circuit line outages, and the consideration of both
preventive and corrective remedial actions.

DC OPF Model [8].

Equations (1) - (4) present the mathematical
formulation of the DC-OPF model. The objective function
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(1) aims to minimize the total generation cost:
MinOPFY. 1 g2 ag. (Py)? + by. Pyt ¢4 (1)

Egs (2)-(4) present the network constraints. Here, (2)
presents power flow of the line ij, (3) guaranties the
balance power at each node, and (4) presents the limitation
of transfer capacity of the line ij. Finally, the angle of slack
bus (i) is fixed to zero (5).
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where, g € G is generator and d € D is demand, and i, j are
nodes between line [ € L. ag, by, ¢, are parameters in cost
function of generator.

Because of using DC-OPF model, some assumptions
are adopted: (i) Only consider active power flow; (ii) the
branch impedance is equal to the reactance only; (iii) all
voltage magnitudes are equal to 1 p.u; (iv) voltage angles
are close to each other, so sin (di - 6j) = §i - 8.

Locational Marginal Prices (LMPs) represent the
marginal cost of electricity at each bus and are typically
calculated using the Lagrange multipliers associated with
the constraints in the Optimal Power Flow (OPF) problem
[7], [9]. In this study, LMPs are derived from the proposed
DC Optimal Power Flow (DC-OPF) model, where system
security constraints are explicitly modeled. This approach
ensures that the calculated LMPs accurately reflect the
applied assumptions, thereby simultaneously capturing
both the technical requirements of power system operation
and the economic efficiency of the electricity market, along
with the relevant market operation rules.

3. Spectral Clustering Algorithm

Spectral Clustering [10] operates by representing the
dataset as an undirected weighted graph G = (V, E), where:

- V is the set of vertices, with each vertex representing
a data point.

- E is the set of edges, representing the relationships or
similarities between data points.

- The weight w;; = 0 indicates the degree of similarity
between data points x; and x;.

From this graph, a weight matrix W € R™ "™ is defined,
where  W;; = w;;. Additionally, a degree matrix
D € R™™is constructed as a diagonal matrix with entries:

Dy = XWi;
This matrix captures the total connection weight of
each vertex in the graph.

Spectral Decomposition: In Spectral Clustering, the
number of selected eigenvectors and the number of clusters
k critically influence clustering quality. Eigenvectors
derived from the Laplacian matrix project the data into a
new subspace where the inherent cluster structure becomes
clearer. Selecting too few or too many eigenvectors can

result in misgrouping or over-fragmentation. Similarly,
choosing k must balance technical and economic
characteristics of the power system (e.g., LMP distribution,
congestion) with operational feasibility. This study
evaluates multiple operating scenarios and applies criteria
like the eigenvalue gap and the Elbow method to optimize
these parameters, ensuring that market zoning is both
accurate and practically applicable.

Advantages:

* Flexible with nonlinear data: The algorithm can
handle clusters with complex shapes, even when clusters
are not spherically distributed.

+ Effective for graphs and social networks: Spectral
Clustering performs well on graph-structured data, making
it useful for community detection and clustering within
networks.

 Insensitive to initialization: Unlike K-means, this
algorithm is not sensitive to the initial placement of cluster
centers.

Disadvantages:

* High computational cost: Matrix decomposition
involves eigenvalue computations, which can be resource-
intensive for large datasets.

* Dependence on the affinity matrix: The clustering
quality heavily depends on how the affinity (similarity)
matrix between data points is constructed.

* Difficult to determine the number of clusters: The
algorithm requires the number of clusters k to be specified
in advance, which is not always straightforward.

Compared to K-means, Spectral Clustering offers
significant advantages when applied to electricity market
zoning. K-means relies solely on Euclidean distances
between data points, which makes it effective for
identifying spherical, uniformly distributed, and relatively
simple clusters. However, in power systems, buses are
interconnected through a complex network with various
technical characteristics such as transmission congestion,
voltage and power variations, locational marginal prices
(LMPs), and regions without clearly defined geometric
boundaries. K-means is unable to accurately capture these
zones because it does not consider the underlying grid
topology or physical connectivity between nodes.

In contrast, Spectral Clustering leverages the adjacency
matrix and the graph Laplacian to reflect the true structure
of the network. It is not constrained by cluster shape and
can identify irregular, non-uniform zones, making it
particularly suitable for systems with complex physical
interconnections like power grids. By integrating both
LMP information and grid connectivity, Spectral
Clustering provides more accurate zonal partitions,
enhancing the effectiveness of price zone identification,
system dispatch, and congestion management.

So, we chose to apply Spectral Clustering because its
advantages align well with the structure of the data input.
The power outputs from loads are nonlinear, resulting in
LMPs that also exhibit nonlinear characteristics.
Furthermore, the system includes various models and
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connectivity states between buses, making Spectral
Clustering a more suitable and optimal choice compared to
the K-means algorithm.

Theoretical basis and algorithm implementation
process:
Step 1: Construct the adjacency matrix W
Based on the Gaussian Kernel or other similarity
measures:
—(LMP;—LMP )2
Wy=e 27 (6)
Step 2: Build the Laplacian matrix
- Compute the degree matrix D (a diagonal matrix
where each entry is the sum of the connections of each
point):
Dy =YWy (7
- Then compute the Laplacian matrix:

Unnormalized Laplacian: L=D - W 8.1)
Or Normalized Laplacian:
-1 -1
Lyym =Dz LDz (8.2)

Step 3: Select k eigenvectors
Calculate the eigenvectors of L.
Setp 4: Map the Data into a New Space

Select the k smallest eigenvectors (excluding the first
eigenvector if all its elements are zeros) to form the new
space, denoted as vecs_k.

- Each column in vecs_k represents an eigenvector,
allowing the data to be represented in the newly
constructed feature space.

- Each row in vecs k corresponds to a data point
projected into the new space.

- Selecting the first five eigenvectors helps to reduce
the data dimensionality while still preserving the clustering
information.

Note: Only the real part of the eigenvectors instead
follows the actual connectivity structure of the buses.

Step 5. Execute K-means Clustering in the New
Space

- Use the K-mean algorithm cluster the data point based
on their new coordinates.

- In this transformed space, clustering no longer relies
solely on the coordinates (i.e., Euclidean distances) but
steps:

Step 6.1: Initialize Cluster Centroids

Randomly select k points from the dataset to serve as
the initial cluster centroids.

Step 6.2: Assign Each Data Point to the Nearest
Cluster

Each data point originally located at x; in the original
space is transformed to a new coordinate y; in the
eigenvector space.

The distance between two points y; and y; is computed
using the Euclidean distance formula:

d(yi:yj) = JZ?n:l(yi,m - yj,m)2 (9)

Where: y; ,, is the m-th component of point y; in the
eigenvector space. k is the number of smallest eigenvectors
selected.

Step 6.3: Update Cluster Centroids

Suppose cluster C; contains N; data points Yy, 5, ... Y
in the eigenvector space (each point has k coordinates
corresponding to the k smallest eigenvectors).

The centroid u; of cluster C; is computed as the mean
of all points within the cluster:

(10)

Where: i is the new centroid vector of cluster j, y; is the
coordinate vector of data point i in the eigenvector space,
Nj is the number of data points in cluster C;.

1
Wi =—Xiec; Vi
J N]' ]

4. Proposed Algorithm

1. Start with input data: including Locational
Marginal Prices (LMPs) at buses, the connectivity
(adjacency) matrix, and the congestion matrix.

2. Initialize parameters: set the sensitivity parameter
o (for the adjacency matrix) and iteration index i=1.

3. Compute the adjacency matrix W using a Gaussian
similarity function based on LMP differences, reflecting
similarity between buses.

—(LMP;—LMP)?

VV’-J =e 202

4. Construct the Laplacian matrix L from W,
capturing the network’s structural connectivity.

L=I1-Dwp™?

5. Select eigenvalues and eigenvectors from L to
construct a new spectral feature space.

6. Apply K-means clustering in the spectral space:

Initialize cluster centroids.

Assign data points to the nearest centroid.

Update centroids.

Iterate until convergence.

7. Evaluate clustering results:

Check physical connectivity among buses in each
cluster.

Ensure minimal internal congestion within clusters.

8. If not satisfactory, adjust c\sigmac or continue
iteration i until convergence criteria are met.

9. Identify the optimal clustering result and finalize
the zonal part

Four hypothetical scenarios are developed and tested
using a 118-node IEEE model electricity market to apply
the Spectral clustering algorithm under peak and off-peak
load conditions during the dry and rainy seasons.
Clustering is based on local marginal prices (LMPs) to
group nodes with similar LMP characteristics, ensuring
node connectivity and accounting for transmission
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congestion, which reflects cost and performance
correlations in the electricity market. The test data includes
hourly LMPs for four days representing different operating
scenarios:

0

Input:

LMP
Connection matrix
Congestion matrix

Min
cogestion?

Optimize_Cluster

Compute the similarity matrix W
- i) — 2
. [P 2LMP(])| ° Figure 1. Clustering Algorithm flowchart
’L] = e 20 /

Peak sunny day scenario: Under sunny conditions,
T solar power production increases, leading to a decrease in
Compute the Laplacian matrix L

LMP in areas with abundant solar resources due to low
marginal costs. However, sudden increases in supply can

L=I—DwpD! cause congestion on transmission lines if the infrastructure
is not capable of handling the large amount of power,
l leading to voltage fluctuations and even system instability.
Choose eigenvalues and T — T v R
eigenvectors of L . _ dj*rrr‘"r"rr ET— T ,,ﬁ- B
¢ . il .

Construct New Space

|

Initializing centroids using the
K-means algorithm

v

Assign each data point to the
nearest cluster

A

k
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m=1

v

Update the centroids:

Figure 2. Peak Sun Day Zoning

Low sunny day scenario: When sunlight is low, solar
power production decreases, causing LMP to increase due
to the need to mobilize more expensive power sources.
Although transmission congestion may be reduced due to
lower transmission demand, the reliance on other power
sources can put pressure on other parts of the system,
affecting voltage stability and system reliability.

Optimize?
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Figure 3. Low sun day zoning

Peak rainy day scenario: Under heavy rain conditions,
if the system has many hydropower plants, hydropower
output increases, leading to a decrease in LMP in these
areas. However, similar to the sunny scenario, the increase
in local supply can cause transmission congestion if not
well managed, affecting voltage and system stability.
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Figure 4. Peak Rainy Day Zoning

Low rain day scenario: When rainfall is low,
hydropower generation decreases, leading to increased
LMP due to the need to mobilize other, more expensive
sources of power. This can reduce transmission congestion
in areas that have traditionally relied on hydropower, but
can also put pressure on other sources of power and affect

voltage stability.
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Figure 5. Low Rainy Day Zoning

To cope with these fluctuations, it is necessary to define
a unified partition for all four scenarios.

Figure 6. Algorithm Partitioning Results

The power system zoning results in 96 different
schemes due to dynamic data over 24 hours from four
hypothetical scenarios. However, considering all schemes
is impractical, so we focus on the peak load case-when the
system faces the most severe conditions, prone to
congestion and instability. Selecting zoning based on this
scenario ensures the optimal scheme performs well under
extreme conditions while maintaining efficiency during
lower load periods. Analysis of the zoning schemes at peak
load reveals that most results converge to one main
scheme, indicating it is the most suitable according to the
proposed criteria. Specifically:

1. VoltageVoltage Stabilizer: Ensures voltage remains
within allowable limits, promoting stable system operation
and preventing voltage-related incidents.

2. Optimizing LMP in Clusters: Buses within the same
cluster have similar LMPs, reducing operating costs and
ensuring effective zoning.

3. Reduce Congestion: This solution significantly
reduces grid congestion, improving power transmission
without overloading lines.

4. Maintain Connectivity: Ensures all nodes in a cluster
remain connected, avoiding isolation and enhancing
system flexibility.

Zoning based on criteria like operational
synchronization, price sensitivity, and technical constraints
optimizes power system operation, ensuring safe, stable,
and efficient supply. This zoning scheme is selected as the
unified solution, representing the optimal structure for
varying conditions. Limiting congestion addresses
transmission issues by reducing current overloads,
preventing voltage instability that impacts power quality.
While other schemes may arise due to data fluctuations,
they often fail to balance criteria, either increasing LMP
differences or losing connectivity. This scheme was chosen
as the reference model because it best meets the
requirements for voltage stability, LMP, congestion
management, and interconnectivity, ensuring stable and
economical system operation.
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5. Conclusion

In the field of power system analysis, traditional
clustering methods like K-Means rely on geometric
distance and often overlook physical connections and
congestion in power systems, leading to clusters that may
not reflect the system's true structure. To address this, the
Spectral Clustering algorithm is applied, considering both
physical connections and congestion. By using
eigenvalues from the connection matrix, it identifies
clusters with stronger physical ties. Spectral Clustering
offers several advantages in power system analysis, such
as accurately identifying bidding zones, improving
transmission congestion management, and enhancing
price transparency. It also helps pinpoint system
bottlenecks, supports congestion management, and
encourages renewable energy participation. Despite
challenges with large datasets, this method shows
promise for improving the efficiency of Vietnam's
electricity market.
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