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Abstract -  Currently, electricity demand in Vietnam is rising 

rapidly due to industrialization, modernization, and population 

growth, creating risks of shortages, especially in the dry season 

when hydropower declines. To ensure supply, coal and oil 

generation is often dispatched, increasing costs and pollution. 

Renewable energy is expanding but faces issues of price volatility 

and supply reliability. A zonal electricity market design is 

therefore seen as a promising solution to optimize pricing, attract 

investment, and promote clean energy development, contributing 

to carbon reduction. This paper proposes a two-step zonal market 

model: first, node indices are computed under different scenarios 

using DC Optimal Power Flow (DC-OPF); second, nodes are 

grouped into bidding zones via Spectral Clustering. The model is 

tested on a 118-bus system with solar and rainy-day datasets to 

identify efficient and practical zonal configurations.  

Key words - clustering, bidding zone, DC-OPF, locational 
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1. Introduction 

Vietnam’s electricity market is currently transitioning 

from a monopoly model to a competitive market, aiming 

toward a fully competitive generation and wholesale 

system. However, the current electricity pricing 

mechanism does not adequately reflect regional 

differences in generation and transmission costs. This 

results in uniform pricing, which fails to incentivize 

investment and does not accurately reflect grid 

infrastructure constraints. Several regions of Vietnam’s 

power system frequently face transmission congestion, 

especially along lines from the Central to the North and 

from the South to the Central regions. The absence of a 

zonal pricing mechanism prevents generators in surplus 

regions from operating at full capacity, while deficit 

regions still rely on distant sources, leading to higher 

transmission losses and increased risk of supply-demand 

imbalance. In this context, market zoning becomes 

essential for improving operational efficiency, 

transparency, and investment signals. 

Countries like the U.S., Australia, and Brazil have 

implemented clustering models based on Locational 

Marginal Pricing (LMP) [1] combined with grid topology 

to form independent price zones [2]. Notably, Italy-whose 

elongated geography is similar to Vietnam-has adopted a 

zonal electricity market with 21 price zones [3]. This 

approach better reflects transmission congestion, 

encourages local generation development, and ensures 

greater transparency and pricing accuracy. This study 

employs the DC Optimal Power Flow (DC-OPF) model to 

determine LMPs-key indicators reflecting the marginal 

cost of delivering electricity to each node. While DC-OPF 

is a standard tool that models optimal power dispatch under 

linear constraints [4], it is not a clustering algorithm; it does 

not segment the grid into coherent zones as it overlooks 

network connectivity and nodal similarity. 

An alternative is K-means clustering [5], favored for its 

simplicity and speed. Yet, K-means relies solely on 

Euclidean distance and fails to incorporate physical 

network structure, congestion, or grid topology, leading to 

technically inaccurate zones in complex power systems 

like Vietnam. 

This paper proposes a market zoning method for 

Vietnam’s electricity market based on the Spectral 

Clustering algorithm, with a key contribution of 

simultaneously combining economic data (locational 

marginal price – LMP) and technical data (physical linkage 

matrix and congestion matrix) to identify price zones that 

accurately reflect the actual operation of the system. This 

method addresses the limitations of traditional approaches 

such as pure OPF or K-means, which have not fully 

considered the physical connections between nodes and 

congestion phenomena in the grid. The model has been 

tested on the IEEE 118-bus system under four typical 

operating scenarios (High Sun, Low Sun, High Rain, Low 

Rain), thereby constructing a unified zoning scheme that 

ensures feasibility and accuracy when applied to Vietnam’s 

power system. The research results not only provide a 

scientific basis for designing zonal pricing mechanisms but 

also contribute to policy orientation, infrastructure 

investment incentives, reduction of transmission losses, 

and improvement of market transparency. 

2. Optimal Power Flow (OPF) 

The Optimal Power Flow (OPF) algorithm for calculating 

market indices has been developed. This model is fully 

described in [6], [7]. OPF captures key aspects of actual 

transmission network operations, such as explicit N-1 security 

criteria, the capability to incorporate special contingencies like 

double circuit line outages, and the consideration of both 

preventive and corrective remedial actions.  

DC OPF Model [8]. 

Equations (1) - (4) present the mathematical 

formulation of the DC-OPF model. The objective function 
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(1) aims to minimize the total generation cost: 

MinOPF∑ 𝑎𝑔. (𝑔1,𝑔2 𝑃𝑔)2 + 𝑏𝑔. 𝑃𝑔+ 𝑐𝑔  (1) 

Eqs (2)-(4) present the network constraints. Here, (2) 

presents power flow of the line 𝑖𝑗, (3) guaranties the 

balance power at each node, and (4) presents the limitation 

of transfer capacity of the line 𝑖𝑗. Finally, the angle of slack 

bus (𝑖) is fixed to zero (5). 

St: 𝑃𝑖𝑗 =
𝛿𝑖−𝛿𝑗

𝑥𝑖𝑗
2  ∀𝑙 ∈ 𝐿   (2) 

𝑃𝑔
𝑖 − 𝑃𝑑

𝑖 − 𝑃𝑖𝑗 + 𝑃𝑗𝑖 = 0 ∀𝑖   (3) 

−𝑃𝑖𝑗
𝑚𝑎𝑥 ≤ 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗

𝑚𝑎𝑥  ∀𝑙 ∈ 𝐿  (4) 

𝜕𝑠𝑙𝑎𝑐𝑘 = 0     (5) 

where, 𝑔 ∈ 𝐺 is generator and 𝑑 ∈ 𝐷 is demand, and 𝑖, 𝑗 are 

nodes between line 𝑙 ∈ 𝐿. 𝑎𝑔, 𝑏𝑔, 𝑐𝑔 are parameters in cost 

function of generator. 

Because of using DC-OPF model, some assumptions 

are adopted: (i) Only consider active power flow; (ii) the 

branch impedance is equal to the reactance only; (iii) all 

voltage magnitudes are equal to 1 p.u; (iv) voltage angles 

are close to each other, so sin (𝛿𝑖 - 𝛿𝑗) = 𝛿𝑖 - 𝛿. 

Locational Marginal Prices (LMPs) represent the 

marginal cost of electricity at each bus and are typically 

calculated using the Lagrange multipliers associated with 

the constraints in the Optimal Power Flow (OPF) problem 

[7], [9]. In this study, LMPs are derived from the proposed 

DC Optimal Power Flow (DC-OPF) model, where system 

security constraints are explicitly modeled. This approach 

ensures that the calculated LMPs accurately reflect the 

applied assumptions, thereby simultaneously capturing 

both the technical requirements of power system operation 

and the economic efficiency of the electricity market, along 

with the relevant market operation rules. 

3. Spectral Clustering Algorithm 

Spectral Clustering [10] operates by representing the 

dataset as an undirected weighted graph G = (V, E), where: 

- V is the set of vertices, with each vertex representing 

a data point. 

- E is the set of edges, representing the relationships or 

similarities between data points. 

- The weight 𝑤𝑖𝑗 ≥ 0 indicates the degree of similarity 

between data points 𝑥𝑖 and 𝑥𝑗. 

From this graph, a weight matrix 𝑊 ∈ 𝑅𝑛×𝑛 is defined, 

where 𝑊𝑖𝑗 = 𝑤𝑖𝑗. Additionally, a degree matrix  

𝐷 ∈ 𝑅𝑛×𝑛is constructed as a diagonal matrix with entries: 

𝐷𝑖𝑖 = ∑𝑗𝑊𝑖𝑗 

This matrix captures the total connection weight of 

each vertex in the graph. 

Spectral Decomposition: In Spectral Clustering, the 

number of selected eigenvectors and the number of clusters 

k critically influence clustering quality. Eigenvectors 

derived from the Laplacian matrix project the data into a 

new subspace where the inherent cluster structure becomes 

clearer. Selecting too few or too many eigenvectors can 

result in misgrouping or over-fragmentation. Similarly, 

choosing k must balance technical and economic 

characteristics of the power system (e.g., LMP distribution, 

congestion) with operational feasibility. This study 

evaluates multiple operating scenarios and applies criteria 

like the eigenvalue gap and the Elbow method to optimize 

these parameters, ensuring that market zoning is both 

accurate and practically applicable. 

Advantages: 

• Flexible with nonlinear data: The algorithm can 

handle clusters with complex shapes, even when clusters 

are not spherically distributed. 

• Effective for graphs and social networks: Spectral 

Clustering performs well on graph-structured data, making 

it useful for community detection and clustering within 

networks. 

• Insensitive to initialization: Unlike K-means, this 

algorithm is not sensitive to the initial placement of cluster 

centers. 

Disadvantages: 

• High computational cost: Matrix decomposition 

involves eigenvalue computations, which can be resource-

intensive for large datasets. 

• Dependence on the affinity matrix: The clustering 

quality heavily depends on how the affinity (similarity) 

matrix between data points is constructed. 

• Difficult to determine the number of clusters: The 

algorithm requires the number of clusters k to be specified 

in advance, which is not always straightforward. 

Compared to K-means, Spectral Clustering offers 

significant advantages when applied to electricity market 

zoning. K-means relies solely on Euclidean distances 

between data points, which makes it effective for 

identifying spherical, uniformly distributed, and relatively 

simple clusters. However, in power systems, buses are 

interconnected through a complex network with various 

technical characteristics such as transmission congestion, 

voltage and power variations, locational marginal prices 

(LMPs), and regions without clearly defined geometric 

boundaries. K-means is unable to accurately capture these 

zones because it does not consider the underlying grid 

topology or physical connectivity between nodes. 

In contrast, Spectral Clustering leverages the adjacency 

matrix and the graph Laplacian to reflect the true structure 

of the network. It is not constrained by cluster shape and 

can identify irregular, non-uniform zones, making it 

particularly suitable for systems with complex physical 

interconnections like power grids. By integrating both 

LMP information and grid connectivity, Spectral 

Clustering provides more accurate zonal partitions, 

enhancing the effectiveness of price zone identification, 

system dispatch, and congestion management. 

So, we chose to apply Spectral Clustering because its 

advantages align well with the structure of the data input. 

The power outputs from loads are nonlinear, resulting in 

LMPs that also exhibit nonlinear characteristics. 

Furthermore, the system includes various models and 
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connectivity states between buses, making Spectral 

Clustering a more suitable and optimal choice compared to 

the K-means algorithm. 

Theoretical basis and algorithm implementation 

process: 

Step 1: Construct the adjacency matrix W 

Based on the Gaussian Kernel or other similarity 

measures: 

𝑊𝑖𝑗 = 𝑒
−(𝐿𝑀𝑃𝑖−𝐿𝑀𝑃𝑗)2

2𝜎2     (6) 

Step 2: Build the Laplacian matrix 

- Compute the degree matrix D (a diagonal matrix 

where each entry is the sum of the connections of each 

point): 

𝐷𝑖𝑖 = ∑𝑗𝑊𝑖𝑗     (7) 

- Then compute the Laplacian matrix: 

Unnormalized Laplacian: L = D – W (8.1) 

Or Normalized Laplacian: 

𝐿𝑠𝑦𝑚 = 𝐷
−1

2  𝐿 𝐷
−1

2        (8.2) 

Step 3: Select k eigenvectors 

Calculate the eigenvectors of L. 

Setp 4: Map the Data into a New Space 

Select the k smallest eigenvectors (excluding the first 

eigenvector if all its elements are zeros) to form the new 

space, denoted as vecs_k. 

- Each column in vecs_k represents an eigenvector, 

allowing the data to be represented in the newly 

constructed feature space. 

- Each row in vecs_k corresponds to a data point 

projected into the new space. 

- Selecting the first five eigenvectors helps to reduce 

the data dimensionality while still preserving the clustering 

information. 

Note: Only the real part of the eigenvectors instead 

follows the actual connectivity structure of the buses. 

Step 5. Execute K-means Clustering in the New 

Space 

- Use the K-mean algorithm cluster the data point based 

on their new coordinates. 

- In this transformed space, clustering no longer relies 

solely on the coordinates (i.e., Euclidean distances) but 

steps: 

Step 6.1: Initialize Cluster Centroids 

Randomly select k points from the dataset to serve as 

the initial cluster centroids. 

Step 6.2: Assign Each Data Point to the Nearest 

Cluster 

Each data point originally located at 𝑥𝑖 in the original 

space is transformed to a new coordinate 𝑦𝑖 in the 

eigenvector space. 

The distance between two points 𝑦𝑖  and 𝑦𝑗 is computed 

using the Euclidean distance formula: 

𝑑(𝑦𝑖:𝑦𝑗)
= √∑ (𝑦𝑖,𝑚 − 𝑦𝑗,𝑚)2𝑘

𝑚=1    (9) 

Where: 𝑦𝑖,𝑚 is the m-th component of point 𝑦𝑖   in the 

eigenvector space. k is the number of smallest eigenvectors 

selected. 

Step 6.3: Update Cluster Centroids 

Suppose cluster 𝐶𝑗 contains 𝑁𝑗 data points 𝑦1, 𝑦2 , … 𝑦𝑗 

in the eigenvector space (each point has k coordinates 

corresponding to the k smallest eigenvectors). 

The centroid 𝜇𝑗 of cluster 𝐶𝑗 is computed as the mean 

of all points within the cluster: 

𝜇𝑗 =
1

𝑁𝑗
∑ 𝑦𝑖𝑖𝜖 𝐶𝑗     (10) 

Where: 𝜇𝑗 is the new centroid vector of cluster j, 𝑦𝑖  is the 

coordinate vector of data point i in the eigenvector space, 

𝑁𝑗 is the number of data points in cluster 𝐶𝑗. 

4. Proposed Algorithm 

1. Start with input data: including Locational 

Marginal Prices (LMPs) at buses, the connectivity 

(adjacency) matrix, and the congestion matrix. 

2. Initialize parameters: set the sensitivity parameter 

σ (for the adjacency matrix) and iteration index i=1. 

3. Compute the adjacency matrix W using a Gaussian 

similarity function based on LMP differences, reflecting 

similarity between buses. 

𝑊𝑖𝑗 = 𝑒
−(𝐿𝑀𝑃𝑖−𝐿𝑀𝑃𝑗)2

2𝜎2  

4. Construct the Laplacian matrix L from W, 

capturing the network’s structural connectivity. 

𝐿 = 𝐼 − 𝐷−1𝑊𝐷−1 

5. Select eigenvalues and eigenvectors from L to 

construct a new spectral feature space. 

6. Apply K-means clustering in the spectral space: 

Initialize cluster centroids. 

Assign data points to the nearest centroid. 

Update centroids. 

Iterate until convergence. 

7. Evaluate clustering results: 

Check physical connectivity among buses in each 

cluster. 

Ensure minimal internal congestion within clusters. 

8. If not satisfactory, adjust σ\sigmaσ or continue 

iteration i until convergence criteria are met. 

9. Identify the optimal clustering result and finalize 

the zonal part 

Four hypothetical scenarios are developed and tested 

using a 118-node IEEE model electricity market to apply 

the Spectral clustering algorithm under peak and off-peak 

load conditions during the dry and rainy seasons. 

Clustering is based on local marginal prices (LMPs) to 

group nodes with similar LMP characteristics, ensuring 

node connectivity and accounting for transmission 
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congestion, which reflects cost and performance 

correlations in the electricity market. The test data includes 

hourly LMPs for four days representing different operating 

scenarios: 

 

 

Figure 1. Clustering Algorithm flowchart 

Peak sunny day scenario: Under sunny conditions, 

solar power production increases, leading to a decrease in 

LMP in areas with abundant solar resources due to low 

marginal costs. However, sudden increases in supply can 

cause congestion on transmission lines if the infrastructure 

is not capable of handling the large amount of power, 

leading to voltage fluctuations and even system instability. 

Figure 2. Peak Sun Day Zoning 

Low sunny day scenario: When sunlight is low, solar 

power production decreases, causing LMP to increase due 

to the need to mobilize more expensive power sources. 

Although transmission congestion may be reduced due to 

lower transmission demand, the reliance on other power 

sources can put pressure on other parts of the system, 

affecting voltage stability and system reliability. 
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Figure 3. Low sun day zoning 

Peak rainy day scenario: Under heavy rain conditions, 

if the system has many hydropower plants, hydropower 

output increases, leading to a decrease in LMP in these 

areas. However, similar to the sunny scenario, the increase 

in local supply can cause transmission congestion if not 

well managed, affecting voltage and system stability. 

 

Figure 4. Peak Rainy Day Zoning 

Low rain day scenario: When rainfall is low, 

hydropower generation decreases, leading to increased 

LMP due to the need to mobilize other, more expensive 

sources of power. This can reduce transmission congestion 

in areas that have traditionally relied on hydropower, but 

can also put pressure on other sources of power and affect 

voltage stability. 

 

Figure 5. Low Rainy Day Zoning 

To cope with these fluctuations, it is necessary to define 

a unified partition for all four scenarios. 

 

Figure 6. Algorithm Partitioning Results 

The power system zoning results in 96 different 

schemes due to dynamic data over 24 hours from four 

hypothetical scenarios. However, considering all schemes 

is impractical, so we focus on the peak load case-when the 

system faces the most severe conditions, prone to 

congestion and instability. Selecting zoning based on this 

scenario ensures the optimal scheme performs well under 

extreme conditions while maintaining efficiency during 

lower load periods. Analysis of the zoning schemes at peak 

load reveals that most results converge to one main 

scheme, indicating it is the most suitable according to the 

proposed criteria. Specifically: 

1. VoltageVoltage Stabilizer: Ensures voltage remains 

within allowable limits, promoting stable system operation 

and preventing voltage-related incidents. 

2. Optimizing LMP in Clusters: Buses within the same 

cluster have similar LMPs, reducing operating costs and 

ensuring effective zoning. 

3. Reduce Congestion: This solution significantly 

reduces grid congestion, improving power transmission 

without overloading lines. 

4. Maintain Connectivity: Ensures all nodes in a cluster 

remain connected, avoiding isolation and enhancing 

system flexibility. 

Zoning based on criteria like operational 

synchronization, price sensitivity, and technical constraints 

optimizes power system operation, ensuring safe, stable, 

and efficient supply. This zoning scheme is selected as the 

unified solution, representing the optimal structure for 

varying conditions. Limiting congestion addresses 

transmission issues by reducing current overloads, 

preventing voltage instability that impacts power quality. 

While other schemes may arise due to data fluctuations, 

they often fail to balance criteria, either increasing LMP 

differences or losing connectivity. This scheme was chosen 

as the reference model because it best meets the 

requirements for voltage stability, LMP, congestion 

management, and interconnectivity, ensuring stable and 

economical system operation. 
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5. Conclusion 

In the field of power system analysis, traditional 

clustering methods like K-Means rely on geometric 

distance and often overlook physical connections and 

congestion in power systems, leading to clusters that may 

not reflect the system's true structure. To address this, the 

Spectral Clustering algorithm is applied, considering both 

physical connections and congestion. By using 

eigenvalues from the connection matrix, it identifies 

clusters with stronger physical ties. Spectral Clustering 

offers several advantages in power system analysis, such 

as accurately identifying bidding zones, improving 

transmission congestion management, and enhancing 

price transparency. It also helps pinpoint system 

bottlenecks, supports congestion management, and 

encourages renewable energy participation. Despite 

challenges with large datasets, this method shows 

promise for improving the efficiency of Vietnam's 

electricity market. 

REFERENCES 

[1] G. Chicco et al., "Overview of the Clustering Algorithms for the 

Formation of the Bidding Zones”. 2019 54th International 

Universities Power Engineering Conference (UPEC). IEEE, 2019. 

[2] F. C. Schweppe, M. C. Caramanis, R. D. Tabors, R. E. Bohn, Spot 
Pricing of Electricity, Kluwer Academic Publishers, 1988. 

[3] L. Michi et al., “Optimal Bidding Zone Configuration: Investigation 

on Model-based Algorithms and their Application to the Italian 
Power System”, Proceedings of the 111th Annual AEIT 

International Conference, Florence, Italy, 18-20 Sept. 2019 

[4] C. W. Tan, D. W. H. Cai, and Xin Lou, "DC optimal power flow: 
Uniqueness and algorithms", 2012 IEEE Third International 

Conference on Smart Grid Communications (SmartGridComm), 

Tainan, 2012, pp. 641-646, doi: 
10.1109/SmartGridComm.2012.6486058.  

[5] B. Chong, "K-means clustering algorithm: a brief review", Data 

Science and Big Data Technology, Shanxi University of Finance and 

economics, Taiyuan, Shanxi, ISSN 2616-5775 Vol. 4, Issue 5: 37-
40, DOI: 10.25236/AJCIS.2021.040506 

[6] C. Bovo, V. Ilea, E. M. Carlini, M. Caprabianca, F. Quaglia, L. Luzi, 

and G.Nuzzo, “Optimal computation of Network indicators for 
Electricity Market Bidding Zones configuration”, Proceedings of 

the 2020 55th International Universities Power Engineering 

Conference (UPEC), Torino, Italy, 1–9 September 2020, pp. 1–6. 

[7] C. Bovo, V. Ilea, E. M. Carlini, M. Caprabianca, F. Quaglia, L. Luzi, 

and G. Nuzzo, “Optimal Computation of Network Indicators for 

Electricity Market Bidding Zones Configuration Considering 
Explicit N-1 Security Constraints”, Energies, vol. 14, art. 4267, 

2021. 

[8] L. H. Lam and V. D. T. An. “A Strategy to Identify Congestions of 

Transmission Networks in N-1 Contingency: Khanh Hoa Case 
Study”. The University of Danang - Journal of Science and 

Technology, vol. 21, no. 7, pp. 1-6, 2023. 

[9] Y. M. Al-Abdullah and M. Sahraei-Ardakani, "Differences in 
locational marginal prices: Deterministic vs. stochastic market 

formulations", 2018 5th International Conference on Renewable 

Energy: Generation and Applications (ICREGA), Al Ain, United 
Arab Emirates, 2018, pp. 268-272, doi: 

10.1109/ICREGA.2018.8337598. 

[10] U. V. Luxburg, U. A tutorial on spectral clustering. Stat Comput, 

vol. 17, pp. 395–416, 2007. https://doi.org/10.1007/s11222-007-
9033-z

 


