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Abstract - Software fault prediction focuses on identifying 

software modules that are most likely to contain faults before the 

testing stage, helping developers allocate quality assurance 

resources effectively and improve system reliability. A major 

challenge in SFP lies in redundant and irrelevant features within 

software fault datasets, which often lower the accuracy of 

predictive models. To address this, the study introduces a 

wrapper-based feature selection method using the Zebra 

Optimization Algorithm (ZOA). Experiments on nine BugHunter 

datasets show that the ZOA-based method consistently surpasses 

a baseline deep learning model trained on raw data, achieving 

higher F1-score, Precision, and Recall. The findings demonstrate 

that ZOA is effective in reducing feature redundancy and 

improving prediction performance. This research confirms the 

potential of ZOA in SFP, offering practical benefits for software 

development and opening new opportunities for further studies.  

Key words - Software fault prediction; machine learning; Zebra 

Optimization Algorithm; BugHunter dataset 

1. Introduction 

Recently, software has become a foundational 

component across diverse domains, including commerce, 

education, and critical infrastructure in the contemporary 

digital era. As software systems expand in scale and 

complexity, the potential for faults correspondingly 

increases, posing substantial risks. Even minor faults can 

lead to severe consequences, particularly in high-stakes 

sectors such as finance, healthcare, and air traffic 

management. Accordingly, the early detection of software 

faults during the first stages of development is imperative 

to mitigate potential risks and to uphold the reliability and 

quality of software products. 

Software fault prediction (SFP) was developed as an 

effective method that enables developers to identify 

potential fault components, thereby focusing testing and 

maintenance resources effectively. Nevertheless, a 

significant challenge lies in the inherent complexity of 

software fault datasets, which often contain redundant 

features and exhibit highly imbalanced class distributions. 

These factors adversely affect the performance and 

generalizability of predictive models. This issue is 

addressed through the implementation of feature selection 

(FS), which is regarded as a critical stage in reducing data 

dimensionality and enhancing model accuracy. There are 

three types of feature selection methods, including filter, 

wrapper, and embedded. While they have yielded some 

favourable outcomes, they continue to possess constraints, 

including their high computational complexity, limited 

generalization capacity, and susceptibility to local optima. 

Metaheuristic algorithms, including Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), Grey Wolf 

Optimization (GWO), and Ant Colony Optimization 

(ACO) [1, 2] which have been extensively employed in FS 

as a result of their capacity to identify optimal solutions in 

intricate spaces. Therefore, this study suggests that ZOA 

[3], which is employed to improve the accuracy of SFP by 

conducting a global search and preventing local optima for 

feature selection. 

Recently, Ferenc et al. [4] introduced the BugHunter 

dataset, which includes a substantially larger number of 

instances, thereby enabling machine learning and deep 

learning models to achieve enhanced performance. A 

diverse and realistic platform for testing the performance 

of FS methods and machine learning models is provided 

by BugHunter, which includes numerous software 

projects with corresponding features and their labels. One 

of the main challenges with the BugHunter dataset is 

dimensionality, which can negatively impact model 

performance and increase computational complexity. We 

apply Zebra Optimization Algorithm (ZOA) to select 

optimal features that yield high performance of SFP 

models. The primary goal of this paper is to assess the 

efficacy of ZOA in enhancing the precision of SFP 

models. The research findings will establish a scientific 

foundation for the creation of SFP tools that are effective, 

thereby assisting software organisations in the 

enhancement of product quality and the reduction of 

development costs. The performance of ZOA wrapper-

based FS methods is compared against the baseline 

method which applies learning techniques to the original 

software fault datasets. 

We conducted experiments using nine distinct 

BugHunter datasets. Additionally, we applied deep 

learning models, specifically Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), and 

Long Short-Term Memory (LSTM) to assess the 

performance of the SFP models and compare their 

predictive capabilities across different feature subsets. The 

experimental results demonstrate that the presented 

wrapper-based FS method using the ZOA consistently 

outperforms the baseline approach. Particularly, the 

average results for all the datasets, the accuracy increases 

by 0.5%, the recall increases by 0.7%, the F1-score 

increases by 2.1%, the AUC increases by 0.5%. 
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2. Related work 

Recent research on SFP aims to enhance the ability to 

proactively identify defective software modules, thereby 

optimizing resource allocation and improving overall 

software quality. By leveraging historical data and 

machine learning techniques, SFP facilitates early fault 

detection during the software development lifecycle, 

which in turn reduces costs and increases system 

reliability [5]. For example, SFP models have been 

instrumental in prioritizing testing efforts by pinpointing 

high-risk code segments, thereby minimizing the time and 

effort re- quired for debugging and maintenance [6, 2]. 

Moreover, the integration of static code analysis with SFP 

has improved fault localization accuracy, allowing testing 

efforts to be more effectively focused on critical code 

areas [2]. These advancements highlight the pivotal role 

of SFP in modern software engineering, enabling 

developers to address faults more proactively and 

efficiently [7, 2]. 

Addressing class imbalance where defective modules 

are significantly outnumbered by non-defective ones 

remains a major challenge in SFP. To tackle this issue, 

recent studies have explored resampling techniques such as 

the Synthetic Minority Oversampling Technique 

(SMOTE), which improves model performance by 

balancing the class distribution [8, 5]. Feature selection has 

emerged as a crucial strategy for improving both model 

accuracy and computational efficiency by isolating the 

most relevant software metrics for fault prediction. 

Notably, hybrid metaheuristic approaches such as the 

integration of Gray Wolf Optimization with Harris Hawks 

Optimizer have achieved promising results in selecting op- 

timal feature subsets while minimizing redundancy [9]. 

These nature-inspired algorithms efficiently traverse high-

dimensional feature spaces to retain only highly predictive 

features, thereby enhancing the overall performance of 

SFP models [10, 11]. 

In addition, the advancement of bagging and filter-

based feature selection FS methods has attracted 

considerable interest due to their ability to balance 

predictive accuracy with computational efficiency. In the 

context of SFP, bagging-based FS techniques have proven 

particularly effective, as they adapt dynamically to specific 

datasets and classifiers by evaluating feature subsets based 

on model performance [6]. On the other hand, filter-based 

methods such as those utilizing statistical measures like 

ANOVA or Pearson correlation are computationally 

efficient and less prone to overfitting, making them 

especially suitable for large-scale software projects [12]. 

Moreover, recent research has highlighted the importance 

of dynamic re-ranking strategies, which continuously 

prioritize features based on their evolving relevance during 

model training. These advancements underscore the 

essential role of FS in improving SFP model 

interpretability and mitigating the challenges posed by 

high-dimensional datasets. 

The evaluation of SFP models that employ deep 

learning (DL) commonly focuses on performance metrics 

such as precision, sensitivity, accuracy, F1-score, and the 

area under the ROC curve (AUC). Recent empirical 

findings have shown that integrating DL models with 

optimal feature selection (FS) techniques yields notable 

improvements across these metrics compared to 

traditional methods. In particular, the application of the 

Grey Wolf Optimizer (GWO) to refine the feature 

selection process in DL-based SFP models has been 

reported to reduce false positive classification errors 

while enhancing the F1-score [13]. Moreover, the 

capacity to concentrate on critical code segments has been 

improved by the implementation of attention mechanisms 

in DL models, which has subsequently improved 

performance [14]. In order to guarantee reliable 

evaluations, researchers have implemented benchmark 

datasets, including the NASA Metric Data Program 

(MDP), to assess the performance of models in a variety 

of software initiatives [6, 14]. These studies underscore 

the significance of preprocessing steps, including data 

cleansing and SMOTE-based equalization, in order to 

reduce noise and class imbalance, which can distort 

performance metrics. Additionally, FS has enhanced the 

computational efficacy of DL models, resulting in a 

reduction in training time without sacrificing accuracy. 

These results underscore the synergy between DL, FS, 

and rigorous evaluation in fostering SFP, offering 

practical solutions to real-world software development 

challenges [15, 12]. 

3. Basic concepts of ZOA Algorithm 

The Zebra Optimization Algorithm [3] is a swarm-

based algorithm first introduced by Trojovská et al. It 

simulates how plains zebras find food and adopt defensive 

strategies against predators. The core concepts behind 

ZOA are exploration and exploitation, and the algorithm 

aims to balance these two factors to both discover new 

search spaces and converge into promising regions. To 

achieve this, ZOA operates in two stages: 

1. Food Searching Stage (Exploitation): Convergence 

to the Pioneer Zebra (PZ). 

2. Defensive Stage: Includes local strategy (s1) and 

exploration strategy (s2). 

Stage 1: Exploitation by PZ 

In this stage, each zebra (representing a solution) 

updates its position toward the Pioneer Zebra (i.e., the best 

current solution in the population): 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟. (𝑃𝑍 − 𝑙. 𝑋𝑖) 

where, 𝑋𝑖 ∈𝑅𝑚: position of the i-th zebra; F(𝑋𝑖): value of 

the corresponding objective function; PZ: best current 

solution in the population; r: random number in (0, 1);  

l: effect coefficient (typically 1 or 2). 

Stage 2: Defense 

In this stage, each zebra simulates a response when 

attacked by a predator. Based on probability, one of the two 

following strategies is chosen: 

Strategy s1: Local Exploitation (Zigzag Escape) This 

strategy mimics how a zebra avoids predators by moving 

in a zigzag pattern: 
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𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 +  𝑅𝜏 . (2𝑟 − 1). (1 −

𝑡

𝑇
) . 𝑋𝑖  

where, R: small constant (typically 0.01); r: random number 

in (0, 1); t: current iteration; T: total number of iterations. 

This strategy performs small adjustments to the 

solution over time, helping fine-tune the position in later 

iterations. 

Strategy s2: Exploration (Support Behaviour) This 

strategy simulates cooperative behaviour when a fellow 

zebra is under attack: 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟(𝐴𝑍 − 𝑙. 𝑋𝑖)   (1) 

where, AZ: a randomly selected individual from the 

population (attacked zebra); l: effect coefficient (as in 

Stage 1). 

This strategy encourages movement into different 

regions of the search space, thus enhancing exploration. 

ZOA is known for its ease of implementation and low 

number of parameters. However, its simplicity also makes 

it susceptible to getting stuck in local optima and being 

sensitive to parameter choices. Therefore, several variants, 

such as Improved ZOA (IZOA) [16], have been proposed 

to address these limitations. 

4. Experiment Design 

In this research, we investigated the effectiveness of 

features selected by ZOA using three deep learning 

models: CNN, RNN, and LSTM. The details of the 

experimental design are presented in Figure 1. In the first 

stage, we collected nine projects from the BugHunter 

dataset. As mentioned in Section 4.1, the dataset is 

preprocessed by handling missing values and applying 

RobustScaler normalization. Subsequently, class 

imbalance is addressed using SMOTE and optimal features 

are selected by ZOA. Finally, the processed data were 

employed to train three deep learning models, whose 

performance was subsequently evaluated in terms of 

accuracy, AUC, F1-score and recall.  

 

Figure 1. The proposed methodology. 

4.1. Dataset 

In addition to the widely used NASA dataset in 

software fault prediction research, the recently introduced 

BugHunter dataset offers a larger scale and provides new 

opportunities for exploring various research directions. 

Therefore, we collected nine projects from this source; the 

details of each project are presented in Table 1. Each 

project includes 98 features, such as Comment Rules, 

Coupling Rules, etc and one dependent attribute, “Number 

of Bugs”. Given that the fault ratio in most projects is 

below 50%, this study employed an oversampling 

technique SMOTE to address the class imbalance issue. 

Table 1. The BugHunter datasets used in the study 

Dataset Projects Instance 
Faulty 

Instance 

Non-

Faulty 

Instance 

Faulty 

ratio 

(%) 

BugHunter 

ceylon-

ide-

eclipse 

1477 520 957 35.21 

oryx 646 81 565 12.54 

titan 506 195 311 38.54 

orientdb 4770 2153 2617 45.14 

Broadlea

fComme

rce 

3241 1569 1672 48.41 

hazelcast 28185 14926 13259 52.96 

Junit 

Netty 

Elastic 

search 

338 

6591 

31644 

112 

2618 

15769 

226 

3973 

15875 

33.14 

39.72 

49.83 

 

4.2. ZOA for optimization 

To enhance model performance, we employ the ZOA 

to select the optimal subset of features. In the objective 

function, each candidate solution is encoded as a binary 

vector, where each bit indicates whether a feature is 

selected or discarded. To reduce computation time, 

Logistic Regression [17] is used in the objective function 

instead of more complex deep learning models such as 

CNN, RNN, or LSTM. The model is then validated on a 

hold-out validation set, and its performance is assessed 

using the F1-score. The optimization is carried out using 

the Mealpy library [18], with ZOA configured to run for 10 

epochs and a population size of 40. However, the choice of 

10 epochs and a population size of 40 was determined 

experimentally and may not be optimal. To address this 

issue, we aim to investigate and identify the optimal 

parameters for ZOA training to further enhance model 

performance. 

4.3. Learners 

CNN [19] is a well-known deep learning model that has 

been widely used in various applications, especially in 

computer vision, due to its ability to extract important 

features through convolutional networks. A typical CNN 

architecture includes convolutional layers, activation 

layers, pooling layers, fully connected layers, dropout 

layers, and batch normalization layers. 

RNN [20] is a deep learning algorithm suitable for 

sequential data such as time-series or text, as it maintains 

hidden states to store information from previous steps. 

However, RNNs commonly face issues such as vanishing 

or exploding gradients, making it difficult to learn long 

sequences. 

LSTM [21] is a variant of RNN designed to learn long 

sequences and address the vanishing gradient problem by 

incorporating forget, input, and output gates. It is 

commonly applied in tasks such as translation, time-series 

prediction, and natural language processing. 

 



46 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha 

 

4.4. Performance Metrics 

To thoroughly evaluate and understand the 

performance of the models, we focused on four main 

metrics: accuracy, F1-score, AUC, and recall. 

– True Positive (TP): The number of positive samples 

classified correctly. 

– True Negative (TN): The number of negative samples 

classified correctly. 

– False Positive (FP): The number of negative samples 

classified as positive samples. 

– False Negative (FN): The number of positive samples 

classified as negative samples. 

Precision is the ratio of correctly predicted positive 

cases to the total number of cases predicted as positive. It 

is represented as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2) 

Accuracy indicates how correct the model’s predictions 

are. Its value ranges from 0 to 1, where an accuracy of 1 

means the model is perfectly accurate. 

Recall, also known as sensitivity, measures the 

proportion of actual positive samples that are correctly 

predicted by the model. It is represented as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

F1-score is calculated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  (4) 

The F1-score provides a balanced metric between 

Precision and Recall. It is especially useful for evaluating 

models on imbalanced datasets. 

The AUC (Area Under the Curve) is used to assess the 

effectiveness of the SFP model. A curve that closely 

approaches the upper-left corner of the plot indicates strong 

model performance, while significant deviation from this 

region suggests weaker performance. 

5. Experimental Results 

Table 2 evaluates the functionality of three prevalent 

deep learning models: CNN, RNN, and LSTM. The 

BugHunter dataset is used to evaluate these models. Ac- 

curacy, Area Under the Curve (AUC), F1-score, and Recall 

are the performance metrics that are employed for 

comparison. The Oryx dataset yields the most outstanding 

performance across all models and evaluation metrics. 

Notably, the LSTM model achieves values of accuracy, 

AUC, F1-score and recall of 84.6%, 93.9%, 85.7% and 

91.6%, respectively. Additionally, the CNN and RNN 

models attain accuracy scores of 85.0% and 82.7%, 

respectively. In contrast, the Hazelcast datasets exhibit the 

lowest predictive performance among the evaluated 

datasets. The Hazelcast dataset had the lowest accuracy 

value with CNN at 52.1% and a subpar F1-score of 30.3%. 

The JUnit and BroadleafCommerce datasets demonstrated 

satisfactory performance, with accuracy values ranging 

from 68.0% to 73.2% and 66.5% to 66.7%. F1-scores as 

low as 50.7% were achieved with the LSTM model on 

Elasticsearch, while Titan and Elasticsearch were in the 

medium to low range. 

Table 2. Performance comparison of deep learning models 

Dataset Model Acc AUC 
F1-

score 
Recall Feature 

Ceylon-

ide-eclipse 

CNN 0.576 0.624 0.576 0.590  

RNN 0.586 0.619 0.609 0.657 12 

LSTM 0.581 0.621 0.599 0.633  

OrientDB CNN 0.600 0.646 0.569 0.538  

 RNN 0.603 0.650 0.612 0.629 49 

 LSTM 0.597 0.646 0.558 0.511  

 CNN 0.521 0.524 0.303 0.362  

Titan RNN 0.549 0.565 0.588 0.647 49 

 LSTM 0.544 0.561 0.525 0.506  

 CNN 0.521 0.524 0.303 0.362  

Hazelcast RNN 0.549 0.565 0.588 0.647 57 

 LSTM 0.544 0.561 0.525 0.506  

JUnit 

CNN 0.721 0.784 0.724 0.740  

RNN 0.732 0.767 0.709 0.701 47 

LSTM 0.680 0.723 0.700 0.746  

Netty 

CNN 0.571 0.604 0.598 0.652  

RNN 0.565 0.600 0.546 0.536 31 

LSTM 0.557 0.586 0.518 0.480  

Broadleaf 

Commerce 

CNN 0.667 0.726 0.635 0.582  

RNN 0.666 0.724 0.638 0.591 32 

LSTM 0.665 0.729 0.632 0.577  

Oryx 

CNN 0.850 0.921 0.853 0.871  

RNN 0.827 0.914 0.828 0.836 58 

LSTM 0.846 0.939 0.857 0.916  

Elastic 

search 

CNN 0.561 0.585 0.548 0.543  

RNN 0.557 0.589 0.565 0.583 23 

LSTM 0.554 0.579 0.507 0.459  

The results indicate a substantial degree of performance 

variability among the datasets. Oryx obtains the most 

favourable outcomes because of its high-quality features 

and clean data, whereas Hazelcast fail to perform well due 

to suboptimal features or noise. Oryx dataset yields the 

most outstanding results across all models, with LSTM 

achieving the highest Accuracy value of 0.846, the AUC 

value of 0.939, the F1-score value of 0.857, and the Recall 

value of 0.916. The high number of informative features 

(58 features) and rich data structure appear to benefit from 

LSTM's capability to model long-term dependencies, 

highlighting the importance of context in predicting faults. 

For ElasticSearch dataset, the performance across models 

is generally low, with F1-scores around 0.507–0.583. 

Despite a moderate feature count (23 features), this result 

may be attributed to either poor feature relevance or a noisy 

dataset, limiting the models' ability to generalize. RNN 

exhibits high sensitivity to challenging data, LSTM 

performs well on complex sequential data, and CNN is 

appropriate for structured data and maintain performance 

after equalization. To enhance the results, the primary 

factor is to select the appropriate model and optimize 

features based on the characteristics of the data. 

These results suggest that the consistently strong 

performance of RNN and CNN models highlights their 
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suitability for this domain. However, traditional machine 

learning approaches remain viable alternatives in specific 

scenarios, demonstrating competitive performance in 

certain metrics. 

As shown in Figure 2, the presented feature selection 

method utilizing the ZOA consistently outperforms the 

baseline across multiple evaluation metrics. It achieves a 

0.5% increase in accuracy, a 0.5% improvement in AUC, a 

notable gain of 2.1% in F1-score, and 0.7% in Recall. 

These results highlight the superior generalization 

capability of the ZOA-based method, especially in terms of 

F1-score and Recall, which are critical for imbalanced 

datasets commonly found in software fault prediction. The 

improvements indicate that ZOA enhances the model’s 

ability to detect faulty modules while maintaining overall 

predictive performance. 

Figure 2. The comparative results of the approach using ZOA 

for feature selection and the baseline method. 

To assess the effectiveness of the Zebra Optimization 

Algorithm (ZOA) in feature selection, we compared it 

against two other popular metaheuristic optimization 

algorithms: Particle Swarm Optimization (PSO) and Grey 

Wolf Optimizer (GWO). This comparison was conducted 

using the same BugHunter dataset. We evaluated the 

experimental results based on three crucial metrics: 

Accuracy, Area Under the ROC Curve (AUC), and  

F1-score. 

Table 3. Accuracy Comparison of Deep Learning Models with 

Different Optimization Algorithms  

Model 
Accuracy 

PSO GWO ZOA 

CNN 0.627 0.615 0.625 

Simple-RNN 0.625 0.624 0.627 

LTSM 0.631 0.632 0.619 

Table 4. AUC Comparison of Deep Learning Models with 

Different Optimization Algorithms  

Model 
AUC 

PSO GWO ZOA 

CNN 0.661 0.655 0.665 

Simple-RNN 0.663 0.666 0.667 

LTSM 0.669 0.671 0.662 

Table 5. F1-Score Comparison of Deep Learning Models with 

Different Optimization Algorithms  

Model 
F1-Score 

PSO GWO ZOA 

CNN 0.586 0.560 0.575 

Simple-RNN 0.622 0.616 0.623 

LTSM 0.617 0.622 0.609 

Table 6. Computational time comparison different optimization 

algorithms for feature selection 

Optimization Algorithms Computational Time 

PSO 118.9 

GWO 132.2 

ZOA 265.8 

Tables 3-5 present the performance of different deep 

learning models with PSO, GWO and ZOA in terms of 

accuracy, AUC and F1-score. The results clearly show 

that the algorithms' performance varies significantly 

depending on the machine learning model used. In Table 

3, for the CNN model, PSO achieved the highest accuracy 

(0.627), outperforming ZOA (0.625) and GWO (0.615). 

In terms of AUC, ZOA led with 0.665, followed by PSO 

(0.661) and GWO (0.655). However, when considering 

the F1-score, PSO yielded the best result (0.586), 

significantly higher than GWO (0.560) and ZOA (0.575). 

With the SimpleRNN model, the ZOA algorithm 

demonstrated clear superiority with an accuracy of 0.627, 

surpassing PSO (0.625) and GWO (0.624). The AUC 

metric also showed ZOA in the lead with 0.667, followed 

by GWO (0.666) and PSO (0.663). For the F1-score, ZOA 

achieved the best result (0.623), outperforming GWO 

(0.616) and PSO (0.622). For the LSTM model, the 

results indicated intense competition among the 

algorithms. GWO achieved the highest accuracy (0.632), 

followed by PSO (0.631) and ZOA (0.619). However, 

regarding the critical AUC metric, GWO led with 0.671, 

followed by PSO (0.669) and ZOA (0.662). For the F1-

score, GWO also produced the best result (0.622), higher 

than PSO (0.617) and ZOA (0.609). 

Another important factor to consider is the 

computational efficiency of these algorithms. In Table 6, 

the average execution times revealed that PSO was the 

fastest at 118.90 seconds, followed by GWO at 132.21 

seconds, and ZOA was the slowest at 265.81 seconds. 

ZOA's computation time was notably higher, taking 2.2 

times longer than PSO and 2.0 times longer than GWO. 

This extended time is likely due to ZOA's more intricate 

search mechanism, which requires more calculations 

during the optimization process. 

The experimental results show that no single algorithm 

completely dominates across all models and evaluation 

metrics. PSO demonstrated stable performance and was 

particularly excellent with the CNN model. GWO showed 

clear superiority on the LSTM model, achieving the 

highest evaluation scores. ZOA proved most suitable for 

the SimpleRNN model, delivering the best results across 

most metrics. This variation can be attributed to the unique 

characteristics of each optimization algorithm and how 

they interact with the different architectures of deep 

learning models.  

A significant finding is the inverse relationship 

observed between performance and computation time. 

PSO not only had the fastest execution time but also 

achieved good performance across various metrics, making 

it an attractive choice for practical applications. GWO 

strikes a good balance between performance and 

computation time, especially for the LSTM model. ZOA, 
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despite its higher computation time, still shows potential in 

specific cases, such as with the SimpleRNN model. 

Therefore, selecting the appropriate algorithm requires 

careful consideration based on the specific application's 

requirements: prioritizing processing speed versus result 

quality, and the type of machine learning model being 

utilized. 

6. Conclusion 

In this study, we addressed critical challenges in SFP, 

particularly the issues of high-dimensional feature spaces 

and imbalanced datasets, which often degrade the 

performance of predictive models. To overcome these 

limitations, we proposed the application of the Zebra 

Optimization Algorithm as a feature selection method, 

aiming to enhance the accuracy and generalizability of SFP 

models. ZOA’s global search capability and resilience 

against local optima make it well-suited for identifying the 

most relevant software metrics from complex datasets. The 

experimental evaluations were conducted on the 

BugHunter dataset, a large-scale and diverse benchmark 

that provides a realistic setting for assessing the 

effectiveness of SFP models. Our results demonstrate that 

feature selection using ZOA significantly improved model 

performance across multiple evaluation metrics. These 

findings confirm the potential of combining metaheuristic-

based feature selection with deep learning architectures to 

develop robust and scalable SFP solutions. In future work, 

we will explore additional deep learning models and 

ensemble techniques while further enhancing model 

performance through advanced oversampling methods and 

hybrid FS strategies. 
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