
ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 43

FEATURE SELECTION USING THE ZEBRA OPTIMIZATION ALGORITHM FOR

SOFTWARE FAULT PREDICTION: A STUDY ON THE BUGHUNTER DATASET

Ha Thi Minh Phuong2, Dao Khanh Duy2, Nguyen Do Anh Nhu1, Hoang Thi Thanh Ha1*
1The University of Danang – University of Economics, Vietnam

2The University of Danang - Vietnam-Korea University of Information and Communication Technology, Vietnam

*Corresponding author: ha.htt@due.edu.vn

(Received: May 02, 2025; Revised: June 14, 2025; Accepted: June 21, 2025)

DOI: 10.31130/ud-jst.2025.23(9C).533E

Abstract - Software fault prediction focuses on identifying

software modules that are most likely to contain faults before the

testing stage, helping developers allocate quality assurance

resources effectively and improve system reliability. A major

challenge in SFP lies in redundant and irrelevant features within

software fault datasets, which often lower the accuracy of

predictive models. To address this, the study introduces a

wrapper-based feature selection method using the Zebra

Optimization Algorithm (ZOA). Experiments on nine BugHunter

datasets show that the ZOA-based method consistently surpasses

a baseline deep learning model trained on raw data, achieving

higher F1-score, Precision, and Recall. The findings demonstrate

that ZOA is effective in reducing feature redundancy and

improving prediction performance. This research confirms the

potential of ZOA in SFP, offering practical benefits for software

development and opening new opportunities for further studies.

Key words - Software fault prediction; machine learning; Zebra

Optimization Algorithm; BugHunter dataset

1. Introduction

Recently, software has become a foundational

component across diverse domains, including commerce,

education, and critical infrastructure in the contemporary

digital era. As software systems expand in scale and

complexity, the potential for faults correspondingly

increases, posing substantial risks. Even minor faults can

lead to severe consequences, particularly in high-stakes

sectors such as finance, healthcare, and air traffic

management. Accordingly, the early detection of software

faults during the first stages of development is imperative

to mitigate potential risks and to uphold the reliability and

quality of software products.

Software fault prediction (SFP) was developed as an

effective method that enables developers to identify

potential fault components, thereby focusing testing and

maintenance resources effectively. Nevertheless, a

significant challenge lies in the inherent complexity of

software fault datasets, which often contain redundant

features and exhibit highly imbalanced class distributions.

These factors adversely affect the performance and

generalizability of predictive models. This issue is

addressed through the implementation of feature selection

(FS), which is regarded as a critical stage in reducing data

dimensionality and enhancing model accuracy. There are

three types of feature selection methods, including filter,

wrapper, and embedded. While they have yielded some

favourable outcomes, they continue to possess constraints,

including their high computational complexity, limited

generalization capacity, and susceptibility to local optima.

Metaheuristic algorithms, including Particle Swarm

Optimization (PSO), Genetic Algorithm (GA), Grey Wolf

Optimization (GWO), and Ant Colony Optimization

(ACO) [1, 2] which have been extensively employed in FS

as a result of their capacity to identify optimal solutions in

intricate spaces. Therefore, this study suggests that ZOA

[3], which is employed to improve the accuracy of SFP by

conducting a global search and preventing local optima for

feature selection.

Recently, Ferenc et al. [4] introduced the BugHunter

dataset, which includes a substantially larger number of

instances, thereby enabling machine learning and deep

learning models to achieve enhanced performance. A

diverse and realistic platform for testing the performance

of FS methods and machine learning models is provided

by BugHunter, which includes numerous software

projects with corresponding features and their labels. One

of the main challenges with the BugHunter dataset is

dimensionality, which can negatively impact model

performance and increase computational complexity. We

apply Zebra Optimization Algorithm (ZOA) to select

optimal features that yield high performance of SFP

models. The primary goal of this paper is to assess the

efficacy of ZOA in enhancing the precision of SFP

models. The research findings will establish a scientific

foundation for the creation of SFP tools that are effective,

thereby assisting software organisations in the

enhancement of product quality and the reduction of

development costs. The performance of ZOA wrapper-

based FS methods is compared against the baseline

method which applies learning techniques to the original

software fault datasets.

We conducted experiments using nine distinct

BugHunter datasets. Additionally, we applied deep

learning models, specifically Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN), and

Long Short-Term Memory (LSTM) to assess the

performance of the SFP models and compare their

predictive capabilities across different feature subsets. The

experimental results demonstrate that the presented

wrapper-based FS method using the ZOA consistently

outperforms the baseline approach. Particularly, the

average results for all the datasets, the accuracy increases

by 0.5%, the recall increases by 0.7%, the F1-score

increases by 2.1%, the AUC increases by 0.5%.

44 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

2. Related work

Recent research on SFP aims to enhance the ability to

proactively identify defective software modules, thereby

optimizing resource allocation and improving overall

software quality. By leveraging historical data and

machine learning techniques, SFP facilitates early fault

detection during the software development lifecycle,

which in turn reduces costs and increases system

reliability [5]. For example, SFP models have been

instrumental in prioritizing testing efforts by pinpointing

high-risk code segments, thereby minimizing the time and

effort re- quired for debugging and maintenance [6, 2].

Moreover, the integration of static code analysis with SFP

has improved fault localization accuracy, allowing testing

efforts to be more effectively focused on critical code

areas [2]. These advancements highlight the pivotal role

of SFP in modern software engineering, enabling

developers to address faults more proactively and

efficiently [7, 2].

Addressing class imbalance where defective modules

are significantly outnumbered by non-defective ones

remains a major challenge in SFP. To tackle this issue,

recent studies have explored resampling techniques such as

the Synthetic Minority Oversampling Technique

(SMOTE), which improves model performance by

balancing the class distribution [8, 5]. Feature selection has

emerged as a crucial strategy for improving both model

accuracy and computational efficiency by isolating the

most relevant software metrics for fault prediction.

Notably, hybrid metaheuristic approaches such as the

integration of Gray Wolf Optimization with Harris Hawks

Optimizer have achieved promising results in selecting op-

timal feature subsets while minimizing redundancy [9].

These nature-inspired algorithms efficiently traverse high-

dimensional feature spaces to retain only highly predictive

features, thereby enhancing the overall performance of

SFP models [10, 11].

In addition, the advancement of bagging and filter-

based feature selection FS methods has attracted

considerable interest due to their ability to balance

predictive accuracy with computational efficiency. In the

context of SFP, bagging-based FS techniques have proven

particularly effective, as they adapt dynamically to specific

datasets and classifiers by evaluating feature subsets based

on model performance [6]. On the other hand, filter-based

methods such as those utilizing statistical measures like

ANOVA or Pearson correlation are computationally

efficient and less prone to overfitting, making them

especially suitable for large-scale software projects [12].

Moreover, recent research has highlighted the importance

of dynamic re-ranking strategies, which continuously

prioritize features based on their evolving relevance during

model training. These advancements underscore the

essential role of FS in improving SFP model

interpretability and mitigating the challenges posed by

high-dimensional datasets.

The evaluation of SFP models that employ deep

learning (DL) commonly focuses on performance metrics

such as precision, sensitivity, accuracy, F1-score, and the

area under the ROC curve (AUC). Recent empirical

findings have shown that integrating DL models with

optimal feature selection (FS) techniques yields notable

improvements across these metrics compared to

traditional methods. In particular, the application of the

Grey Wolf Optimizer (GWO) to refine the feature

selection process in DL-based SFP models has been

reported to reduce false positive classification errors

while enhancing the F1-score [13]. Moreover, the

capacity to concentrate on critical code segments has been

improved by the implementation of attention mechanisms

in DL models, which has subsequently improved

performance [14]. In order to guarantee reliable

evaluations, researchers have implemented benchmark

datasets, including the NASA Metric Data Program

(MDP), to assess the performance of models in a variety

of software initiatives [6, 14]. These studies underscore

the significance of preprocessing steps, including data

cleansing and SMOTE-based equalization, in order to

reduce noise and class imbalance, which can distort

performance metrics. Additionally, FS has enhanced the

computational efficacy of DL models, resulting in a

reduction in training time without sacrificing accuracy.

These results underscore the synergy between DL, FS,

and rigorous evaluation in fostering SFP, offering

practical solutions to real-world software development

challenges [15, 12].

3. Basic concepts of ZOA Algorithm

The Zebra Optimization Algorithm [3] is a swarm-

based algorithm first introduced by Trojovská et al. It

simulates how plains zebras find food and adopt defensive

strategies against predators. The core concepts behind

ZOA are exploration and exploitation, and the algorithm

aims to balance these two factors to both discover new

search spaces and converge into promising regions. To

achieve this, ZOA operates in two stages:

1. Food Searching Stage (Exploitation): Convergence

to the Pioneer Zebra (PZ).

2. Defensive Stage: Includes local strategy (s1) and

exploration strategy (s2).

Stage 1: Exploitation by PZ

In this stage, each zebra (representing a solution)

updates its position toward the Pioneer Zebra (i.e., the best

current solution in the population):

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟. (𝑃𝑍 − 𝑙. 𝑋𝑖)

where, 𝑋𝑖 ∈𝑅𝑚: position of the i-th zebra; F(𝑋𝑖): value of

the corresponding objective function; PZ: best current

solution in the population; r: random number in (0, 1);

l: effect coefficient (typically 1 or 2).

Stage 2: Defense

In this stage, each zebra simulates a response when

attacked by a predator. Based on probability, one of the two

following strategies is chosen:

Strategy s1: Local Exploitation (Zigzag Escape) This

strategy mimics how a zebra avoids predators by moving

in a zigzag pattern:

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 45

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑅𝜏 . (2𝑟 − 1). (1 −

𝑡

𝑇
) . 𝑋𝑖

where, R: small constant (typically 0.01); r: random number

in (0, 1); t: current iteration; T: total number of iterations.

This strategy performs small adjustments to the

solution over time, helping fine-tune the position in later

iterations.

Strategy s2: Exploration (Support Behaviour) This

strategy simulates cooperative behaviour when a fellow

zebra is under attack:

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟(𝐴𝑍 − 𝑙. 𝑋𝑖) (1)

where, AZ: a randomly selected individual from the

population (attacked zebra); l: effect coefficient (as in

Stage 1).

This strategy encourages movement into different

regions of the search space, thus enhancing exploration.

ZOA is known for its ease of implementation and low

number of parameters. However, its simplicity also makes

it susceptible to getting stuck in local optima and being

sensitive to parameter choices. Therefore, several variants,

such as Improved ZOA (IZOA) [16], have been proposed

to address these limitations.

4. Experiment Design

In this research, we investigated the effectiveness of

features selected by ZOA using three deep learning

models: CNN, RNN, and LSTM. The details of the

experimental design are presented in Figure 1. In the first

stage, we collected nine projects from the BugHunter

dataset. As mentioned in Section 4.1, the dataset is

preprocessed by handling missing values and applying

RobustScaler normalization. Subsequently, class

imbalance is addressed using SMOTE and optimal features

are selected by ZOA. Finally, the processed data were

employed to train three deep learning models, whose

performance was subsequently evaluated in terms of

accuracy, AUC, F1-score and recall.

Figure 1. The proposed methodology.

4.1. Dataset

In addition to the widely used NASA dataset in

software fault prediction research, the recently introduced

BugHunter dataset offers a larger scale and provides new

opportunities for exploring various research directions.

Therefore, we collected nine projects from this source; the

details of each project are presented in Table 1. Each

project includes 98 features, such as Comment Rules,

Coupling Rules, etc and one dependent attribute, “Number

of Bugs”. Given that the fault ratio in most projects is

below 50%, this study employed an oversampling

technique SMOTE to address the class imbalance issue.

Table 1. The BugHunter datasets used in the study

Dataset Projects Instance
Faulty

Instance

Non-

Faulty

Instance

Faulty

ratio

(%)

BugHunter

ceylon-

ide-

eclipse

1477 520 957 35.21

oryx 646 81 565 12.54

titan 506 195 311 38.54

orientdb 4770 2153 2617 45.14

Broadlea

fComme

rce

3241 1569 1672 48.41

hazelcast 28185 14926 13259 52.96

Junit

Netty

Elastic

search

338

6591

31644

112

2618

15769

226

3973

15875

33.14

39.72

49.83

4.2. ZOA for optimization

To enhance model performance, we employ the ZOA

to select the optimal subset of features. In the objective

function, each candidate solution is encoded as a binary

vector, where each bit indicates whether a feature is

selected or discarded. To reduce computation time,

Logistic Regression [17] is used in the objective function

instead of more complex deep learning models such as

CNN, RNN, or LSTM. The model is then validated on a

hold-out validation set, and its performance is assessed

using the F1-score. The optimization is carried out using

the Mealpy library [18], with ZOA configured to run for 10

epochs and a population size of 40. However, the choice of

10 epochs and a population size of 40 was determined

experimentally and may not be optimal. To address this

issue, we aim to investigate and identify the optimal

parameters for ZOA training to further enhance model

performance.

4.3. Learners

CNN [19] is a well-known deep learning model that has

been widely used in various applications, especially in

computer vision, due to its ability to extract important

features through convolutional networks. A typical CNN

architecture includes convolutional layers, activation

layers, pooling layers, fully connected layers, dropout

layers, and batch normalization layers.

RNN [20] is a deep learning algorithm suitable for

sequential data such as time-series or text, as it maintains

hidden states to store information from previous steps.

However, RNNs commonly face issues such as vanishing

or exploding gradients, making it difficult to learn long

sequences.

LSTM [21] is a variant of RNN designed to learn long

sequences and address the vanishing gradient problem by

incorporating forget, input, and output gates. It is

commonly applied in tasks such as translation, time-series

prediction, and natural language processing.

46 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

4.4. Performance Metrics

To thoroughly evaluate and understand the

performance of the models, we focused on four main

metrics: accuracy, F1-score, AUC, and recall.

– True Positive (TP): The number of positive samples

classified correctly.

– True Negative (TN): The number of negative samples

classified correctly.

– False Positive (FP): The number of negative samples

classified as positive samples.

– False Negative (FN): The number of positive samples

classified as negative samples.

Precision is the ratio of correctly predicted positive

cases to the total number of cases predicted as positive. It

is represented as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

Accuracy indicates how correct the model’s predictions

are. Its value ranges from 0 to 1, where an accuracy of 1

means the model is perfectly accurate.

Recall, also known as sensitivity, measures the

proportion of actual positive samples that are correctly

predicted by the model. It is represented as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3)

F1-score is calculated as:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4)

The F1-score provides a balanced metric between

Precision and Recall. It is especially useful for evaluating

models on imbalanced datasets.

The AUC (Area Under the Curve) is used to assess the

effectiveness of the SFP model. A curve that closely

approaches the upper-left corner of the plot indicates strong

model performance, while significant deviation from this

region suggests weaker performance.

5. Experimental Results

Table 2 evaluates the functionality of three prevalent

deep learning models: CNN, RNN, and LSTM. The

BugHunter dataset is used to evaluate these models. Ac-

curacy, Area Under the Curve (AUC), F1-score, and Recall

are the performance metrics that are employed for

comparison. The Oryx dataset yields the most outstanding

performance across all models and evaluation metrics.

Notably, the LSTM model achieves values of accuracy,

AUC, F1-score and recall of 84.6%, 93.9%, 85.7% and

91.6%, respectively. Additionally, the CNN and RNN

models attain accuracy scores of 85.0% and 82.7%,

respectively. In contrast, the Hazelcast datasets exhibit the

lowest predictive performance among the evaluated

datasets. The Hazelcast dataset had the lowest accuracy

value with CNN at 52.1% and a subpar F1-score of 30.3%.

The JUnit and BroadleafCommerce datasets demonstrated

satisfactory performance, with accuracy values ranging

from 68.0% to 73.2% and 66.5% to 66.7%. F1-scores as

low as 50.7% were achieved with the LSTM model on

Elasticsearch, while Titan and Elasticsearch were in the

medium to low range.

Table 2. Performance comparison of deep learning models

Dataset Model Acc AUC
F1-

score
Recall Feature

Ceylon-

ide-eclipse

CNN 0.576 0.624 0.576 0.590

RNN 0.586 0.619 0.609 0.657 12

LSTM 0.581 0.621 0.599 0.633

OrientDB CNN 0.600 0.646 0.569 0.538

 RNN 0.603 0.650 0.612 0.629 49

 LSTM 0.597 0.646 0.558 0.511

 CNN 0.521 0.524 0.303 0.362

Titan RNN 0.549 0.565 0.588 0.647 49

 LSTM 0.544 0.561 0.525 0.506

 CNN 0.521 0.524 0.303 0.362

Hazelcast RNN 0.549 0.565 0.588 0.647 57

 LSTM 0.544 0.561 0.525 0.506

JUnit

CNN 0.721 0.784 0.724 0.740

RNN 0.732 0.767 0.709 0.701 47

LSTM 0.680 0.723 0.700 0.746

Netty

CNN 0.571 0.604 0.598 0.652

RNN 0.565 0.600 0.546 0.536 31

LSTM 0.557 0.586 0.518 0.480

Broadleaf

Commerce

CNN 0.667 0.726 0.635 0.582

RNN 0.666 0.724 0.638 0.591 32

LSTM 0.665 0.729 0.632 0.577

Oryx

CNN 0.850 0.921 0.853 0.871

RNN 0.827 0.914 0.828 0.836 58

LSTM 0.846 0.939 0.857 0.916

Elastic

search

CNN 0.561 0.585 0.548 0.543

RNN 0.557 0.589 0.565 0.583 23

LSTM 0.554 0.579 0.507 0.459

The results indicate a substantial degree of performance

variability among the datasets. Oryx obtains the most

favourable outcomes because of its high-quality features

and clean data, whereas Hazelcast fail to perform well due

to suboptimal features or noise. Oryx dataset yields the

most outstanding results across all models, with LSTM

achieving the highest Accuracy value of 0.846, the AUC

value of 0.939, the F1-score value of 0.857, and the Recall

value of 0.916. The high number of informative features

(58 features) and rich data structure appear to benefit from

LSTM's capability to model long-term dependencies,

highlighting the importance of context in predicting faults.

For ElasticSearch dataset, the performance across models

is generally low, with F1-scores around 0.507–0.583.

Despite a moderate feature count (23 features), this result

may be attributed to either poor feature relevance or a noisy

dataset, limiting the models' ability to generalize. RNN

exhibits high sensitivity to challenging data, LSTM

performs well on complex sequential data, and CNN is

appropriate for structured data and maintain performance

after equalization. To enhance the results, the primary

factor is to select the appropriate model and optimize

features based on the characteristics of the data.

These results suggest that the consistently strong

performance of RNN and CNN models highlights their

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 47

suitability for this domain. However, traditional machine

learning approaches remain viable alternatives in specific

scenarios, demonstrating competitive performance in

certain metrics.

As shown in Figure 2, the presented feature selection

method utilizing the ZOA consistently outperforms the

baseline across multiple evaluation metrics. It achieves a

0.5% increase in accuracy, a 0.5% improvement in AUC, a

notable gain of 2.1% in F1-score, and 0.7% in Recall.

These results highlight the superior generalization

capability of the ZOA-based method, especially in terms of

F1-score and Recall, which are critical for imbalanced

datasets commonly found in software fault prediction. The

improvements indicate that ZOA enhances the model’s

ability to detect faulty modules while maintaining overall

predictive performance.

Figure 2. The comparative results of the approach using ZOA

for feature selection and the baseline method.

To assess the effectiveness of the Zebra Optimization

Algorithm (ZOA) in feature selection, we compared it

against two other popular metaheuristic optimization

algorithms: Particle Swarm Optimization (PSO) and Grey

Wolf Optimizer (GWO). This comparison was conducted

using the same BugHunter dataset. We evaluated the

experimental results based on three crucial metrics:

Accuracy, Area Under the ROC Curve (AUC), and

F1-score.

Table 3. Accuracy Comparison of Deep Learning Models with

Different Optimization Algorithms

Model
Accuracy

PSO GWO ZOA

CNN 0.627 0.615 0.625

Simple-RNN 0.625 0.624 0.627

LTSM 0.631 0.632 0.619

Table 4. AUC Comparison of Deep Learning Models with

Different Optimization Algorithms

Model
AUC

PSO GWO ZOA

CNN 0.661 0.655 0.665

Simple-RNN 0.663 0.666 0.667

LTSM 0.669 0.671 0.662

Table 5. F1-Score Comparison of Deep Learning Models with

Different Optimization Algorithms

Model
F1-Score

PSO GWO ZOA

CNN 0.586 0.560 0.575

Simple-RNN 0.622 0.616 0.623

LTSM 0.617 0.622 0.609

Table 6. Computational time comparison different optimization

algorithms for feature selection

Optimization Algorithms Computational Time

PSO 118.9

GWO 132.2

ZOA 265.8

Tables 3-5 present the performance of different deep

learning models with PSO, GWO and ZOA in terms of

accuracy, AUC and F1-score. The results clearly show

that the algorithms' performance varies significantly

depending on the machine learning model used. In Table

3, for the CNN model, PSO achieved the highest accuracy

(0.627), outperforming ZOA (0.625) and GWO (0.615).

In terms of AUC, ZOA led with 0.665, followed by PSO

(0.661) and GWO (0.655). However, when considering

the F1-score, PSO yielded the best result (0.586),

significantly higher than GWO (0.560) and ZOA (0.575).

With the SimpleRNN model, the ZOA algorithm

demonstrated clear superiority with an accuracy of 0.627,

surpassing PSO (0.625) and GWO (0.624). The AUC

metric also showed ZOA in the lead with 0.667, followed

by GWO (0.666) and PSO (0.663). For the F1-score, ZOA

achieved the best result (0.623), outperforming GWO

(0.616) and PSO (0.622). For the LSTM model, the

results indicated intense competition among the

algorithms. GWO achieved the highest accuracy (0.632),

followed by PSO (0.631) and ZOA (0.619). However,

regarding the critical AUC metric, GWO led with 0.671,

followed by PSO (0.669) and ZOA (0.662). For the F1-

score, GWO also produced the best result (0.622), higher

than PSO (0.617) and ZOA (0.609).

Another important factor to consider is the

computational efficiency of these algorithms. In Table 6,

the average execution times revealed that PSO was the

fastest at 118.90 seconds, followed by GWO at 132.21

seconds, and ZOA was the slowest at 265.81 seconds.

ZOA's computation time was notably higher, taking 2.2

times longer than PSO and 2.0 times longer than GWO.

This extended time is likely due to ZOA's more intricate

search mechanism, which requires more calculations

during the optimization process.

The experimental results show that no single algorithm

completely dominates across all models and evaluation

metrics. PSO demonstrated stable performance and was

particularly excellent with the CNN model. GWO showed

clear superiority on the LSTM model, achieving the

highest evaluation scores. ZOA proved most suitable for

the SimpleRNN model, delivering the best results across

most metrics. This variation can be attributed to the unique

characteristics of each optimization algorithm and how

they interact with the different architectures of deep

learning models.

A significant finding is the inverse relationship

observed between performance and computation time.

PSO not only had the fastest execution time but also

achieved good performance across various metrics, making

it an attractive choice for practical applications. GWO

strikes a good balance between performance and

computation time, especially for the LSTM model. ZOA,

48 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

despite its higher computation time, still shows potential in

specific cases, such as with the SimpleRNN model.

Therefore, selecting the appropriate algorithm requires

careful consideration based on the specific application's

requirements: prioritizing processing speed versus result

quality, and the type of machine learning model being

utilized.

6. Conclusion

In this study, we addressed critical challenges in SFP,

particularly the issues of high-dimensional feature spaces

and imbalanced datasets, which often degrade the

performance of predictive models. To overcome these

limitations, we proposed the application of the Zebra

Optimization Algorithm as a feature selection method,

aiming to enhance the accuracy and generalizability of SFP

models. ZOA’s global search capability and resilience

against local optima make it well-suited for identifying the

most relevant software metrics from complex datasets. The

experimental evaluations were conducted on the

BugHunter dataset, a large-scale and diverse benchmark

that provides a realistic setting for assessing the

effectiveness of SFP models. Our results demonstrate that

feature selection using ZOA significantly improved model

performance across multiple evaluation metrics. These

findings confirm the potential of combining metaheuristic-

based feature selection with deep learning architectures to

develop robust and scalable SFP solutions. In future work,

we will explore additional deep learning models and

ensemble techniques while further enhancing model

performance through advanced oversampling methods and

hybrid FS strategies.

REFERENCES

[1] F. Bartumeus, M. G. E. da Luz, G. M. Viswanathan, and J. Catalan,

“Animal search strategies: a quantitative random-walk analysis”,

Ecology, vol. 86, no. 11, pp. 3078–3087, 2005.

[2] Z. Dang and H. Wang, “Leveraging meta-heuristic algorithms for

effective software fault prediction: a comprehensive study”, Journal
of Engineering and Applied Science, vol. 71, no. 1, p. 189, 2024.

[3] E. Trojovská, M. Dehghani, and P. Trojovský, “Zebra optimization

algorithm: a new bio-inspired optimization algorithm for solving

optimization problems”, IEEE Access, vol. 10, pp. 49445–49473,

2022.

[4] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Tóth, and T. Gyimóthy, “An

automatically created novel bug dataset and its validation in bug
prediction”, Journal of Systems and Software, vol. 169, p. 110691,

2020.

[5] M. Ali, T. Mazhar, T. Shahzad, Y. Y. Ghadi, S. M. Mohsin, S. M.

A. Akber, and M. Ali, “Analysis of feature selection methods in

software defect prediction models”, IEEE Access, vol. 11, pp.
145954–145974, 2023.

[6] A. O. Balogun, S. Basri, L. F. Capretz, S. Mahamad, A. A. Imam,

M. A. Almomani, V. E. Adeyemo, A. K. Alazzawi, A. O. Bajeh, and
G. Kumar, “Software defect prediction using wrapper feature

selection based on dynamic re-ranking strategy”, Symmetry, vol. 13,

no. 11, p. 2166, 2021.

[7] A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim,

“Performance analysis of feature selection methods in software
defect prediction: a search method approach”, Applied Sciences, vol.

9, no. 13, p. 2764, 2019.

[8] A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A.

Nugroho, “Optimizing software defect prediction models:

integrating hybrid grey wolf and particle swarm optimization for
enhanced feature selection with popular gradient boosting

algorithm”, Journal of Electronics, Electromedical Engineering,
and Medical Informatics, vol. 6, no. 2, pp. 169–181, 2024.

[9] R. Al-Wajih, S. J. Abdulkadir, N. Aziz, Q. Al-Tashi, and N. Talpur,

“Hybrid binary grey wolf with harris hawks optimizer for feature

selection”, IEEE Access, vol. 9, pp. 31662–31677, 2021.

[10] O. Almomani, “A feature selection model for network intrusion

detection system based on PSO, GWO, FFA and GA algorithms”,

Symmetry, vol. 12, no. 6, pp. 1046, 2020.

[11] N. M. Sallam, A. I. Saleh, H. A. Ali, and M. M. Abdelsalam, “An

efficient strategy for blood diseases detection based on grey wolf
optimization as feature selection and machine learning techniques”,

Applied Sciences, vol. 12, no. 21, p. 10760, 2022.

[12] R. B. Said, Z. Sabir, and I. Askerzade, “CNN-BiLSTM: a hybrid

deep learning approach for network intrusion detection system in

software-defined networking with hybrid feature selection”, IEEE
Access, vol. 11, pp. 138732–138747, 2023.

[13] M. Khan and R. Kishwar, “A novel software defect prediction model

using two-phase grey wolf optimisation for feature selection”, vol.

27, no. 9, pp. 12185-12207, 2024.

[14] R. Malhotra, S. Chawla, and A. Sharma, “Software defect prediction

based on multi-filter wrapper feature selection and deep neural

network with attention mechanism”, Neural Computing and
Applications, vol. 37, pp. 22621–22648, 2025.

[15] S. C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L. B. M. Neti,

and L. Kumar, “Empirical evaluation of the performance of data

sampling and feature selection techniques for software fault

prediction”, Expert Systems with Applications, vol. 223, p. 119806,
2023.

[16] Y. Liu, “An improved zebra optimization algorithm”, International

Journal of Engineering Research and Management (IJERM), vol.

12, no. 3, pp. 86–90, 2025.

[17] M. P. LaValley, “Logistic regression”, Circulation, vol. 117, no. 18,

pp. 2395–2399, 2008.

[18] N. V. Thieu and S. Mirjalili, “Mealpy: An open-source library for

latest meta-heuristic algorithms in Python”, Journal of Systems

Architecture, vol. 139, pp. 102871, 2023.

[19] S. Balasubramaniam and S. G. Gollagi, “Software defect prediction

via optimal trained convolutional neural network”, Advances in
Engineering Software, vol. 169, p. 103138, 2022.

[20] E. Borandag, “Software fault prediction using an RNN-based deep

learning approach and ensemble machine learning techniques”,

Applied Sciences, vol. 13, no. 3, p. 1639, 2023.

[21] M. R. Islam, M. Begum, and M. N. Akhtar, “Recursive approach for

multiple step-ahead software fault prediction through long short-

term memory (LSTM)”, Journal of Discrete Mathematical Sciences
and Cryptography, vol. 25, no. 7, pp. 2129–2138, 2022.

