ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 43

FEATURE SELECTION USING THE ZEBRA OPTIMIZATION ALGORITHM FOR
SOFTWARE FAULT PREDICTION: A STUDY ON THE BUGHUNTER DATASET

Ha Thi Minh Phuong?, Dao Khanh Duy?, Nguyen Do Anh Nhu!, Hoang Thi Thanh Ha'*

!The University of Danang — University of Economics, Vietnam
’The University of Danang - Vietnam-Korea University of Information and Communication Technology, Vietnam

*Corresponding author: ha.htt@due.edu.vn
(Received: May 02, 2025; Revised: June 14, 2025; Accepted: June 21, 2025)
DOI: 10.31130/ud-jst.2025.23(9C).533E

Abstract - Software fault prediction focuses on identifying
software modules that are most likely to contain faults before the
testing stage, helping developers allocate quality assurance
resources effectively and improve system reliability. A major
challenge in SFP lies in redundant and irrelevant features within
software fault datasets, which often lower the accuracy of
predictive models. To address this, the study introduces a
wrapper-based feature selection method using the Zebra
Optimization Algorithm (ZOA). Experiments on nine BugHunter
datasets show that the ZOA-based method consistently surpasses
a baseline deep learning model trained on raw data, achieving
higher F1-score, Precision, and Recall. The findings demonstrate
that ZOA is effective in reducing feature redundancy and
improving prediction performance. This research confirms the
potential of ZOA in SFP, offering practical benefits for software
development and opening new opportunities for further studies.

Key words - Software fault prediction; machine learning; Zebra
Optimization Algorithm; BugHunter dataset

1. Introduction

Recently, software has become a foundational
component across diverse domains, including commerce,
education, and critical infrastructure in the contemporary
digital era. As software systems expand in scale and
complexity, the potential for faults correspondingly
increases, posing substantial risks. Even minor faults can
lead to severe consequences, particularly in high-stakes
sectors such as finance, healthcare, and air traffic
management. Accordingly, the early detection of software
faults during the first stages of development is imperative
to mitigate potential risks and to uphold the reliability and
quality of software products.

Software fault prediction (SFP) was developed as an
effective method that enables developers to identify
potential fault components, thereby focusing testing and
maintenance resources effectively. Nevertheless, a
significant challenge lies in the inherent complexity of
software fault datasets, which often contain redundant
features and exhibit highly imbalanced class distributions.
These factors adversely affect the performance and
generalizability of predictive models. This issue is
addressed through the implementation of feature selection
(FS), which is regarded as a critical stage in reducing data
dimensionality and enhancing model accuracy. There are
three types of feature selection methods, including filter,
wrapper, and embedded. While they have yielded some
favourable outcomes, they continue to possess constraints,
including their high computational complexity, limited

generalization capacity, and susceptibility to local optima.
Metaheuristic algorithms, including Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Grey Wolf
Optimization (GWO), and Ant Colony Optimization
(ACO) [1, 2] which have been extensively employed in FS
as a result of their capacity to identify optimal solutions in
intricate spaces. Therefore, this study suggests that ZOA
[3], which is employed to improve the accuracy of SFP by
conducting a global search and preventing local optima for
feature selection.

Recently, Ferenc et al. [4] introduced the BugHunter
dataset, which includes a substantially larger number of
instances, thereby enabling machine learning and deep
learning models to achieve enhanced performance. A
diverse and realistic platform for testing the performance
of FS methods and machine learning models is provided
by BugHunter, which includes numerous software
projects with corresponding features and their labels. One
of the main challenges with the BugHunter dataset is
dimensionality, which can negatively impact model
performance and increase computational complexity. We
apply Zebra Optimization Algorithm (ZOA) to select
optimal features that yield high performance of SFP
models. The primary goal of this paper is to assess the
efficacy of ZOA in enhancing the precision of SFP
models. The research findings will establish a scientific
foundation for the creation of SFP tools that are effective,
thereby assisting software organisations in the
enhancement of product quality and the reduction of
development costs. The performance of ZOA wrapper-
based FS methods is compared against the baseline
method which applies learning techniques to the original
software fault datasets.

We conducted experiments using nine distinct
BugHunter datasets. Additionally, we applied deep
learning models, specifically Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), and
Long Short-Term Memory (LSTM) to assess the
performance of the SFP models and compare their
predictive capabilities across different feature subsets. The
experimental results demonstrate that the presented
wrapper-based FS method using the ZOA consistently
outperforms the baseline approach. Particularly, the
average results for all the datasets, the accuracy increases
by 0.5%, the recall increases by 0.7%, the F1-score
increases by 2.1%, the AUC increases by 0.5%.

44 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

2. Related work

Recent research on SFP aims to enhance the ability to
proactively identify defective software modules, thereby
optimizing resource allocation and improving overall
software quality. By leveraging historical data and
machine learning techniques, SFP facilitates early fault
detection during the software development lifecycle,
which in turn reduces costs and increases system
reliability [5]. For example, SFP models have been
instrumental in prioritizing testing efforts by pinpointing
high-risk code segments, thereby minimizing the time and
effort re- quired for debugging and maintenance [6, 2].
Moreover, the integration of static code analysis with SFP
has improved fault localization accuracy, allowing testing
efforts to be more effectively focused on critical code
areas [2]. These advancements highlight the pivotal role
of SFP in modern software engineering, enabling
developers to address faults more proactively and
efficiently [7, 2].

Addressing class imbalance where defective modules
are significantly outnumbered by non-defective ones
remains a major challenge in SFP. To tackle this issue,
recent studies have explored resampling techniques such as
the Synthetic Minority Oversampling Technique
(SMOTE), which improves model performance by
balancing the class distribution [8, 5]. Feature selection has
emerged as a crucial strategy for improving both model
accuracy and computational efficiency by isolating the
most relevant software metrics for fault prediction.
Notably, hybrid metaheuristic approaches such as the
integration of Gray Wolf Optimization with Harris Hawks
Optimizer have achieved promising results in selecting op-
timal feature subsets while minimizing redundancy [9].
These nature-inspired algorithms efficiently traverse high-
dimensional feature spaces to retain only highly predictive
features, thereby enhancing the overall performance of
SFP models [10, 11].

In addition, the advancement of bagging and filter-
based feature selection FS methods has attracted
considerable interest due to their ability to balance
predictive accuracy with computational efficiency. In the
context of SFP, bagging-based FS techniques have proven
particularly effective, as they adapt dynamically to specific
datasets and classifiers by evaluating feature subsets based
on model performance [6]. On the other hand, filter-based
methods such as those utilizing statistical measures like
ANOVA or Pearson correlation are computationally
efficient and less prone to overfitting, making them
especially suitable for large-scale software projects [12].
Moreover, recent research has highlighted the importance
of dynamic re-ranking strategies, which continuously
prioritize features based on their evolving relevance during
model training. These advancements underscore the
essential role of FS in improving SFP model
interpretability and mitigating the challenges posed by
high-dimensional datasets.

The evaluation of SFP models that employ deep
learning (DL) commonly focuses on performance metrics
such as precision, sensitivity, accuracy, F1-score, and the

area under the ROC curve (AUC). Recent empirical
findings have shown that integrating DL models with
optimal feature selection (FS) techniques yields notable
improvements across these metrics compared to
traditional methods. In particular, the application of the
Grey Wolf Optimizer (GWO) to refine the feature
selection process in DL-based SFP models has been
reported to reduce false positive classification errors
while enhancing the Fl-score [13]. Moreover, the
capacity to concentrate on critical code segments has been
improved by the implementation of attention mechanisms
in DL models, which has subsequently improved
performance [14]. In order to guarantee reliable
evaluations, researchers have implemented benchmark
datasets, including the NASA Metric Data Program
(MDP), to assess the performance of models in a variety
of software initiatives [6, 14]. These studies underscore
the significance of preprocessing steps, including data
cleansing and SMOTE-based equalization, in order to
reduce noise and class imbalance, which can distort
performance metrics. Additionally, FS has enhanced the
computational efficacy of DL models, resulting in a
reduction in training time without sacrificing accuracy.
These results underscore the synergy between DL, FS,
and rigorous evaluation in fostering SFP, offering
practical solutions to real-world software development
challenges [15, 12].

3. Basic concepts of ZOA Algorithm

The Zebra Optimization Algorithm [3] is a swarm-
based algorithm first introduced by Trojovska et al. It
simulates how plains zebras find food and adopt defensive
strategies against predators. The core concepts behind
ZOA are exploration and exploitation, and the algorithm
aims to balance these two factors to both discover new
search spaces and converge into promising regions. To
achieve this, ZOA operates in two stages:

1. Food Searching Stage (Exploitation): Convergence
to the Pioneer Zebra (PZ).

2. Defensive Stage: Includes local strategy (s1) and
exploration strategy (sz).

Stage 1: Exploitation by PZ

In this stage, each zebra (representing a solution)
updates its position toward the Pioneer Zebra (i.e., the best
current solution in the population):

Xinew = Xi + 7. (PZ - le)
where, X; ER™: position of the i-th zebra; F(X;): value of
the corresponding objective function; PZ: best current

solution in the population; 7: random number in (0, 1);
I: effect coefficient (typically 1 or 2).

Stage 2: Defense

In this stage, each zebra simulates a response when
attacked by a predator. Based on probability, one of the two
following strategies is chosen:

Strategy s1: Local Exploitation (Zigzag Escape) This
strategy mimics how a zebra avoids predators by moving
in a zigzag pattern:

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 45

t
XM = X, + R,.(2r — 1).(1 —7>.xi

where, R: small constant (typically 0.01); 7: random number
in (0, 1); #: current iteration; 7 total number of iterations.

This strategy performs small adjustments to the
solution over time, helping fine-tune the position in later
iterations.

Strategy s2: Exploration (Support Behaviour) This
strategy simulates cooperative behaviour when a fellow
zebra is under attack:

Xt =X, +r(AZ - L.X)) (D
where, AZ: a randomly selected individual from the
population (attacked zebra); /: effect coefficient (as in
Stage 1).

This strategy encourages movement into different
regions of the search space, thus enhancing exploration.
ZOA is known for its ease of implementation and low
number of parameters. However, its simplicity also makes
it susceptible to getting stuck in local optima and being
sensitive to parameter choices. Therefore, several variants,
such as Improved ZOA (IZOA) [16], have been proposed
to address these limitations.

4. Experiment Design

In this research, we investigated the effectiveness of
features selected by ZOA wusing three deep learning
models: CNN, RNN, and LSTM. The details of the
experimental design are presented in Figure 1. In the first
stage, we collected nine projects from the BugHunter
dataset. As mentioned in Section 4.1, the dataset is
preprocessed by handling missing values and applying
RobustScaler normalization. Subsequently, class
imbalance is addressed using SMOTE and optimal features
are selected by ZOA. Finally, the processed data were
employed to train three deep learning models, whose
performance was subsequently evaluated in terms of
accuracy, AUC, F1-score and recall.

Data Preprocessing

- pulEeEmm
Fauit Value ransformation
|

—— Data with Optimal Features
| Classification

i Training classification model
(CNN, RNN, LSTM)

Dataset]

Data Balancing
with SMOTE

v

Generating
Balanced Data

l

Feature Selection
with ZOA

Testing classification model

il Evaluation of model performance i

Figure 1. The proposed methodology.
4.1. Dataset

In addition to the widely used NASA dataset in
software fault prediction research, the recently introduced
BugHunter dataset offers a larger scale and provides new
opportunities for exploring various research directions.
Therefore, we collected nine projects from this source; the
details of each project are presented in Table 1. Each
project includes 98 features, such as Comment Rules,
Coupling Rules, etc and one dependent attribute, “Number

of Bugs”. Given that the fault ratio in most projects is
below 50%, this study employed an oversampling
technique SMOTE to address the class imbalance issue.

Table 1. The BugHunter datasets used in the study

Non- Faulty
Dataset Projects Instance Faulty Faulty ratio
Instance
Instance (%)
ceylon-
ide- 1477 520 957 35.21
eclipse
oryx 646 81 565 12.54
titan 506 195 311 38.54
orientdb 4770 2153 2617 45.14
Broadlea
BugHunter o omme 3241 1569 1672 48.41
rce
hazelcast 28185 14926 13259 52.96
Junit 33.14
Netty 338 112 226 39.72
Elastic 6591 2618 3973 49.83
search 31644 15769 15875

4.2. ZOA for optimization

To enhance model performance, we employ the ZOA
to select the optimal subset of features. In the objective
function, each candidate solution is encoded as a binary
vector, where each bit indicates whether a feature is
selected or discarded. To reduce computation time,
Logistic Regression [17] is used in the objective function
instead of more complex deep learning models such as
CNN, RNN, or LSTM. The model is then validated on a
hold-out validation set, and its performance is assessed
using the Fl-score. The optimization is carried out using
the Mealpy library [18], with ZOA configured to run for 10
epochs and a population size of 40. However, the choice of
10 epochs and a population size of 40 was determined
experimentally and may not be optimal. To address this
issue, we aim to investigate and identify the optimal
parameters for ZOA training to further enhance model
performance.

4.3. Learners

CNN [19] is a well-known deep learning model that has
been widely used in various applications, especially in
computer vision, due to its ability to extract important
features through convolutional networks. A typical CNN
architecture includes convolutional layers, activation
layers, pooling layers, fully connected layers, dropout
layers, and batch normalization layers.

RNN [20] is a deep learning algorithm suitable for
sequential data such as time-series or text, as it maintains
hidden states to store information from previous steps.
However, RNNs commonly face issues such as vanishing
or exploding gradients, making it difficult to learn long
sequences.

LSTM [21] is a variant of RNN designed to learn long
sequences and address the vanishing gradient problem by
incorporating forget, input, and output gates. It is
commonly applied in tasks such as translation, time-series
prediction, and natural language processing.

46 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

4.4. Performance Metrics

To thoroughly evaluate and understand the
performance of the models, we focused on four main
metrics: accuracy, Fl-score, AUC, and recall.

— True Positive (TP): The number of positive samples
classified correctly.

— True Negative (TN): The number of negative samples
classified correctly.

— False Positive (FP): The number of negative samples
classified as positive samples.

— False Negative (FN): The number of positive samples
classified as negative samples.

Precision is the ratio of correctly predicted positive
cases to the total number of cases predicted as positive. It
is represented as:

TP
TP+FP

Precision =

2

Accuracy indicates how correct the model’s predictions
are. Its value ranges from 0 to 1, where an accuracy of 1
means the model is perfectly accurate.

Recall, also known as sensitivity, measures the
proportion of actual positive samples that are correctly
predicted by the model. It is represented as:

TP

Recall = 3)
TP+FN
F1-score is calculated as:
F1 — score = 2 X precision X recall (4)

precision + recall

The Fl-score provides a balanced metric between
Precision and Recall. It is especially useful for evaluating
models on imbalanced datasets.

The AUC (Area Under the Curve) is used to assess the
effectiveness of the SFP model. A curve that closely
approaches the upper-left corner of the plot indicates strong
model performance, while significant deviation from this
region suggests weaker performance.

5. Experimental Results

Table 2 evaluates the functionality of three prevalent
deep learning models: CNN, RNN, and LSTM. The
BugHunter dataset is used to evaluate these models. Ac-
curacy, Area Under the Curve (AUC), F1-score, and Recall
are the performance metrics that are employed for
comparison. The Oryx dataset yields the most outstanding
performance across all models and evaluation metrics.

Notably, the LSTM model achieves values of accuracy,
AUC, Fl-score and recall of 84.6%, 93.9%, 85.7% and
91.6%, respectively. Additionally, the CNN and RNN
models attain accuracy scores of 85.0% and 82.7%,
respectively. In contrast, the Hazelcast datasets exhibit the
lowest predictive performance among the evaluated
datasets. The Hazelcast dataset had the lowest accuracy
value with CNN at 52.1% and a subpar F1-score of 30.3%.
The JUnit and BroadleafCommerce datasets demonstrated
satisfactory performance, with accuracy values ranging
from 68.0% to 73.2% and 66.5% to 66.7%. F1-scores as
low as 50.7% were achieved with the LSTM model on

Elasticsearch, while Titan and Elasticsearch were in the
medium to low range.

Table 2. Performance comparison of deep learning models

Dataset Model Acc AUC sf(};e Recall Feature
CNN 0576 0.624 0.576 0.590

i diegiﬁgse RNN 0586 0.619 0.609 0.657 12
LSTM 0.581 0.621 0.599 0.633

OrientDB CNN 0.600 0.646 0.569 0.538
RNN 0.603 0.650 0.612 0.629 49
LSTM 0.597 0.646 0.558 0.511
CNN 0.521 0524 0303 0.362

Titan RNN 0.549 0.565 0.588 0.647 49
LSTM 0.544 0.561 0.525 0.506
CNN 0521 0524 0303 0.362

Hazelcast RNN 0.549 0.565 0.588 0.647 57
LSTM 0.544 0.561 0.525 0.506
CNN 0721 0.784 0.724 0.740

JUnit RNN 0.732 0.767 0.709 0.701 47
LSTM 0.680 0.723 0.700 0.746
CNN 0571 0.604 0.598 0.652

Netty RNN 0565 0.600 0.546 0.536 31
LSTM 0.557 0.586 0.518 0.480
CNN 0.667 0.726 0.635 0.582

gg;ﬁzii RNN 0666 0724 0638 0591 32
LSTM 0.665 0.729 0.632 0.577
CNN 0.850 0921 0.853 0.871

Oryx RNN 0.827 0914 0.828 0.836 58
LSTM 0.846 0.939 0.857 0916
CNN 0561 0.585 0.548 0.543

Elastic

o, RNN 0557 0589 0565 0583 23
LSTM 0.554 0.579 0.507 0.459

The results indicate a substantial degree of performance
variability among the datasets. Oryx obtains the most
favourable outcomes because of its high-quality features
and clean data, whereas Hazelcast fail to perform well due
to suboptimal features or noise. Oryx dataset yields the
most outstanding results across all models, with LSTM
achieving the highest Accuracy value of 0.846, the AUC
value of 0.939, the F1-score value of 0.857, and the Recall
value of 0.916. The high number of informative features
(58 features) and rich data structure appear to benefit from
LSTM's capability to model long-term dependencies,
highlighting the importance of context in predicting faults.
For ElasticSearch dataset, the performance across models
is generally low, with Fl-scores around 0.507-0.583.
Despite a moderate feature count (23 features), this result
may be attributed to either poor feature relevance or a noisy
dataset, limiting the models' ability to generalize. RNN
exhibits high sensitivity to challenging data, LSTM
performs well on complex sequential data, and CNN is
appropriate for structured data and maintain performance
after equalization. To enhance the results, the primary
factor is to select the appropriate model and optimize
features based on the characteristics of the data.

These results suggest that the consistently strong
performance of RNN and CNN models highlights their

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 47

suitability for this domain. However, traditional machine
learning approaches remain viable alternatives in specific
scenarios, demonstrating competitive performance in
certain metrics.

As shown in Figure 2, the presented feature selection
method utilizing the ZOA consistently outperforms the
baseline across multiple evaluation metrics. It achieves a
0.5% increase in accuracy, a 0.5% improvement in AUC, a
notable gain of 2.1% in Fl-score, and 0.7% in Recall.
These results highlight the superior generalization
capability of the ZOA-based method, especially in terms of
F1-score and Recall, which are critical for imbalanced
datasets commonly found in software fault prediction. The
improvements indicate that ZOA enhances the model’s
ability to detect faulty modules while maintaining overall
predictive performance.

Mean Performance Comparison: Baseline vs ZOA

+0.5%

& W &
¥ <
Metrics

Figure 2. The comparative results of the approach using ZOA
for feature selection and the baseline method.

&
o

To assess the effectiveness of the Zebra Optimization
Algorithm (ZOA) in feature selection, we compared it
against two other popular metaheuristic optimization
algorithms: Particle Swarm Optimization (PSO) and Grey
Wolf Optimizer (GWO). This comparison was conducted
using the same BugHunter dataset. We evaluated the
experimental results based on three crucial metrics:
Accuracy, Area Under the ROC Curve (AUC), and
F1-score.

Table 3. Accuracy Comparison of Deep Learning Models with
Different Optimization Algorithms

Accuracy
Model PSO GWO ZOA
CNN 0.627 0.615 0.625
Simple-RNN 0.625 0.624 0.627
LTSM 0.631 0.632 0.619

Table 4. AUC Comparison of Deep Learning Models with
Different Optimization Algorithms

AUC
Model PSO GWO ZOA
CNN 0.661 0.655 0.665
Simple-RNN 0.663 0.666 0.667
LTSM 0.669 0.671 0.662

Table 5. F1-Score Comparison of Deep Learning Models with
Different Optimization Algorithms

F1-Score
Model PSO GWO ZOA
CNN 0.586 0.560 0.575
Simple-RNN 0.622 0.616 0.623
LTSM 0.617 0.622 0.609

Table 6. Computational time comparison different optimization
algorithms for feature selection

Optimization Algorithms Computational Time
PSO 118.9
GWO 132.2
ZOA 265.8

Tables 3-5 present the performance of different deep
learning models with PSO, GWO and ZOA in terms of
accuracy, AUC and Fl-score. The results clearly show
that the algorithms' performance varies significantly
depending on the machine learning model used. In Table
3, for the CNN model, PSO achieved the highest accuracy
(0.627), outperforming ZOA (0.625) and GWO (0.615).
In terms of AUC, ZOA led with 0.665, followed by PSO
(0.661) and GWO (0.655). However, when considering
the Fl-score, PSO vyielded the best result (0.586),
significantly higher than GWO (0.560) and ZOA (0.575).
With the SimpleRNN model, the ZOA algorithm
demonstrated clear superiority with an accuracy of 0.627,
surpassing PSO (0.625) and GWO (0.624). The AUC
metric also showed ZOA in the lead with 0.667, followed
by GWO (0.666) and PSO (0.663). For the F1-score, ZOA
achieved the best result (0.623), outperforming GWO
(0.616) and PSO (0.622). For the LSTM model, the
results indicated intense competition among the
algorithms. GWO achieved the highest accuracy (0.632),
followed by PSO (0.631) and ZOA (0.619). However,
regarding the critical AUC metric, GWO led with 0.671,
followed by PSO (0.669) and ZOA (0.662). For the F1-
score, GWO also produced the best result (0.622), higher
than PSO (0.617) and ZOA (0.609).

Another important factor to consider is the
computational efficiency of these algorithms. In Table 6,
the average execution times revealed that PSO was the
fastest at 118.90 seconds, followed by GWO at 132.21
seconds, and ZOA was the slowest at 265.81 seconds.
ZOA's computation time was notably higher, taking 2.2
times longer than PSO and 2.0 times longer than GWO.
This extended time is likely due to ZOA's more intricate
search mechanism, which requires more calculations
during the optimization process.

The experimental results show that no single algorithm
completely dominates across all models and evaluation
metrics. PSO demonstrated stable performance and was
particularly excellent with the CNN model. GWO showed
clear superiority on the LSTM model, achieving the
highest evaluation scores. ZOA proved most suitable for
the SimpleRNN model, delivering the best results across
most metrics. This variation can be attributed to the unique
characteristics of each optimization algorithm and how
they interact with the different architectures of deep
learning models.

A significant finding is the inverse relationship
observed between performance and computation time.
PSO not only had the fastest execution time but also
achieved good performance across various metrics, making
it an attractive choice for practical applications. GWO
strikes a good balance between performance and
computation time, especially for the LSTM model. ZOA,

48 Ha Thi Minh Phuong, Dao Khanh Duy, Nguyen Do Anh Nhu, Hoang Thi Thanh Ha

despite its higher computation time, still shows potential in
specific cases, such as with the SimpleRNN model.
Therefore, selecting the appropriate algorithm requires
careful consideration based on the specific application's
requirements: prioritizing processing speed versus result
quality, and the type of machine learning model being
utilized.

6. Conclusion

In this study, we addressed critical challenges in SFP,
particularly the issues of high-dimensional feature spaces
and imbalanced datasets, which often degrade the
performance of predictive models. To overcome these
limitations, we proposed the application of the Zebra
Optimization Algorithm as a feature selection method,
aiming to enhance the accuracy and generalizability of SFP
models. ZOA’s global search capability and resilience
against local optima make it well-suited for identifying the
most relevant software metrics from complex datasets. The
experimental evaluations were conducted on the
BugHunter dataset, a large-scale and diverse benchmark
that provides a realistic setting for assessing the
effectiveness of SFP models. Our results demonstrate that
feature selection using ZOA significantly improved model
performance across multiple evaluation metrics. These
findings confirm the potential of combining metaheuristic-
based feature selection with deep learning architectures to
develop robust and scalable SFP solutions. In future work,
we will explore additional deep learning models and
ensemble techniques while further enhancing model
performance through advanced oversampling methods and
hybrid FS strategies.

REFERENCES

[1] F.Bartumeus, M. G. E. da Luz, G. M. Viswanathan, and J. Catalan,
“Animal search strategies: a quantitative random-walk analysis”,
Ecology, vol. 86, no. 11, pp. 3078-3087, 2005.

[2] Z. Dang and H. Wang, “Leveraging meta-heuristic algorithms for
effective software fault prediction: a comprehensive study”, Journal
of Engineering and Applied Science, vol. 71, no. 1, p. 189, 2024.

[3] E. Trojovska, M. Dehghani, and P. Trojovsky, “Zebra optimization
algorithm: a new bio-inspired optimization algorithm for solving
optimization problems”, IEEE Access, vol. 10, pp. 4944549473,
2022.

[4] R. Ferenc, P. Gyimesi, G. Gyimesi, Z. Toth, and T. Gyimoéthy, “An
automatically created novel bug dataset and its validation in bug
prediction”, Journal of Systems and Sofiware, vol. 169, p. 110691,
2020.

[S] M. Ali, T. Mazhar, T. Shahzad, Y. Y. Ghadi, S. M. Mohsin, S. M.
A. Akber, and M. Ali, “Analysis of feature selection methods in

software defect prediction models”, IEEE Access, vol. 11, pp.
145954-145974, 2023.

[6] A. O. Balogun, S. Basri, L. F. Capretz, S. Mahamad, A. A. Imam,
M. A. Almomani, V. E. Adeyemo, A. K. Alazzawi, A. O. Bajeh, and
G. Kumar, “Software defect prediction using wrapper feature
selection based on dynamic re-ranking strategy”, Symmetry, vol. 13,
no. 11, p. 2166, 2021.

[71 A. O. Balogun, S. Basri, S. J. Abdulkadir, and A. S. Hashim,
“Performance analysis of feature selection methods in software
defect prediction: a search method approach”, Applied Sciences, vol.
9, no. 13, p. 2764, 2019.

[8] A. M. Akbar, R. Herteno, S. W. Saputro, M. R. Faisal, and R. A.
Nugroho, “Optimizing software defect prediction models:
integrating hybrid grey wolf and particle swarm optimization for
enhanced feature selection with popular gradient boosting
algorithm”, Journal of Electronics, Electromedical Engineering,
and Medical Informatics, vol. 6, no. 2, pp. 169-181, 2024.

[9] R. Al-Wajih, S. J. Abdulkadir, N. Aziz, Q. Al-Tashi, and N. Talpur,
“Hybrid binary grey wolf with harris hawks optimizer for feature
selection”, IEEE Access, vol. 9, pp. 31662-31677, 2021.

[10] O. Almomani, “A feature selection model for network intrusion
detection system based on PSO, GWO, FFA and GA algorithms”,
Symmetry, vol. 12, no. 6, pp. 1046, 2020.

[11] N. M. Sallam, A. I. Saleh, H. A. Ali, and M. M. Abdelsalam, “An
efficient strategy for blood diseases detection based on grey wolf
optimization as feature selection and machine learning techniques”,
Applied Sciences, vol. 12, no. 21, p. 10760, 2022.

R. B. Said, Z. Sabir, and 1. Askerzade, “CNN-BiLSTM: a hybrid
deep learning approach for network intrusion detection system in
software-defined networking with hybrid feature selection”, IEEE
Access, vol. 11, pp. 138732-138747, 2023.

[13] M. Khan and R. Kishwar, “A novel software defect prediction model
using two-phase grey wolf optimisation for feature selection”, vol.
27,1n0. 9, pp. 12185-12207, 2024.

[14] R. Malhotra, S. Chawla, and A. Sharma, “Software defect prediction
based on multi-filter wrapper feature selection and deep neural
network with attention mechanism”, Neural Computing and
Applications, vol. 37, pp. 22621-22648, 2025.

[15] S. C. Rathi, S. Misra, R. Colomo-Palacios, R. Adarsh, L. B. M. Neti,
and L. Kumar, “Empirical evaluation of the performance of data
sampling and feature selection techniques for software fault
prediction”, Expert Systems with Applications, vol. 223, p. 119806,
2023.

[16] Y. Liu, “An improved zebra optimization algorithm”, International
Journal of Engineering Research and Management (IJERM), vol.
12, no. 3, pp. 86-90, 2025.

[17] M. P. LaValley, “Logistic regression”, Circulation, vol. 117, no. 18,
pp. 2395-2399, 2008.

[18] N. V. Thieu and S. Mirjalili, “Mealpy: An open-source library for
latest meta-heuristic algorithms in Python”, Journal of Systems
Architecture, vol. 139, pp. 102871, 2023.

[19] S. Balasubramaniam and S. G. Gollagi, “Software defect prediction
via optimal trained convolutional neural network”, Advances in
Engineering Sofiware, vol. 169, p. 103138, 2022.

[20] E. Borandag, “Software fault prediction using an RNN-based deep
learning approach and ensemble machine learning techniques”,
Applied Sciences, vol. 13, no. 3, p. 1639, 2023.

[21] M. R. Islam, M. Begum, and M. N. Akhtar, “Recursive approach for
multiple step-ahead software fault prediction through long short-
term memory (LSTM)”, Journal of Discrete Mathematical Sciences
and Cryptography, vol. 25, no. 7, pp. 2129-2138, 2022.

[12

—

