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Abstract - Human activity recognition (HAR) and fall detection 

play crucial roles in healthcare for the elderly and remote 

observation. This research presents three innovative deep 

learning models - MSRLSTM, MSRLSTM - Refined, and MSR 

- MultiHeadAttention-designed for HAR and fall detection by 

utilizing Inertial Measurement Unit data from the UP-Fall 

Detection Dataset. By employing convolutional neural networks, 

residual learning, and multi-head attention, these models 

effectively capture complex temporal and spatial patterns present 

in multimodal sensor data. When evaluated on the UP-Fall 

Detection Dataset, MSRLSTM-Refined and MSR - 

MultiHeadAttention achieved accuracies of 93.91% and 95.49%, 

respectively, outpacing the baseline MSRLSTM (92.10%). The 

MSR-MultiHeadAttention model stands out due to its precision 

and temporal modeling capabilities, while MSRLSTM-Refined 

delivers computational efficiency suitable for wearable devices. 

Although there are challenges in differentiating similar motion 

patterns, these models demonstrate significant potential for real-

time fall detection, contributing to remote healthcare monitoring 

solutions and related fields. 

Key words - Human activity recognition; fall detection; deep 

learning; inertial measurement units; UP-Fall detection dataset; 

convolutional neural networks; multi-head attention; residual 

learning; elderly healthcare; wearable sensors. 

1. Introduction 

In recent years, with the rapid advancement of Artificial 

Intelligence (AI) and Deep Learning (DL), along with the 

growing aging population, Human Activity Recognition 

(HAR) has gained increasing attention and significant 

development, especially due to its essential applications in 

fields such as work safety and remote healthcare 

monitoring. HAR involves the automatic identification and 

classification of human actions using data from diverse 

sources, including wearable sensors, smartphones, cameras 

(RGB and depth), radar, and multimodal devices [1]. This 

field has a significant role not only in ensuring workplace 

safety by identifying hazardous activities but also in smart 

home activity monitoring, elderly healthcare, security 

surveillance, sports analytics, and human-robot interaction 

[2]. Among these, fall detection and activity classification 

systems are increasingly vital due to the aging global 

population and the growing need for remote health 

supervision. Additionally, falls are a leading cause of 

injury and mortality among the elderly, resulting in over 

37.3 million severe injuries and 684,000 deaths annually 

worldwide, making it the second leading cause of 

unintentional injury death, after road traffic injuries [3]. 

Most of the methods and research in HAR focus on 

prediction based on cameras and Inertial Measurement 

Units (IMUs). Although showing positive results, the 

camera approach also has some disadvantages. Not only is 

the installation costly, but cameras are also ineffective in 

areas where visual coverage is not available. One example 

is the study of a real-time fall detection model using 

Uniformer with RGB video input, processed in small 

segments. By using a lightweight network and sliding 

window method, the model achieves good performance 

while maintaining low latency [5]. 

In contrast, IMU sensors offer a more practical 

alternative, as they provide a low-cost, non-intrusive, and 

energy-efficient solution, making them ideal for a wide 

range of applications. However, translating raw sensor data 

into meaningful insights requires sophisticated algorithms 

capable of learning complex temporal patterns and 

distinguishing subtle differences in human movements. For 

example, CNNs excel at feature extraction from time-

series data, while RNNs, particularly Long Short-Term 

Memory (LSTM) networks, are adept at capturing 

temporal correlations [4]. 

This study presents a deep learning-based approach for 

HAR and fall detection using IMU sensor data from the 

UP-Fall Detection Dataset. We introduce three novel 

models-MSRLSTM, MSRLSTM-Refined, and MSR-

MultiHeadAttention designed to leverage temporal 

dynamics and discriminative features in motion signals. 

These models address challenges in computational 

efficiency and generalization for low-frequency, multimo-

dal IMU data. MSRLSTM-Refined optimizes the original 

architecture with a refined multilayer perceptron and 

dropout regularization, while MSR-MultiHeadAttention 

incurporates a Multi-Head Attention mechanism to enhan-

ce temporal modeling. 

2. Related works 

2.1. UP-Fall detection dataset: a multimodal approach 

The UP-Fall Detection Dataset is a publicly available 

multimodal dataset designed to advance research in HAR 

and fall detection. Researchers collected the dataset from 

17 healthy young adults (9 male and 8 female), aged 18–

24 years, with an average height of 1.66 m and weight of 

66.8 kg. Participants performed 11 activities, comprising 6 

daily living activities (walking, standing, sitting, picking 

up an object, jumping, and laying) and 5 types of falls 
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(falling forward using hands, falling forward using knees, 

falling backwards, falling sideward, and falling sitting in 

an empty chair). Each activity was repeated three times, 

resulting in 33 activity instances per participant [6]. The 

dataset is multimodal, integrating data from: 

- Wearable Sensors: Five IMUs positioned at the left 

wrist, under the neck, right pocket, middle waist, and left 

ankle, each providing 3-axis accelerometer and 3-axis 

gyroscope data. 

- Ambient Sensors: Six infrared sensors to detect 

presence and motion within the environment. 

- Vision Devices: Two cameras (RGB and depth) to 

capture visual information of the activities. 

The dataset totals approximately 850 GB, encompass-

ing 296,364 samples collected at an average sampling rate 

of 18.4 Hz. It provides both raw sensor data and pre-

extracted features, making it versatile for various machine 

learning and deep learning approaches [6]. The authors 

conducted extensive experiments on various data fusion 

strategies, employing different models with three different 

window sizes: 1 second, 2 seconds, and 3 seconds. These 

experiments provide a comprehensive overview of the 

importance of selecting appropriate input data, machine 

learning models, and window sizes. Notably, using only 

IMU data still yielded promising results, achieving an  

F1-score of up to 70.31 ± 1.48 (%). 

2.2. Combining residual and LSTM recurrent networks 

for transportation mode detection using multimodal 

sensors integrated in smartphones 

Yu et al. [7] proposed the Multimodal Sensor Residual 

LSTM (MSRLSTM) model for transportation mode 

detection using multimodal sensor data from smartphones, 

including accelerometers, gyroscopes, magnetometers, and 

pressure. The MSRLSTM model combines residual 

learning with LSTM recurrent networks to effectively 

capture spatial and temporal dependencies in sensor data. 

The residual blocks extract high-level spatial features from 

raw sensor inputs, while the LSTM layers model temporal 

sequences, enabling the identification of complex patterns 

in activities such as walking, cycling, and driving. The 

designed MSRLSTM architecture is shown in Figure 1. 

 

Figure 1. The architecture of the MSRLSTM model [7] 

Evaluated on the SHL dataset, the model achieves an 

accuracy of 98.27%, outperforming standalone CNN and 

LSTM models by leveraging the complementary strengths 

of both architectures. The study emphasizes the importance 

of multimodal sensor fusion for robust activity recognition 

but does not address fall detection explicitly. While the 

MSRLSTM model is computationally intensive, its 

architecture inspires our proposed work, which adapts 

similar residual and recurrent structures for fall detection 

using IMU data from the UP-Fall dataset, optimizing for 

lower computational overhead. 

The MSRLSTM model’s success in transportation 

mode detection inspires our proposed models, which adapt 

its architecture for fall detection using the UP-Fall 

Detection Dataset, as described in the following sections. 

3. Methodology 

3.1. MSRLSTM-Refined model 

The MSRLSTM-Refined model inherits the residual 

block structure and LSTM layers from Yu et al. [7]. 

However, we introduce several novel modifications: (1) an 

expanded input layer to accommodate five IMU sensors, 

increasing input dimensions five-fold (Ankle, Right 

Pocket, Belt, Neck, and Wrist); (2) a refined MLP with 

decreasing unit sizes to reduce computational complexity; 

and (3) a dropout rate of 0.3 to prevent overfitting. These 

changes address the lower sampling rate (18.4 Hz) and 

multimodal nature of the UP-Fall Detection Dataset. 

Unlike the 100 Hz SHL dataset used by Yu et al. for 

transportation mode detection, the MSRLSTM-Refined 

model is optimized for human activity recognition and fall 

detection using the UP-Fall Detection Dataset. The model 

architecture was refined as follows: 

- Input Layer: The input layer processes data from five 

IMU sensors, each providing 3-axis accelerometer and  

3-axis gyroscope signals, resulting in a five-fold increase 

in input dimensions compared to the original MSRLSTM 

model designed for the 100 Hz SHL dataset. For a window 

of 100 samples (approximately 5 seconds at 18.4 Hz), the 

input shape is [100,5 × 6], where 5 represents the number 

of sensors and 6 represents the accelerometer and 

gyroscope axes. 

- Residual Blocks and Convolutional Layer: The 

architecture comprises four residual blocks with filter sizes 

([64, 128, 128, 128]) and kernel sizes ([3, 2, 2, 4]). Each 

block uses a pooling size of 2, a filter size of 3, and a stride 

of 4 to extract robust spatial features while mitigating 

vanishing gradients. The residual connection is defined as: 

𝑦 = 𝐹(𝑥, 𝑊𝑖) + 𝑥 ,   (1) 

where 𝑥 is the input to the block, 𝐹(𝑥, 𝑊𝑖) is the residual 

function (two convolutional layers with ReLU activation), 

and 𝑦 is the output. Each convolutional layer within a block 

is computed as: 

𝑧 = σ(𝑊 ∗ 𝑥 + 𝑏),    (2) 

where 𝑊 is the convolutional filter, 𝑏 is the bias, and σ is the 

ReLU activation function (σ(𝑧) = max(0, 𝑧)). A subsequent 

convolutional layer with 32 filters and a kernel size of  

3 combines spatial features (see Figure 2 and Figure 3). 
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Figure 2. Acc-Residual-CNN block 

 

Figure 3. Gyp-Residual-CNN block 

- LSTM Layers: Three LSTM layers with units ([256, 

36, 128]) model temporal dependencies. The increased unit 

count in the first layer accommodates the expanded input 

dimensions. The LSTM cell updates are defined as: 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),   (3) 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),   (4) 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜),   (5) 

𝑐𝑡 = 𝑓𝑡 ⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐),  (6) 

ℎ𝑡 = 𝑜𝑡 ⋅ tanh(𝑐𝑡),    (7) 

where 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget, input, and output gates, 

𝑐𝑡 is the cell state, ℎ𝑡 is the hidden state, 𝑥𝑡 is the input at 

time t, (W) and (b) are weights and biases, and σ is the 

sigmoid function. These layers capture temporal patterns 

in the IMU data. 

- The MLP consists of dense layers with units ([256, 

128, 64, 7]), replacing the original increasing unit structure 

([128, 256, 512, 1024, 8]) to reduce computational 

complexity while maintaining discriminative power for the 

seven activity classes (six daily activities and one fall type). 

The output is computed as: 

𝑦̂ = softmax(𝑊 ⋅ ℎ + 𝑏),     (8) 

where ℎ is the output from the final LSTM layer, 𝑊 and 𝑏 

are the weights and bias of the final dense layer, and 𝑦̂ is 

the predicted probability distribution over the seven 

classes. A dropout rate of 0.3 is applied to the dense layers 

to prevent overfitting. 

 

3.2. MSR-MultiHeadAttention model 

The MSR-MultiHeadAttention model builds on the 

MSRLSTM-Refined architecture by replacing LSTM 

layers with a Multi-Head Attention mechanism (Figure 4), 

a novel contribution inspired by Transformer architectures. 

This change enhances the model’s ability to capture long-

range temporal dependencies, addressing the limitations of 

LSTM layers for low-frequency, multimodal IMU data. 

This model is specifically designed to handle the 

characteristics of the UP-Fall Detection Dataset, which 

differs from the original dataset used for the original 

MSRLSTM model. 

The original MSRLSTM model processed IMU sensor 

data sampled at 100Hz, whereas the UP-Fall dataset 

provides data at a lower and less stable sampling frequency 

of approximately 18-21Hz. Additionally, integrating data 

from five IMU sensors (Ankle, Right Pocket, Belt, Neck, 

and Wrist) poses challenges for LSTM layers, which 

struggle to model long-range dependencies across large, 

multimodal datasets efficiently. To overcome these issues, 

we adopt a Multi-Head Attention mechanism to ensure 

robust temporal sequence learning. The Multi-Head 

Attention mechanism uses 8 heads, each with a dimension 

of 64, to capture diverse temporal patterns across the five 

IMU sensors. This configuration was selected based on 

empirical experiments showing improved accuracy over 4 

or 16 heads. The attention mechanism’s scaling factor 

normalizes the dot product to prevent large values, 

ensuring stable training. The attention mechanism for a 

single head is defined as: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉,  (9) 

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices 

derived from the input sequence, and 𝑑𝑘 = 64 is the 

dimension of each head. The scaling factor √𝑑𝑘 normalizes 

the dot product to ensure stable training. For multiple 

heads, the mechanism is: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , head8)𝑊𝑂 ,  
(10) 

head𝑖 = Attention(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉),  (11) 

where 𝑊𝑖
𝑄

, 𝑊𝑖
𝐾 , and 𝑊𝑖

𝑉 are the weight matrices for the 𝑖𝑡ℎ 

head, and 𝑊𝑂 is the output projection matrix. This 

configuration allows the model to focus on critical 

temporal features, improving discrimination of activities 

like “falling” and “laying”. 

4. Experimental results 

4.1. Dataset and parameter setting 

In this paper, we utilize the UP-Fall Detection Dataset, 

a comprehensive multimodal dataset designed to facilitate 

research in HAR and fall detection [6]. This dataset is 

particularly suitable for our study due to its inclusion of 

data from wearable IMUs, which align with our focus on 

developing efficient, real-time fall detection systems using 

IMU sensor data.
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Figure 4. The architecture of our proposed MSR-MultiHeadAttention model

For this study, we focus exclusively on the IMU sensor 

data from the five wearable sensors, as they are most 

relevant to our proposed models and are intended to 

develop lightweight, wearable-based solutions. To stream-

line the classification task and focus on distinguishing falls 

from non-fall activities, we consolidate the five fall-related 

activities into a single “falling” class. The resulting 

activity classes are presented in the following Table 1. 

Table 1. Activities performed by the subject after combining all 

the falling classes 

Activity ID Description Duration (s) 

1 Falling 10 

2 Walking 60 

3 Standing 60 

4 Sitting 60 

5 Picking up an object 10 

6 Jumping 30 

7 Laying 60 

For model evaluation, we adopt the dataset’s original 

train-test split to ensure consistency with prior studies and 

fair performance comparisons. The split is as follows: 

- Train Set: Data from subjects 1, 3, 4, 7, and 10–14, 

comprising 70% of the dataset. 

- Test Set: Data from subjects 15–17, comprising the 

remaining 30%. 

The dataset authors trained the MSRLSTM model and 

evaluated the detection results by using windows of 1-

second duration without overlapping [6]. However, we 

conducted a detailed analysis of the dataset and determined 

that a 1-second window is insufficient to capture the full 

context of certain activities, particularly falls, which 

typically occur within 2–4 seconds. Using a short window 

risk mislabeling segments (e.g., initial standing segments 

in a 10-second fall sequence being classified as “falling”). 

To address this, we select a window size of 100 samples 

(approximately 5 seconds at 18.4 Hz) with a 50% overlap 

for the training data to ensure sufficient temporal context. 

For the test data, we are also using a window size of 100 

samples, but without overlap. 

4.2. Comparative results 

To evaluate the effectiveness of our proposed models, 

we compare the performance of the original MSRLSTM 

model, the MSRLSTM-Refined model, and the MSR-

MultiHeadAttention model on the UP-Fall Detection 

Dataset. The original MSRLSTM model, inspired by Yu 

et al. [7], serves as a baseline to highlight the 

improvements introduced by our architectural 

modifications. The MSR-LSTM-Refined model 

optimizes the original architecture for the UP-Fall 

dataset’s multimodal IMU data, while the MSR-

MultiHeadAttention model incorporates a Multi-Head 

Attention mechanism to enhance temporal sequence 

modeling. These comparisons demonstrate the necessity 

of tailored model designs to address the challenges of low 

sampling rates (approximately 18.4 Hz) and the 

integration of data from five IMU sensors (left wrist, 

under the neck, right pocket, middle waist, and left ankle). 

The models are evaluated on the test set (subjects  

15–17), using a window size of 100 samples 

(approximately 5 seconds) with non-overlapping windows. 

For training, a 50% overlap is applied to capture sufficient 

temporal context, as discussed in Section 4.1. Performance 

is assessed using accuracy, precision, recall, and F1-score. 

The performance metrics for the three models are presented 

in Table 2, demonstrating the improvements achieved by 

our proposed architectures over the baseline. The 

MSRLSTM-Refined model enhances computational 

efficiency, while the MSR-MultiHeadAttention model 

leverages attention mechanisms to improve temporal 

modeling, resulting in superior accuracy and precision for 

fall detection tasks. Additionally, the models are trained 

using the categorical cross-entropy loss function, suitable 

for multi-class classification: 

𝐿 = − ∑ 𝑦𝑖
𝐶
𝑖=1 log(𝑦𝑖̂),     (12) 

where C is the number of classes (7 in this study), 𝑦𝑖  is the 

true label for class 𝑖, and 𝑦𝑖̂ is the predicted probability for 

class (i). Dropout regularization (rate of 0.3) is applied to 

prevent overfitting, particularly in the MSRLSTM-Refined 

and MSR-MultiHeadAttention models. 
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4.3. Analysis of comparative results 

The results in Table 2 indicate that both the 

MSRLSTM-Refined and MSR-MultiHeadAttention mo-

dels outperform the original MSRLSTM model across 

most metrics, validating the effectiveness of our proposed 

optimizations. Below is the detailed analysis of the results. 

MSRLSTM-Refined: The MSRLSTM-Refined mo-

del, optimized for the UP-Fall dataset, shows a notable 

improvement with an accuracy of 93.91%. The modifica-

tions, including an expanded input layer to handle five 

IMU sensors, a refined multilayer perceptron (MLP) with 

decreasing unit sizes, and a dropout rate of 0.3, enhance the 

model’s ability to process multimodal data while reducing 

computational overhead. The slight decrease in precision 

(90.19%) compared to the baseline suggests a trade-off in 

favor of improved recall, indicating better detection of fall 

events. This model demonstrates that targeted architectural 

adjustments can significantly improve performance on 

specific datasets without requiring entirely new designs. 

 

Figure 5. Training/validation accuracy and loss for  

MSRLSTM-Refined model 

The loss function trend (Figure 5) shows that the 

MSRLSTM-Refined model converges steadily over 30 

epochs, with no significant signs of overfitting. Both 

training and validation losses decrease consistently, 

indicating robust learning and generalization. This stability 

is attributed to the refined MLP structure and dropout 

regularization, which mitigate the overfitting issues 

observed in the baseline model. 

The confusion matrix (Figure 6) reveals improved 

performance over the baseline, particularly in distinguish-

ing “falling” and “walking” activities, with classification 

accuracies approaching 99-100%. However, the model still 

exhibits confusion between “picking up an object” and 

“standing”, as well as occasional misclassification of 

“laying” as “falling”. These errors are understandable, as 

“picking up an object” and “standing” involve similar 

upper-body movements, while “laying” and “falling” 

share transient motion patterns during the initial descent. 

These findings suggest that while the MSRLSTM-Refined 

model improves overall performance, further enhance-

ments in feature extraction are needed to address activities 

with overlapping motion characteristics. 

MSR-MultiHeadAttention: The MSR-MultiHead-

Attention model achieves the highest performance, with an 

accuracy of 95.49%, a precision of 96.00%, and an F1 

score of 91.08%. Based on MSRLSTM-Refined and by 

replacing LSTM layers with a Multi-Head Attention 

mechanism, inspired by Transformer architectures, the 

model effectively captures long-range temporal dependen-

cies and focuses on critical motion patterns. This is 

particularly beneficial for the UP-Fall dataset’s lower 

sampling rate and multimodal inputs, which challenge 

traditional recurrent architectures. The model’s ability to 

prioritize relevant time steps contributes to its superior 

precision, reducing false positives in fall detection. 

However, its slightly lower recall (89.63%) compared to 

MSRLSTM-Refined suggests that it may miss some 

events, though its overall balance of metrics indicates 

robust performance. With approximately 22 million 

parameters, the model is computationally intensive but 

converges faster, requiring only 20 epochs due to the 

efficiency of the attention mechanism. 

 

Figure 6. Confusion matrix for MSRLSTM-Refined model 

 

Figure 7. Training/validation accuracy and loss for  

MSR-MultiHeadAttention model 

The loss function trend (Figure 7) indicates early 

convergence at epoch 6, with both training and validation 

losses stabilizing thereafter. The rapid convergence and 

lack of overfitting highlight the Multi-Head Attention 
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mechanism’s ability to efficiently learn complex patterns 

in the dataset. Model performance is consistent across 

epochs, indicating strong test generalization. 

Table 2. Comparison of model performance 

Model Epoch 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

MSRLSTM 30 92.10 91.97 89.96 90.38 

MSRLSTM-

Refined 
30 93.91 90.19 91.33 90.17 

MSR-

MultiHeadAtte

ntion 

20 95.49 96.00 89.63 91.08 

 

Figure 8. Confusion matrix for MSR-MultiHeadAttention model 

The confusion matrix (Figure 8) shows that the MSR-

MultiHeadAttention model significantly improves the 

differentiation between “falling” and “laying” compared 

to the MSRLSTM and MSRLSTM-Refined models. This 

improvement is attributed to the attention mechanism’s 

ability to focus on key temporal features, such as the rapid 

acceleration changes during falls. This improvement is 

attributed to the attention mechanism’s ability to focus on 

key temporal features, such as the rapid acceleration 

changes during falls. However, the model exhibits a trade-

off, with increased misclassification of “picking up an 

object” as “standing” compared to the MSRLSTM and 

MSRLSTM-Refined models. This suggests that while the 

attention mechanism enhances the detection of dynamic 

activities, it may overemphasize certain motion patterns, 

leading to errors in activities with subtle differences. 

5. Conclusion 

This study presents a comprehensive evaluation of 

three deep learning models-MSRLSTM, MSRLSTM-

Refined, and MSR-MultiHeadAttention for HAR and fall 

detection using IMU sensor data from the UP-Fall 

Detection Dataset. The results demonstrate that our 

proposed models, MSRLSTM-Refined and MSR-

MultiHeadAttention, significantly outperform the baseline 

MSRLSTM model, achieving accuracies of 93.91% and 

95.49%, respectively, compared to 92.10% for the 

baseline. These improvements validate the effectiveness of 

our architectural optimizations, including the refined MLP 

structure and dropout regularization in MSRLSTM-

Refined, and the Multi-Head Attention mechanism in 

MSR-MultiHeadAttention. 

The MSR-MultiHeadAttention model stands out for its 

superior accuracy and precision, driven by capturing long-

range dependencies and emphasizing key motion. This 

makes it particularly suitable for fall detection, where 

distinguishing falls from similar activities like “laying” is 

crucial. However, both models face challenges in 

distinguishing activities with similar motion patterns, such 

as “picking up an object” and “standing”, highlighting the 

need for enhanced feature extraction techniques. 

This work advances wearable-based HAR and fall 

detection systems for remote health monitoring. Despite 

the UP-Fall Detection Dataset using data from young 

adults, future research will explore frequency-domain 

features and additional sensor modalities to improve 

discrimination of similar activities and ensure robustness 

across diverse populations. 
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