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Abstract - Human activity recognition (HAR) and fall detection
play crucial roles in healthcare for the elderly and remote
observation. This research presents three innovative deep
learning models - MSRLSTM, MSRLSTM - Refined, and MSR
- MultiHeadAttention-designed for HAR and fall detection by
utilizing Inertial Measurement Unit data from the UP-Fall
Detection Dataset. By employing convolutional neural networks,
residual learning, and multi-head attention, these models
effectively capture complex temporal and spatial patterns present
in multimodal sensor data. When evaluated on the UP-Fall
Detection Dataset, MSRLSTM-Refined and MSR -
MultiHead Attention achieved accuracies of 93.91% and 95.49%,
respectively, outpacing the baseline MSRLSTM (92.10%). The
MSR-MultiHeadAttention model stands out due to its precision
and temporal modeling capabilities, while MSRLSTM-Refined
delivers computational efficiency suitable for wearable devices.
Although there are challenges in differentiating similar motion
patterns, these models demonstrate significant potential for real-
time fall detection, contributing to remote healthcare monitoring
solutions and related fields.

Key words - Human activity recognition; fall detection; deep
learning; inertial measurement units; UP-Fall detection dataset;
convolutional neural networks; multi-head attention; residual
learning; elderly healthcare; wearable sensors.

1. Introduction

Inrecent years, with the rapid advancement of Artificial
Intelligence (AI) and Deep Learning (DL), along with the
growing aging population, Human Activity Recognition
(HAR) has gained increasing attention and significant
development, especially due to its essential applications in
fields such as work safety and remote healthcare
monitoring. HAR involves the automatic identification and
classification of human actions using data from diverse
sources, including wearable sensors, smartphones, cameras
(RGB and depth), radar, and multimodal devices [1]. This
field has a significant role not only in ensuring workplace
safety by identifying hazardous activities but also in smart
home activity monitoring, elderly healthcare, security
surveillance, sports analytics, and human-robot interaction
[2]. Among these, fall detection and activity classification
systems are increasingly vital due to the aging global
population and the growing need for remote health
supervision. Additionally, falls are a leading cause of
injury and mortality among the elderly, resulting in over
37.3 million severe injuries and 684,000 deaths annually
worldwide, making it the second leading cause of
unintentional injury death, after road traffic injuries [3].

Most of the methods and research in HAR focus on
prediction based on cameras and Inertial Measurement
Units (IMUs). Although showing positive results, the
camera approach also has some disadvantages. Not only is
the installation costly, but cameras are also ineffective in
areas where visual coverage is not available. One example
is the study of a real-time fall detection model using
Uniformer with RGB video input, processed in small
segments. By using a lightweight network and sliding
window method, the model achieves good performance
while maintaining low latency [5].

In contrast, IMU sensors offer a more practical
alternative, as they provide a low-cost, non-intrusive, and
energy-efficient solution, making them ideal for a wide
range of applications. However, translating raw sensor data
into meaningful insights requires sophisticated algorithms
capable of learning complex temporal patterns and
distinguishing subtle differences in human movements. For
example, CNNs excel at feature extraction from time-
series data, while RNNs, particularly Long Short-Term
Memory (LSTM) networks, are adept at capturing
temporal correlations [4].

This study presents a deep learning-based approach for
HAR and fall detection using IMU sensor data from the
UP-Fall Detection Dataset. We introduce three novel
models-MSRLSTM, MSRLSTM-Refined, and MSR-
MultiHeadAttention designed to leverage temporal
dynamics and discriminative features in motion signals.
These models address challenges in computational
efficiency and generalization for low-frequency, multimo-
dal IMU data. MSRLSTM-Refined optimizes the original
architecture with a refined multilayer perceptron and
dropout regularization, while MSR-MultiHeadAttention
incurporates a Multi-Head Attention mechanism to enhan-
ce temporal modeling.

2. Related works
2.1. UP-Fall detection dataset: a multimodal approach

The UP-Fall Detection Dataset is a publicly available
multimodal dataset designed to advance research in HAR
and fall detection. Researchers collected the dataset from
17 healthy young adults (9 male and 8 female), aged 18—
24 years, with an average height of 1.66 m and weight of
66.8 kg. Participants performed 11 activities, comprising 6
daily living activities (walking, standing, sitting, picking
up an object, jumping, and laying) and 5 types of falls
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(falling forward using hands, falling forward using knees,
falling backwards, falling sideward, and falling sitting in
an empty chair). Each activity was repeated three times,
resulting in 33 activity instances per participant [6]. The
dataset is multimodal, integrating data from:

- Wearable Sensors: Five IMUs positioned at the left
wrist, under the neck, right pocket, middle waist, and left
ankle, each providing 3-axis accelerometer and 3-axis
gyroscope data.

- Ambient Sensors: Six infrared sensors to detect
presence and motion within the environment.

- Vision Devices: Two cameras (RGB and depth) to
capture visual information of the activities.

The dataset totals approximately 850 GB, encompass-
ing 296,364 samples collected at an average sampling rate
of 18.4 Hz. It provides both raw sensor data and pre-
extracted features, making it versatile for various machine
learning and deep learning approaches [6]. The authors
conducted extensive experiments on various data fusion
strategies, employing different models with three different
window sizes: 1 second, 2 seconds, and 3 seconds. These
experiments provide a comprehensive overview of the
importance of selecting appropriate input data, machine
learning models, and window sizes. Notably, using only
IMU data still yielded promising results, achieving an
Fl-score of up to 70.31 £ 1.48 (%).

2.2. Combining residual and LSTM recurrent networks
for transportation mode detection using multimodal
sensors integrated in smartphones

Yu et al. [7] proposed the Multimodal Sensor Residual
LSTM (MSRLSTM) model for transportation mode
detection using multimodal sensor data from smartphones,
including accelerometers, gyroscopes, magnetometers, and
pressure. The MSRLSTM model combines residual
learning with LSTM recurrent networks to effectively
capture spatial and temporal dependencies in sensor data.
The residual blocks extract high-level spatial features from
raw sensor inputs, while the LSTM layers model temporal
sequences, enabling the identification of complex patterns
in activities such as walking, cycling, and driving. The
designed MSRLSTM architecture is shown in Figure 1.
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Figure 1. The architecture of the MSRLSTM model [7]

Evaluated on the SHL dataset, the model achieves an
accuracy of 98.27%, outperforming standalone CNN and
LSTM models by leveraging the complementary strengths
of both architectures. The study emphasizes the importance
of multimodal sensor fusion for robust activity recognition
but does not address fall detection explicitly. While the
MSRLSTM model is computationally intensive, its
architecture inspires our proposed work, which adapts
similar residual and recurrent structures for fall detection
using IMU data from the UP-Fall dataset, optimizing for
lower computational overhead.

The MSRLSTM model’s success in transportation
mode detection inspires our proposed models, which adapt
its architecture for fall detection using the UP-Fall
Detection Dataset, as described in the following sections.

3. Methodology
3.1. MSRLSTM-Refined model

The MSRLSTM-Refined model inherits the residual
block structure and LSTM layers from Yu et al. [7].
However, we introduce several novel modifications: (1) an
expanded input layer to accommodate five IMU sensors,
increasing input dimensions five-fold (Ankle, Right
Pocket, Belt, Neck, and Wrist); (2) a refined MLP with
decreasing unit sizes to reduce computational complexity;
and (3) a dropout rate of 0.3 to prevent overfitting. These
changes address the lower sampling rate (18.4 Hz) and
multimodal nature of the UP-Fall Detection Dataset.
Unlike the 100 Hz SHL dataset used by Yu et al. for
transportation mode detection, the MSRLSTM-Refined
model is optimized for human activity recognition and fall
detection using the UP-Fall Detection Dataset. The model
architecture was refined as follows:

- Input Layer: The input layer processes data from five
IMU sensors, each providing 3-axis accelerometer and
3-axis gyroscope signals, resulting in a five-fold increase
in input dimensions compared to the original MSRLSTM
model designed for the 100 Hz SHL dataset. For a window
of 100 samples (approximately 5 seconds at 18.4 Hz), the
input shape is [100,5 X 6], where 5 represents the number
of sensors and 6 represents the accelerometer and
gyroscope axes.

- Residual Blocks and Convolutional Layer: The
architecture comprises four residual blocks with filter sizes
([64, 128, 128, 128]) and kernel sizes ([3, 2, 2, 4]). Each
block uses a pooling size of 2, a filter size of 3, and a stride
of 4 to extract robust spatial features while mitigating
vanishing gradients. The residual connection is defined as:

y=FxW)+x , 6]
where x is the input to the block, F(x, W;) is the residual
function (two convolutional layers with ReLU activation),

and y is the output. Each convolutional layer within a block
is computed as:

z=0o(W xx+b), 2
where W is the convolutional filter, b is the bias, and o is the
ReLU activation function (¢(z) = max(0, z)). A subsequent

convolutional layer with 32 filters and a kernel size of
3 combines spatial features (see Figure 2 and Figure 3).
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Figure 3. Gyp-Residual-CNN block
- LSTM Layers: Three LSTM layers with units ([256,
36, 128]) model temporal dependencies. The increased unit
count in the first layer accommodates the expanded input
dimensions. The LSTM cell updates are defined as:

fe= G(W} “[he—1,xe] + bf)a (3)
ip = o(W; - [he—q, ] + by), 4)
0 = o(W, - [he—1, x¢] + bo), (5)
¢t = fy - ¢oq +ip - tanh(W, - [he—q, X ] + be),  (6)
h; = o, - tanh(c,), (7

where f, i;, and o, are the forget, input, and output gates,
c; is the cell state, h, is the hidden state, x; is the input at
time t, (W) and (b) are weights and biases, and o is the
sigmoid function. These layers capture temporal patterns
in the IMU data.

- The MLP consists of dense layers with units ([256,
128, 64, 7)), replacing the original increasing unit structure
([128, 256, 512, 1024, 8]) to reduce computational
complexity while maintaining discriminative power for the
seven activity classes (six daily activities and one fall type).
The output is computed as:

¥ = softmax(W - h + b), (8)
where h is the output from the final LSTM layer, W and b
are the weights and bias of the final dense layer, and ¥ is
the predicted probability distribution over the seven
classes. A dropout rate of 0.3 is applied to the dense layers
to prevent overfitting.

3.2. MSR-MultiHeadAttention model

The MSR-MultiHeadAttention model builds on the
MSRLSTM-Refined architecture by replacing LSTM
layers with a Multi-Head Attention mechanism (Figure 4),
anovel contribution inspired by Transformer architectures.
This change enhances the model’s ability to capture long-
range temporal dependencies, addressing the limitations of
LSTM layers for low-frequency, multimodal IMU data.
This model is specifically designed to handle the
characteristics of the UP-Fall Detection Dataset, which
differs from the original dataset used for the original
MSRLSTM model.

The original MSRLSTM model processed IMU sensor
data sampled at 100Hz, whereas the UP-Fall dataset
provides data at a lower and less stable sampling frequency
of approximately 18-21Hz. Additionally, integrating data
from five IMU sensors (Ankle, Right Pocket, Belt, Neck,
and Wrist) poses challenges for LSTM layers, which
struggle to model long-range dependencies across large,
multimodal datasets efficiently. To overcome these issues,
we adopt a Multi-Head Attention mechanism to ensure
robust temporal sequence learning. The Multi-Head
Attention mechanism uses 8 heads, each with a dimension
of 64, to capture diverse temporal patterns across the five
IMU sensors. This configuration was selected based on
empirical experiments showing improved accuracy over 4
or 16 heads. The attention mechanism’s scaling factor
normalizes the dot product to prevent large values,
ensuring stable training. The attention mechanism for a
single head is defined as:

T
Attention(Q, K, V) = softmax (%) v, 9)

where Q, K, and V are the query, key, and value matrices
derived from the input sequence, and d; = 64 is the
dimension of each head. The scaling factor ./ d; normalizes
the dot product to ensure stable training. For multiple
heads, the mechanism is:

MultiHead(Q, K, V) = Concat(head,, ..., headg) W?,
(10)
(1)
where WiQ, WK, and W/ are the weight matrices for the i,
head, and W° is the output projection matrix. This
configuration allows the model to focus on critical

temporal features, improving discrimination of activities
like “falling” and “laying”.

head; = Attention(QWiQ, Kwk,vw}),

4. Experimental results
4.1. Dataset and parameter setting

In this paper, we utilize the UP-Fall Detection Dataset,
a comprehensive multimodal dataset designed to facilitate
research in HAR and fall detection [6]. This dataset is
particularly suitable for our study due to its inclusion of
data from wearable IMUs, which align with our focus on
developing efficient, real-time fall detection systems using
IMU sensor data.
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Figure 4. The architecture of our proposed MSR-MultiHeadAttention model

For this study, we focus exclusively on the IMU sensor
data from the five wearable sensors, as they are most
relevant to our proposed models and are intended to
develop lightweight, wearable-based solutions. To stream-
line the classification task and focus on distinguishing falls
from non-fall activities, we consolidate the five fall-related
activities into a single “falling” class. The resulting
activity classes are presented in the following Table 1.

Table 1. Activities performed by the subject after combining all

the falling classes
Activity ID Description Duration (s)
1 Falling 10
2 Walking 60
3 Standing 60
4 Sitting 60
5 Picking up an object 10
6 Jumping 30
7 Laying 60

For model evaluation, we adopt the dataset’s original
train-test split to ensure consistency with prior studies and
fair performance comparisons. The split is as follows:

- Train Set: Data from subjects 1, 3, 4, 7, and 10-14,
comprising 70% of the dataset.

- Test Set: Data from subjects 15—17, comprising the
remaining 30%.

The dataset authors trained the MSRLSTM model and
evaluated the detection results by using windows of 1-
second duration without overlapping [6]. However, we
conducted a detailed analysis of the dataset and determined
that a 1-second window is insufficient to capture the full
context of certain activities, particularly falls, which
typically occur within 2—4 seconds. Using a short window
risk mislabeling segments (e.g., initial standing segments
in a 10-second fall sequence being classified as “falling ).
To address this, we select a window size of 100 samples
(approximately 5 seconds at 18.4 Hz) with a 50% overlap
for the training data to ensure sufficient temporal context.
For the test data, we are also using a window size of 100
samples, but without overlap.

4.2. Comparative results

To evaluate the effectiveness of our proposed models,
we compare the performance of the original MSRLSTM
model, the MSRLSTM-Refined model, and the MSR-
MultiHeadAttention model on the UP-Fall Detection
Dataset. The original MSRLSTM model, inspired by Yu

et al. [7], serves as a baseline to highlight the
improvements introduced by our architectural
modifications.  The  MSR-LSTM-Refined model

optimizes the original architecture for the UP-Fall
dataset’s multimodal IMU data, while the MSR-
MultiHeadAttention model incorporates a Multi-Head
Attention mechanism to enhance temporal sequence
modeling. These comparisons demonstrate the necessity
of tailored model designs to address the challenges of low
sampling rates (approximately 18.4 Hz) and the
integration of data from five IMU sensors (left wrist,
under the neck, right pocket, middle waist, and left ankle).

The models are evaluated on the test set (subjects
15-17), using a window size of 100 samples
(approximately 5 seconds) with non-overlapping windows.
For training, a 50% overlap is applied to capture sufficient
temporal context, as discussed in Section 4.1. Performance
is assessed using accuracy, precision, recall, and F1-score.
The performance metrics for the three models are presented
in Table 2, demonstrating the improvements achieved by
our proposed architectures over the baseline. The
MSRLSTM-Refined model enhances computational
efficiency, while the MSR-MultiHeadAttention model
leverages attention mechanisms to improve temporal
modeling, resulting in superior accuracy and precision for
fall detection tasks. Additionally, the models are trained
using the categorical cross-entropy loss function, suitable
for multi-class classification:

L ==X, yilog®, (12)
where C is the number of classes (7 in this study), y; is the
true label for class i, and ¥, is the predicted probability for
class (i). Dropout regularization (rate of 0.3) is applied to
prevent overfitting, particularly in the MSRLSTM-Refined
and MSR-MultiHead Attention models.
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4.3. Analysis of comparative results

The results in Table 2 indicate that both the
MSRLSTM-Refined and MSR-MultiHeadAttention mo-
dels outperform the original MSRLSTM model across
most metrics, validating the effectiveness of our proposed
optimizations. Below is the detailed analysis of the results.

MSRLSTM-Refined: The MSRLSTM-Refined mo-
del, optimized for the UP-Fall dataset, shows a notable
improvement with an accuracy of 93.91%. The modifica-
tions, including an expanded input layer to handle five
IMU sensors, a refined multilayer perceptron (MLP) with
decreasing unit sizes, and a dropout rate of 0.3, enhance the
model’s ability to process multimodal data while reducing
computational overhead. The slight decrease in precision
(90.19%) compared to the baseline suggests a trade-off in
favor of improved recall, indicating better detection of fall
events. This model demonstrates that targeted architectural
adjustments can significantly improve performance on
specific datasets without requiring entirely new designs.
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Figure 5. Training/validation accuracy and loss for
MSRLSTM-Refined model

The loss function trend (Figure 5) shows that the
MSRLSTM-Refined model converges steadily over 30
epochs, with no significant signs of overfitting. Both
training and validation losses decrease consistently,
indicating robust learning and generalization. This stability
is attributed to the refined MLP structure and dropout
regularization, which mitigate the overfitting issues
observed in the baseline model.

The confusion matrix (Figure 6) reveals improved
performance over the baseline, particularly in distinguish-
ing “falling” and “walking” activities, with classification
accuracies approaching 99-100%. However, the model still
exhibits confusion between “picking up an object” and
“standing”, as well as occasional misclassification of
“laying” as ‘falling”. These errors are understandable, as
“picking up an object” and “standing” involve similar
upper-body movements, while “laying” and “falling”
share transient motion patterns during the initial descent.
These findings suggest that while the MSRLSTM-Refined
model improves overall performance, further enhance-
ments in feature extraction are needed to address activities
with overlapping motion characteristics.

MSR-MultiHeadAttention: The MSR-MultiHead-
Attention model achieves the highest performance, with an
accuracy of 95.49%, a precision of 96.00%, and an F1
score of 91.08%. Based on MSRLSTM-Refined and by

replacing LSTM layers with a Multi-Head Attention
mechanism, inspired by Transformer architectures, the
model effectively captures long-range temporal dependen-
cies and focuses on critical motion patterns. This is
particularly beneficial for the UP-Fall dataset’s lower
sampling rate and multimodal inputs, which challenge
traditional recurrent architectures. The model’s ability to
prioritize relevant time steps contributes to its superior
precision, reducing false positives in fall detection.
However, its slightly lower recall (89.63%) compared to
MSRLSTM-Refined suggests that it may miss some
events, though its overall balance of metrics indicates
robust performance. With approximately 22 million
parameters, the model is computationally intensive but
converges faster, requiring only 20 epochs due to the
efficiency of the attention mechanism.
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Figure 6. Confusion matrix for MSRLSTM-Refined model
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Figure 7. Training/validation accuracy and loss for
MSR-MultiHeadAttention model
The loss function trend (Figure 7) indicates early
convergence at epoch 6, with both training and validation
losses stabilizing thereafter. The rapid convergence and
lack of overfitting highlight the Multi-Head Attention
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mechanism’s ability to efficiently learn complex patterns
in the dataset. Model performance is consistent across
epochs, indicating strong test generalization.

Table 2. Comparison of model performance

Accuracy Precision Recall F1-score

Model Epoch (%) (%) (%) (%)
MSRLSTM 30 92.10 9197 8996 90.38
MSRLSTM- 30 93.91 90.19 9133 90.17
Refined
MSR-
MultiHeadAtte 20 95.49 96.00 89.63 91.08
ntion
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Figure 8. Confusion matrix for MSR-MultiHeadAttention model

The confusion matrix (Figure 8) shows that the MSR-
MultiHeadAttention model significantly improves the
differentiation between “falling” and “laying” compared
to the MSRLSTM and MSRLSTM-Refined models. This
improvement is attributed to the attention mechanism’s
ability to focus on key temporal features, such as the rapid
acceleration changes during falls. This improvement is
attributed to the attention mechanism’s ability to focus on
key temporal features, such as the rapid acceleration
changes during falls. However, the model exhibits a trade-
off, with increased misclassification of “picking up an
object” as “standing” compared to the MSRLSTM and
MSRLSTM-Refined models. This suggests that while the
attention mechanism enhances the detection of dynamic
activities, it may overemphasize certain motion patterns,
leading to errors in activities with subtle differences.

5. Conclusion

This study presents a comprehensive evaluation of
three deep learning models-MSRLSTM, MSRLSTM-
Refined, and MSR-MultiHeadAttention for HAR and fall
detection using IMU sensor data from the UP-Fall

Detection Dataset. The results demonstrate that our
proposed models, MSRLSTM-Refined and MSR-
MultiHeadAttention, significantly outperform the baseline
MSRLSTM model, achieving accuracies of 93.91% and
95.49%, respectively, compared to 92.10% for the
baseline. These improvements validate the effectiveness of
our architectural optimizations, including the refined MLP
structure and dropout regularization in MSRLSTM-
Refined, and the Multi-Head Attention mechanism in
MSR-MultiHeadAttention.

The MSR-MultiHeadAttention model stands out for its
superior accuracy and precision, driven by capturing long-
range dependencies and emphasizing key motion. This
makes it particularly suitable for fall detection, where
distinguishing falls from similar activities like “/aying” is
crucial. However, both models face challenges in
distinguishing activities with similar motion patterns, such
as “picking up an object” and “standing”, highlighting the
need for enhanced feature extraction techniques.

This work advances wearable-based HAR and fall
detection systems for remote health monitoring. Despite
the UP-Fall Detection Dataset using data from young
adults, future research will explore frequency-domain
features and additional sensor modalities to improve
discrimination of similar activities and ensure robustness
across diverse populations.
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