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Abstract - Efficient and accurate retrieval of medical images 

underpins timely diagnosis and informed clinical decisions. This 

work introduces a novel multi-stage training paradigm designed 

for medical image retrieval. In the first stage, a ConvNeXt model 

pretrained on ImageNet is fine-tuned using Focal Loss to address 

class imbalance. Building on this foundation, the feature space is 

refined with Triplet Margin Loss, where chosen sample triplets 

are used to enhance discriminative learning. Our approach further 

streamlines the retrieval process by applying Global Max 

Pooling, L2 normalization, and Principal Component Analysis 

(PCA) for dimensionality reduction, followed by integration with 

Facebook AI Similarity Search (FAISS) for efficient similarity 

search. Experiments on the ISIC 2017 and COVID-19 chest X-

ray datasets demonstrate that the proposed method achieves 

significant improvements in evaluation metrics, including mean 

Average Precision at 5(mAP@5), Precision at 1 (P@1), and 

Precision at 5 (P@5) 

Key words - Deep Learning; Computer Vision; Medical Image 

Retrieval; Healthcare Applications 

1. Introduction 

Significant advances in machine learning, and deep 

learning in particular, have transformed numerous fields 

over the past few decades. Convolutional Neural Networks 

(CNN) first introduced in the late 1970s [1], and the first 

successful real-world application in hand-written digit 

recognition appearing in 1998 [2]. Studies such as [3] and 

[4] applied Deep Belief Networks and Stacked 

Autoencoders to classify patients with Alzheimer’s disease 

based on brain Magnetic Resonance Imaging (MRI). 

Another study [5] identified anatomical landmarks on the 

surface of the distal femur by processing three independent 

sets of 2D MRI slices. 

Medical image retrieval has also become an important 

area of research. Retrieval methods have shown their 

potential in supporting diagnosis and treatment, helping 

specialists more easily identify objects in medical images. 

This not only saves time, but also improves accuracy in 

disease detection, reduces errors, and helps in clinical 

decision making, such as the studies by Anavi et al. [6] and 

Liu et al. [7], who applied their methods to X-ray image 

databases. Although traditional methods have achieved 

good performance in specific medical scenarios, they often 

do not fully leverage the information on the label during 

training. This leads to a lack of effective utilization of 

unlabeled data, which contributes to the reduced 

performance in medical image retrieval. 

To solve these challenges, this study introduces the 

following methods: 

Multi-Stage Training for Enhanced Feature Learning: 

Based on a pretrained ConvNeXt model, we proposed an 

approach that applies Focal Loss to accurately identify 

similar and dissimilar labels in the case of imbalanced data. 

Subsequently, sample pairs selected based on these labels 

are trained using Triplet Margin Loss, which enhances the 

feature space separability and optimizes the ability to 

discriminate between classes. 

An efficient Image Retrieval system: The image 

retrieval system is designed so that the embedded vectors 

are preprocessed to enhance the retrieval efficiency. 

Experiments on the evaluated datasets: Two medical 

datasets, ISIC 2017 for skin lesions and COVID-19 chest 

X-rays were used to demonstrate performance. 

2. Related Works 

In this section, we organize the relevant work into the 

following key areas: 

2.1. Image retrieval systems 

The basic block diagram of an image retrieval system 

is illustrated in Figure 1. In the retrieval process, images 

are fetched from large-scale databases based on feature 

representations extracted from the image content. Any 

retrieval system typically consists of two stages: the offline 

stage and the online stage. In the offline stage, features are 

extracted from large image collections (used to train the 

system) to build a local feature database. In the online 

stage, similar features are extracted from the query image, 

and a distance metric is computed between the features of 

the query image and those of the database images to assess 

similarity. The images with high or low similarity scores 

are then presented to the user as retrieval results with query 

labels, allowing the model to learn general semantic 

features through classification labels while simultaneously 

optimizing bedding space via metric learning to enhance 

instance-level discrimination. 

 

 

 

 

 

 

 

 

Figure 1. Image retrieval system block diagram 
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2.2. Deep Learning-Based Image Retrieval Methods 

The advancement of deep learning has led to 

breakthroughs in automatic learning feature 

representations from image data. In the context of deep 

learning-based image retrieval, two main training 

approaches are commonly classified as follows: 

2.2.1. Supervised Learning Using Class Labels 

Convolutional neural networks (CNNs) trained for 

image classification - such as disease recognition or 

analysis of anatomical structures - typically employ the 

cross-entropy loss function to optimize class 

discrimination. Thanks to their ability to automatically 

extract features, CNNs have become a crucial tool in many 

computer vision applications. 

Popular architectures such as ResNet [8, 9], which 

utilize skip connections to mitigate gradient vanishing, 

DenseNet [10, 11], which leverages dense connections 

between layers for more effective information flow, and 

ConvNeXt [12, 13], which incorporates improvements 

inspired by Transformers, have demonstrated superior 

performance in label-based image classification tasks. 

Furthermore, the application of the Vision Transformer 

(ViT) architecture [14] to classification tasks has shown 

significant potential, particularly when pretrained on large-

scale datasets like ImageNet, providing general semantic 

features that can be fine-tuned for specific tasks. The 

advancement of deep learning models has opened up new 

directions, especially in medical image analysis and object 

recognition applications. 

2.2.2. Query Label-Based Approach 

Instead of focusing on classification, distance-based 

learning techniques such as Triplet Loss and Contrastive 

Loss are employed to learn an embedding space where 

samples of the same class are pulled closer together, while 

samples of different classes are pushed farther apart. This 

approach is particularly useful in image retrieval, face 

recognition, and data clustering tasks. 

Triplet Loss [15] optimizes the model by learning from 

three samples: an anchor, a positive (same class), and a 

negative (different class). Its objective is to ensure that the 

distance between the anchor and the positive is smaller 

than the distance to the negative by at least a predefined 

margin. In contrast, Contrastive Loss [16, 17] It minimizes 

the distance between positive pairs while ensuring that 

negative pairs are separated by a margin. 

2.2.3. Hybrid Approach Combining Classification and 

Query Labels 

While individual training approaches each have their 

advantages, several recent studies have proposed 

combining classification labels with query labels, allowing 

the model to learn general semantic features through 

classification labels while simultaneously optimizing the 

embedding space via metric learning to enhance instance-

level discrimination. 

Several studies have proposed hybrid loss functions to 

simultaneously optimize both classification and 

representation capabilities for retrieval tasks. For example, 

Histogram Loss by Ustinova and Lempitsky [19] leverages 

the distribution of distances in the embedding space, while 

Multi-Similarity Loss by Wang et al. [20] exploits complex 

relationships among sample pairs to enhance 

representation learning. In addition, Center Loss by Wen et 

al. [21] is considered an effective approach that combines 

classification loss (cross-entropy) with a loss function that 

optimizes the distance in the embedding space. However, 

these methods are applied to natural image data and focus 

mainly on optimizing the embedding distance, with limited 

direct classification capability. 

In this study, we propose a hybrid training approach for 

medical image retrieval that combines Focal Loss and 

Triplet Margin Loss. Focal Loss addresses class imbalance 

by focusing on hard samples, while Triplet Margin Loss 

promotes a discriminative embedding space. Designed 

specifically for medical data, our method enhances 

diagnostic support by improving retrieval accuracy and 

precision 

2.2.4. Modern Retrieval Methods and the Application of 

FAISS 

The significant increase in data volume and the 

dimensionality of representation vectors has posed 

considerable challenges in performing efficient retrieval in 

the embedding space. Modern retrieval solutions based on 

the Approximate Nearest Neighbor (ANN) algorithm have 

been developed to address this issue. 

FAISS is an open-source library specifically designed 

for searching similar vectors in large-scale datasets. It 

applies techniques such as Flat Inner Product (flatIP), 

Product Quantization, and other vector compression 

strategies to optimize retrieval speed and accuracy [22]. 

These modern retrieval methods enable the system to 

perform fast searches in the embedding space, meeting the 

high speed and accuracy requirements in medical 

applications, where diagnostic time is critical. 

3. Approaches 

We also implement performance improvements in both 

stages of the image retrieval system, achieving high 

accuracy on the evaluate dataset and fast retrieval times. 

3.1. The proposed pipeline 

Medical image retrieval poses unique challenges 

compared to conventional image retrieval tasks, 

particularly due to class imbalance and the high variability 

of image features within the same class. To address these 

issues, the proposed method employs a multi-stage fine-

tuning pipeline based on the ConvNeXt architecture-a 

vision model pretrained on ImageNet [12]. This approach 

is designed to adapt the model to medical image datasets 

while integrating advanced loss functions to improve both 

classification accuracy and retrieval performance. 

In this study, the multi-stage training pipeline is 

implemented as illustrated in Figure 2, with the goal of 

optimizing medical image retrieval performance. The fine-

tuning process is divided into three stages, each employing 

specific strategies, as detailed below: 
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Stage 1: Fine-tuning on medical data using Focal Loss; 

Stage 2: Contrastive learning with a combination of 

Focal Loss and Triplet Margin Loss; 

Stage 3: Hard negative mining and additional training. 

The following sections will present a detailed 

description of the data generation process, the loss function 

formulations, and the training algorithm for each stage. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Multi-stage training pipeline 

3.1.1. Stage 1: Training on medical data with Focal Loss 

In the first stage of the process, the objective is to adapt 

a model pretrained on ImageNet to the specific 

characteristics of medical data, which often suffer from 

class imbalance due to the low prevalence of rare 

conditions. To address this issue, Focal Loss [23] as 

defined in (1) is applied to automatically adjust the 

weighting of samples based on the difficulty of their 

prediction. Specifically, Focal Loss is defined by the 

following formula: 

𝐹𝐿(𝑝𝑡)  =  −𝛼 (1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡)  (1) 

Where 𝑝𝑡  is the predicted probability for the correct class, 

𝛼 is a parameter that balances the classes, and 𝛾 is a 

focusing parameter that increases the penalty for hard-to-

classify samples. The term (1 −  𝑝𝑡)𝛾 helps increase the 

contribution of the loss from misclassified samples, this 

formulation is flexible, allowing adjustments to the 

parameters 𝛼 and 𝛾. 

Its flexibility in adjusting the parameters 𝛼 and 𝛾, Focal 

Loss improves the model’s ability to detect rare conditions 

while maintaining strong overall accuracy. Thus, the fine-

tuning stage with Focal Loss allows the model to 

effectively adapt to medical data, providing a solid 

foundation for the subsequent retrieval stages. 

3.1.2. Stage 2: Contrastive learning with Focal Loss and 

Triplet Margin Loss 

After Stage 1 establishes the basic classification 

performance, Stage 2 aims to enhance the embedding space 

to improve image retrieval effectiveness. The proposed 

method combines Focal Loss – ensuring classification 

performance – with Triplet Margin Loss (2) [15] to learn 

representations such that the embedding vectors of images 

from the same class are pulled closer together, while those 

from different classes are pushed farther apart. 

The formula for Triplet Margin Loss is defined as 

follows: 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡  =  𝑚𝑎𝑥(𝑑(𝑎, 𝑝)  −  𝑑(𝑎, 𝑛)  +  𝑚, 0) (2) 

where d(a, b) is the distance function (commonly the 

Euclidean distance) between the embedding vectors of 

images a and b; a is the query image (anchor), p is a same-

class image (positive sample), n is a different-class image 

(negative sample), and m is the margin value that ensures 

the distance between d(a, p) and d(a, n) reaches a certain 

minimum threshold. 

The sample selection process plays a crucial role in 

triplet-based learning. Positive samples are selected from 

the training set as images belonging to the same disease 

category as the query image, while negative samples are 

drawn from images of different disease categories, 

ensuring that their similarity to the query image is 

sufficiently high to present a challenge to the model. 

The advantage of Triplet Margin Loss lies in its ability 

to enhance discriminability in the embedding space: the 

model is encouraged to pull together the vectors of images 

from the same class and push apart those from different 

classes, thereby producing more distinctive feature 

representations. To balance the tasks of classification and 

representation learning, the overall loss function (3) is 

defined as a combination of Focal Loss and Triplet Margin 

Loss: 

𝐿𝑡𝑜𝑡𝑎𝑙  = 𝜆1 ⋅  𝐹𝐿 + 𝜆2 ⋅  𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡   (3) 

where 𝜆1 and 𝜆2 are weighting parameters that control the 

importance of the two tasks. 

3.1.3. Stage 3: Hard negative sample generation and 

additional training 

To enhance the model’s classification capability, the 

third stage focuses on leveraging hard negative samples-

images from different classes that exhibit high similarity to 

the query image-to enrich the information in the 

embedding space. Initially, the model from Stage 2 is used 

to evaluate similarity scores within the training set, 

identifying the top 20 most similar images for each query 

image. Among these, those that have different labels from 

the query and are incorrectly predicted are selected as hard 

negative samples. These samples are then incorporated into 

the additional training process, together with randomly 

selected negative samples from the previous stage. If the 

number of hard samples exceeds a predefined threshold, 

they replace the randomly selected negatives. Otherwise, if 

hard samples are limited, the sampling strategy from the 

previous stage is maintained. 

To prevent the model from becoming “over-focused” 

on difficult cases, the additional training phase is 

conducted with a reduced learning rate, ensuring that the 

model does not overfit to hard negative samples while still 

maintaining its ability to recognize basic patterns. The loss 

function in this stage is defined in (4) as follows: 

𝐿ℎ𝑎𝑟𝑑−𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = 𝜆3 ⋅  𝐹𝐿ℎ𝑎𝑟𝑑  + 𝜆4 ⋅  𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡−ℎ𝑎𝑟𝑑 (4) 

where 𝜆3 and 𝜆4 are weighting parameters adjusted to fit 

the characteristics of the hard negative sample set. This 

method significantly enhances the model’s ability to 

handle challenging cases, thereby improving the overall 

effectiveness of the image retrieval system. 
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3.2. Retrieval Method 

 

 

 

 

 

 
 

 

 

 

 
Figure 3. Image retrieval approach 

This section proposes a novel method (Figure 3) to 

enhance the efficiency of medical image retrieval, with 

FAISS (FlatIP) serving as the central component. 

According to Johnson et al. [22], FAISS is an optimized 

and highly scalable nearest neighbor search library, 

particularly well-suited for large datasets in high-

dimensional spaces. 

The proposed method focuses on improving the pre-

processing and feature representation process, inspired by 

previous research [15, 24]. This method introduces an 

embedding strategy combined with dimensionality 

reduction techniques to create compact and powerful 

representations for medical image retrieval tasks. 

Specifically, based on image retrieval studies. The 

proposed method is designed to meet the specific needs of 

medical image data, with the following key improvements: 

- Representation Refinement with GMP and PCA: The 

embedding process incorporates Global Max Pooling 

followed by Principal Component Analysis to obtain 

lower-dimensional feature vectors. This reduces 

computational cost while maintaining essential 

information for effective image retrieval. 

- Optimization using Normalized Indexing: The method 

leverages normalized embedding vectors within a FAISS 

FlatIP index structure. This configuration improves 

retrieval precision and ensures compatibility with large-

scale data scenarios. 

Embedding and Vector Retrieval Process: To achieve a 

discriminative and compact vector representation for input 

images, the process is systematically built through a 

combination of preprocessing techniques, dimensionality 

reduction, and retrieval using FAISS. 

Step 1: Feature extraction using the pretrained 

ConvNeXt model. The input image is passed through the 

ConvNeXt model – a deep learning architecture pre-trained 

on ImageNet and optimized for large-scale classification 

tasks [12]. This model generates feature representations 

with high dimensionality, capturing important hierarchical 

spatial features crucial for medical image retrieval 

applications. Specifically, for each image, the model 

produces a feature map 𝐸 ∈  𝑅1536𝑥7𝑥7 where: 

− 1536 is the number of channels in the final 

convolutional layer, 

- 7 𝑥 7 is the spatial size of the feature map. 

The matrix E is considered as the input for the 

subsequent processing steps. 

Step 2: Apply Global Max Pooling for dimensionality 

reduction. To convert the feature matrix E into a one-

dimensional compact vector, the process uses the Global 

Max Pooling operation, as defined in (5) by the following 

formula: 

𝑣 =  𝐺𝑙𝑜𝑏𝑎𝑙𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝐸), 𝑣 ∈  𝑅1536 (5) 

Applying Global Max Pooling allows retaining the 

maximum value from each channel, thereby reducing the 

dimensionality of the representation while preserving 

important features, and enhancing the stability of the 

representation against spatial variations. 

Step 3: L2 Normalization. To enhance the 

comparability of embedding vectors, L2 normalization is 

applied to the vector v, as defined in (6): 

𝑣̂ =
𝑣

‖𝑣‖2
, ‖𝑣‖2 =  1.    (6) 

This normalization ensures that the embedding vectors 

have a unit norm, so that similarity measures (e.g., cosine 

similarity) can accurately reflect the angular relationship 

between vectors, thereby enhancing stability and 

consistency during the search process. 

Step 4: Dimensionality Reduction with Principal 

Component Analysis (PCA) 

Although the embedding vector vˆ possesses strong 

discriminative capability, its original dimensionality of 

1536 can lead to limitations in memory usage and retrieval 

efficiency. Therefore, Principal Component Analysis (7) 

(PCA) is applied to project these vectors into a lower-

dimensional space: 

𝑣̂𝑃𝐶𝐴 =  𝑃𝐶𝐴(𝑣̂),  𝑣̂𝑃𝐶𝐴 ∈ 𝑅128   (7) 

In this process, PCA is trained offline on the entire 

dataset to identify the principal components that capture 

the maximum variance, with the number of components 

retained such that over 95% of the variance is preserved. 

This dimensionality reduction not only conserves 

computational resources and memory, but also enables the 

system to scale retrieval operations on large datasets while 

maintaining high accuracy. 

Step 5: Nearest Neighbor Search with FAISS. 

After dimensionality reduction, the embedding vectors 

𝑣̂𝑃𝐶𝐴 are indexed using FAISS with the Inner Product 

Space configuration. The similarity between the query 

vector q and a database vector xi is computed as follows: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞, 𝑥𝑖) =  𝑞 ⋅  𝑥𝑖 .   (7’) 

In this configuration, the use of normalized embeddings 

ensures that the similarity measure effectively reflects the 

cosine distance between vectors. FAISS, optimized for 

GPU execution, enables fast indexing and retrieval even 

with large datasets, while also ensuring scalability as both 

the number of samples and the dimensionality of 

embedding vectors increase. This allows the system to 

maintain stable performance and high accuracy in large-

scale similarity search tasks. 
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4. Experiments 

4.1. Dataset 

The International Skin Imaging Collaboration (ISIC) 

2017 dataset consists of dermoscopic images for 

classifying skin lesions. We follow the same training and 

test split as in the X-MIR experiment, using 2,000 training 

images and 270 test images, annotated with three classes: 

melanoma, nevus, and seborrheic keratosis. Sample images 

from the dataset are shown in Figure 4. 

Table 1. Data statistics for the ISIC 2017 and  

COVID-19 chest X-ray training datasets 

Dataset Labels Count Total Images 

ISIC 2017 

Nevus 1372 

2000 Seborrheic Ker-atosis 254 

Melanoma 374 

COVID-19 

Chest X-ray 

Normal 8751 

19364 Pneumonia 5964 

COVID-19 4649 

Table 2. Data statistics for the ISIC 2017 and COVID-19 chest 

X-ray test datasets. 

Dataset Labels Count Total Images 

ISIC 2017 

Nevus 90 

270 Seborrheic Keratosis 90 

Melanoma 90 

COVID-19 

Chest X-ray 

Normal 100 

300 Pneumonia 100 

COVID-19 100 

 
(a) Nevus 

 
(b) Seborrheic Keratosis 

 
(c) Melanoma 

Figure 4. Sample images from the ISIC 2017 dataset. 

 

(a) Normal 

 

(b) Pneumonia 

 

(c) COVID-19 

Figure 5. Sample images from the COVID-19 chest X-ray dataset 

The COVID-19 chest X-ray dataset is a comprehensive 

collection of labeled chest X-ray images for detecting 

COVID-19. This dataset differs from previous versions, 

and in our experiment, we use 19,364 training images and 

300 test images, distributed across three classes: normal, 

pneumonia, and COVID-19. Sample images from this 

dataset are shown in Figure 5. 

4.2. Data Preprocessing 

In both datasets, all images are resized to 224 x 224 

pixels. For training images, data augmentation methods 

include random horizontal flipping and rotation (±30 

degrees). Finally, normalization is applied using the mean 

and standard deviation values of the ImageNet dataset. 

4.3. Training Process 

The training process is divided into 3 phases with 

different configuration strategies. In Phase 1, the model is 

trained for 10 epochs using the Focal Loss function  

(alpha = 1, gamma = 2) and the Adam optimizer with 

learning rate 1e-4 and weight decay 1e-5. Furthermore, 

learning rate adjustment is performed using StepLR with a 

step size of 5 and a decay factor of 0.5, combined with the 

gradient clipping technique with a max norm threshold of 

2.0 to stabilize the training process. 

Phase 2 for 10 training epochs, during which the 

configuration of the Adam optimizer remains the same as 

in Phase 1. However, the training strategy in this phase is 

enhanced by combining the Focal Loss function with the 

Triplet Margin Loss (with 𝑚𝑎𝑟𝑔𝑖𝑛 = 1.0), and adding a 

Global Max Pooling layer to process the feature 

embedding, aiming to optimize the model’s feature 

extraction capability. In this phase, the loss weights are set 

as 𝜆1 = 0.5 and 𝜆2 = 0.5 to balance the contributions of 

the Focal Loss and Triplet Loss. 

In Phase 3, model fine-tuning is performed over 8 epochs 

with the learning rate reduced to 2e-5, while the model 

architecture and loss function remain the same as in Phase 2. 

This allows the training process to achieve a balance 

between learning speed and accuracy, helping to improve 

the overall performance of the system. Here, 𝜆3 = 0.4 and 

𝜆4 = 0.6 are used to emphasize the Triplet Loss component, 

as this phase focuses on learning from harder examples. 

Techniques to stabilize the training process include 

gradient clipping, weight decay, and learning rate 

scheduling. The model is saved at the epoch with the best 

performance on the validation set. 

4.4. Implementation Details 

All experiments conducted on PyTorch version 2.2.2 

with Python 3.10.11, in an Ubuntu 22.04.3 LTS 

environment. Training and evaluation were performed on 

an NVIDIA A100 GPU (CUDA 12.6). All results were 

repeated three times, and the average is reported. 

4.5. Baselines 

We compare our proposed method against three well-

established retrieval baselines: 

- DELG [25]: Deep Local and Global Features model, 

which extracts and aggregates both local and global image 

descriptors for retrieval. 
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- X-MIR with DenseNet [27]: A DenseNet-based 

retrieval framework that leverages convolutional feature 

maps for matching. 

None of these baseline methods employs any explicit 

class-imbalance mitigation techniques (e.g., weighted loss, 

oversampling, or under-sampling), allowing us to isolate 

and demonstrate the effectiveness of our imbalance-aware 

strategy. 

4.6. Evaluation 

To evaluate the effectiveness of the proposed method, 

we conducted comprehensive experiments on two widely 

used datasets: ISIC 2017 and COVID-19 chest X-ray. 

The performance of our method is compared with the 

results obtained from the above baselines. Evaluation 

metrics include Mean Average Precision at (mAP@5), 

Precision at (P@1), and Precision at (P@5). 

Mean Average Precision (mAP@k) Mean Average 

Precision (mAP) at k provides a general evaluation of the 

ranking ability of the system in the top k. First, we compute 

AP@k (Average Precision at k) for each query: 

𝐴𝑃@𝑘 =
1

𝑚
 ∑ 𝑃(𝑗) ⋅  𝑟𝑒𝑙(𝑗)𝑘

𝑗=1    (8) 

Where: 

m: Number of relevant samples for a single query. 

P (j): Precision at rank j, calculated as: 

𝑃(𝑗)  =
 Number of relevant samples in top 𝑗 

𝑗
 

𝑟𝑒𝑙(𝑗) Indicator function, where: 

𝑟𝑒𝑙(𝑗) = {
1, if the sample at rank j is relevant

0, otherwise
 

Then, the mean Average Precision at rank 𝑘 (𝑚𝐴𝑃@𝑘) 

is computed by averaging 𝐴𝑃@𝑘 over all 𝑁 queries: 

𝑚𝐴𝑃@𝑘 =
1

𝑁
 ∑ 𝐴𝑃@𝑘𝑖

𝑁
𝑖=1    (9) 

Where: 𝑁: Total number of queries; 𝐴𝑃@𝑘𝑖: Average 

precision at rank 𝑘 for the i-th query. 

Precision at k (P@k) 

Precision at rank k (P@k) measures the proportion of 

relevant samples among the top k retrieved results: This 

metric helps evaluate the accuracy of the system when 

users only consider a limited number of results (top k), such 

as the top 5 or top 10 results. 

𝑃@𝑘 =
Number of relevant samples in the top 𝑘

𝑘
 (10) 

Experimental results show that on ISIC 2017, the 

ConvNeXt model improved its accuracy from 73.7% to 

75.4% after three training phases, while precision and 

recall reached 76.9% and 75.1%, respectively, in the third 

phase. On the COVID-19 chest X-ray dataset, the model 

improved accuracy from 93.3% to 94.0% and recall from 

92.3% to 94%. In comparison, with ViT-B-32, the highest 

accuracy for ISIC 2017 (70.7%) and COVID-19 chest 

X-ray (89.7%) was achieved in Phase 2. 

Regarding image retrieval performance, as shown in 

Table 5, the application of techniques such as Global Max 

Pooling (GMP), L2 normalization, and dimensionality 

reduction using PCA (Principal Component Analysis) 

significantly improved the model’s performance. For ISIC 

2017, the mAP@5 increased from 60.3% with a standard 

flattened vector to 71.4% when applying the full GMP + 

L2 + PCA processing pipeline. Similarly, the P@1 and 

P@5 metrics also showed noticeable improvements, 

reaching 77.4% and 74.7%, respectively. On the COVID-

19 chest X-ray dataset, the improvement was even more 

remarkable, with mAP@5 reaching 93.5% and P@1 

reaching 94.3%. 

Table 3. Classification performance of ConvNeXt over three 

rounds on ISIC 2017 and COVID-19 datasets 

Dataset Metric Round 1 Round 2 Round 3 

ISIC 2017 

Accuracy 73.7 75.2 75.4 

Precision 74.3 76.4 76.9 

Recall 72.2 74.5 75.1 

COVID-19  

Chest 

X-ray 

Accuracy 93.3 93.0 94.0 

Precision 94.9 94.7 95.1 

Recall 92.3 92.0 93.0 

Table 4. Classification performance of ViT-B-32 over three 

rounds on ISIC 2017 and COVID-19 datasets 

Dataset Metric Round 1 Round 2 Round 3 

ISIC 2017 

Accuracy 68.5 70.7 70.2 

Precision 69.1 71.3 70.8 

Recall 67.4 69.9 69.3 

COVID-19 

Chest X-ray 

Accuracy 88.2 89.7 89.5 

Precision 89.1 90.4 90.1 

Recall 87.5 88.9 88.6 

Table 5. Retrieval performance of ConvNeXt under different 

index preprocessing steps 

Dataset Metric 

Flat 

Features 

Vector 

GMP 

(Max 

Pooling) 

GMP+ L2 

Normaliz

ation 

GMP + 

L2 

+ PCA 

ISIC 2017 

mAP@5 60.3 63.9 68.3 71.4 

P@1 63.8 71.5 72.6 77.4 

P@5 66.4 68.5 72.3 74.7 

COVID- 

19 Chest 

X-ray 

mAP@5 81.4 88.3 89.7 93.5 

P@1 85.3 91.0 93.3 94.3 

P@5 84.2 90.9 91.3 94.1 

Table 6. Method comparison on ISIC 2017 and  

COVID-19 datasets 

Dataset Metric X-MIR DELG 
ViT-B-32 

(Ours) 

ConvNeXt 

(Ours) 

ISIC 017 

mAP@5 61.6 58.7 64.2 71.4 

P@1 69.6 66.8 67.8 77.4 

P@5 69.2 61.8 65.5 74.7 

COVID-

19 Chest 

X-ray 

mAP@5 89.4 79.3 90.1 93.5 

P@1 90.8 83.7 92.2 94.3 

P@5 90.3 80.4 89.0 94.1 

Table 6 compares the performance of the proposed 

method with other state-of-the-art models such as X-MIR, 

ViT-B-32, and DELG on the same two datasets. The 

results demonstrate that our method outperforms all 

others across every metric. Specifically, on ISIC 2017, 

mAP@5 reaches 71.4%, significantly higher than ViT-B-

32 (64.2%) and DELG (58.7%). At the same time, P@1 
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and P@5 also achieve the highest values of 77.4% and 

74.7%, respectively. Similarly, on the COVID-19 chest 

X-ray dataset, our method continues to lead with a 

mAP@5 of 93.5%, surpassing ViT-B-32 (90.1%) and X-

MIR (89.4%). 

4.7. Grad-CAM Visualization and Inference Results 

  

(a) Melanoma 

 

(b) Seborrheic Keratosis 

 

(c) Nevus 

Figure 6. Examples of inference results and Grad-CAM 

visualizations on the ISIC 2017 dataset 

 
(a) COVID-19 

 
(b) Normal 

 
(c) Pneumonia 

Figure 7. Examples of inference results and Grad-CAM 

visualizations on the COVID-19 chest X-ray dataset 

We demonstrate the interpretability of model using 

Grad-CAM. Figures 6 and 7, we present both the original 

input images and their corresponding Grad-CAM for 

representative cases of melanoma, seborrheic keratosis, 

and nevus from the ISIC 2017 dataset, as well as COVID-

19 and normal chest X-ray images from the COVID-19 

dataset. 

5. Conclusions 

In this paper, we propose a multi-stage training pipeline 

designed to enhance the performance of medical image 

retrieval systems. By leveraging the ConvNeXt model, 

fine-tuned on medical data with advanced loss functions 

such as Focal Loss and Triplet Margin Loss, our approach 

achieves higher accuracy and retrieval performance 

compared to traditional methods. Furthermore, the 

integration of Principal Component Analysis (PCA) for 

dimensionality reduction and the use of FAISS for efficient 

similarity search further enhance the retrieval process, 

making it both scalable and highly effective. 

Our experiments demonstrate the proposed method in 

addressing the unique challenges of medical image 

datasets, such as class imbalance and high intra-class 

variability. The combination of these techniques enables 

accurate and efficient retrieval of relevant medical 

images-an essential aspect for real-world healthcare 

applications. 
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