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Abstract - Efficient and accurate retrieval of medical images
underpins timely diagnosis and informed clinical decisions. This
work introduces a novel multi-stage training paradigm designed
for medical image retrieval. In the first stage, a ConvNeXt model
pretrained on ImageNet is fine-tuned using Focal Loss to address
class imbalance. Building on this foundation, the feature space is
refined with Triplet Margin Loss, where chosen sample triplets
are used to enhance discriminative learning. Our approach further
streamlines the retrieval process by applying Global Max
Pooling, L2 normalization, and Principal Component Analysis
(PCA) for dimensionality reduction, followed by integration with
Facebook Al Similarity Search (FAISS) for efficient similarity
search. Experiments on the ISIC 2017 and COVID-19 chest X-
ray datasets demonstrate that the proposed method achieves
significant improvements in evaluation metrics, including mean
Average Precision at 5(mAP@S5), Precision at 1 (P@1), and
Precision at 5 (P@5)

Key words - Deep Learning; Computer Vision; Medical Image
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1. Introduction

Significant advances in machine learning, and deep
learning in particular, have transformed numerous fields
over the past few decades. Convolutional Neural Networks
(CNN) first introduced in the late 1970s [1], and the first
successful real-world application in hand-written digit
recognition appearing in 1998 [2]. Studies such as [3] and
[4] applied Deep Belief Networks and Stacked
Autoencoders to classify patients with Alzheimer’s disease
based on brain Magnetic Resonance Imaging (MRI).
Another study [5] identified anatomical landmarks on the
surface of the distal femur by processing three independent
sets of 2D MRI slices.

Medical image retrieval has also become an important
area of research. Retrieval methods have shown their
potential in supporting diagnosis and treatment, helping
specialists more easily identify objects in medical images.
This not only saves time, but also improves accuracy in
disease detection, reduces errors, and helps in clinical
decision making, such as the studies by Anavi et al. [6] and
Liu et al. [7], who applied their methods to X-ray image
databases. Although traditional methods have achieved
good performance in specific medical scenarios, they often
do not fully leverage the information on the label during
training. This leads to a lack of effective utilization of
unlabeled data, which contributes to the reduced
performance in medical image retrieval.

To solve these challenges, this study introduces the
following methods:

Multi-Stage Training for Enhanced Feature Learning:
Based on a pretrained ConvNeXt model, we proposed an
approach that applies Focal Loss to accurately identify
similar and dissimilar labels in the case of imbalanced data.
Subsequently, sample pairs selected based on these labels
are trained using Triplet Margin Loss, which enhances the
feature space separability and optimizes the ability to
discriminate between classes.

An efficient Image Retrieval system: The image
retrieval system is designed so that the embedded vectors
are preprocessed to enhance the retrieval efficiency.

Experiments on the evaluated datasets: Two medical
datasets, ISIC 2017 for skin lesions and COVID-19 chest
X-rays were used to demonstrate performance.

2. Related Works

In this section, we organize the relevant work into the
following key areas:

2.1. Image retrieval systems

The basic block diagram of an image retrieval system
is illustrated in Figure 1. In the retrieval process, images
are fetched from large-scale databases based on feature
representations extracted from the image content. Any
retrieval system typically consists of two stages: the offline
stage and the online stage. In the offline stage, features are
extracted from large image collections (used to train the
system) to build a local feature database. In the online
stage, similar features are extracted from the query image,
and a distance metric is computed between the features of
the query image and those of the database images to assess
similarity. The images with high or low similarity scores
are then presented to the user as retrieval results with query
labels, allowing the model to learn general semantic
features through classification labels while simultaneously
optimizing bedding space via metric learning to enhance
instance-level discrimination.

Offline phase

Online phase

Figure 1. Image retrieval system block diagram
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2.2. Deep Learning-Based Image Retrieval Methods

The advancement of deep learning has led to
breakthroughs in  automatic  learning  feature
representations from image data. In the context of deep
learning-based image retrieval, two main training
approaches are commonly classified as follows:

2.2.1. Supervised Learning Using Class Labels

Convolutional neural networks (CNNs) trained for
image classification - such as disease recognition or
analysis of anatomical structures - typically employ the
cross-entropy loss  function to optimize class
discrimination. Thanks to their ability to automatically
extract features, CNNs have become a crucial tool in many
computer vision applications.

Popular architectures such as ResNet [8, 9], which
utilize skip connections to mitigate gradient vanishing,
DenseNet [10, 11], which leverages dense connections
between layers for more effective information flow, and
ConvNeXt [12, 13], which incorporates improvements
inspired by Transformers, have demonstrated superior
performance in label-based image classification tasks.
Furthermore, the application of the Vision Transformer
(ViT) architecture [14] to classification tasks has shown
significant potential, particularly when pretrained on large-
scale datasets like ImageNet, providing general semantic
features that can be fine-tuned for specific tasks. The
advancement of deep learning models has opened up new
directions, especially in medical image analysis and object
recognition applications.

2.2.2. Query Label-Based Approach

Instead of focusing on classification, distance-based
learning techniques such as Triplet Loss and Contrastive
Loss are employed to learn an embedding space where
samples of the same class are pulled closer together, while
samples of different classes are pushed farther apart. This
approach is particularly useful in image retrieval, face
recognition, and data clustering tasks.

Triplet Loss [15] optimizes the model by learning from
three samples: an anchor, a positive (same class), and a
negative (different class). Its objective is to ensure that the
distance between the anchor and the positive is smaller
than the distance to the negative by at least a predefined
margin. In contrast, Contrastive Loss [16, 17] It minimizes
the distance between positive pairs while ensuring that
negative pairs are separated by a margin.

2.2.3. Hybrid Approach Combining Classification and
Query Labels

While individual training approaches each have their
advantages, several recent studies have proposed
combining classification labels with query labels, allowing
the model to learn general semantic features through
classification labels while simultaneously optimizing the
embedding space via metric learning to enhance instance-
level discrimination.

Several studies have proposed hybrid loss functions to
simultaneously = optimize both classification and
representation capabilities for retrieval tasks. For example,

Histogram Loss by Ustinova and Lempitsky [19] leverages
the distribution of distances in the embedding space, while
Multi-Similarity Loss by Wang et al. [20] exploits complex
relationships among sample pairs to enhance
representation learning. In addition, Center Loss by Wen et
al. [21] is considered an effective approach that combines
classification loss (cross-entropy) with a loss function that
optimizes the distance in the embedding space. However,
these methods are applied to natural image data and focus
mainly on optimizing the embedding distance, with limited
direct classification capability.

In this study, we propose a hybrid training approach for
medical image retrieval that combines Focal Loss and
Triplet Margin Loss. Focal Loss addresses class imbalance
by focusing on hard samples, while Triplet Margin Loss
promotes a discriminative embedding space. Designed
specifically for medical data, our method enhances
diagnostic support by improving retrieval accuracy and
precision

2.2.4. Modern Retrieval Methods and the Application of
FAISS

The significant increase in data volume and the
dimensionality of representation vectors has posed
considerable challenges in performing efficient retrieval in
the embedding space. Modern retrieval solutions based on
the Approximate Nearest Neighbor (ANN) algorithm have
been developed to address this issue.

FAISS is an open-source library specifically designed
for searching similar vectors in large-scale datasets. It
applies techniques such as Flat Inner Product (flatIP),
Product Quantization, and other vector compression
strategies to optimize retrieval speed and accuracy [22].

These modern retrieval methods enable the system to
perform fast searches in the embedding space, meeting the
high speed and accuracy requirements in medical
applications, where diagnostic time is critical.

3. Approaches

We also implement performance improvements in both
stages of the image retrieval system, achieving high
accuracy on the evaluate dataset and fast retrieval times.

3.1. The proposed pipeline

Medical image retrieval poses unique challenges
compared to conventional image retrieval tasks,
particularly due to class imbalance and the high variability
of image features within the same class. To address these
issues, the proposed method employs a multi-stage fine-
tuning pipeline based on the ConvNeXt architecture-a
vision model pretrained on ImageNet [12]. This approach
is designed to adapt the model to medical image datasets
while integrating advanced loss functions to improve both
classification accuracy and retrieval performance.

In this study, the multi-stage training pipeline is
implemented as illustrated in Figure 2, with the goal of
optimizing medical image retrieval performance. The fine-
tuning process is divided into three stages, each employing
specific strategies, as detailed below:
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Stage 1: Fine-tuning on medical data using Focal Loss;

Stage 2: Contrastive learning with a combination of
Focal Loss and Triplet Margin Loss;

Stage 3: Hard negative mining and additional training.

The following sections will present a detailed
description of the data generation process, the loss function
formulations, and the training algorithm for each stage.

Pretrainac
CanyNext

| Fine-tune with Focal
{image, label} «:" Tocs I:( Finetuned

Convhext

Note:

> Round 1 Flow

Round 2 Flow

Round 3 Flow

Training with Focal
Loss and Triplet
margin loss

Create random negative,
pasitive data

{image, label, anchor,
positive, negative}

Qurs Morel 1

Figure 2. Multi-stage training pipeline

Create hard negative,
pasitive data

3.1.1. Stage 1: Training on medical data with Focal Loss

In the first stage of the process, the objective is to adapt
a model pretrained on ImageNet to the specific
characteristics of medical data, which often suffer from
class imbalance due to the low prevalence of rare
conditions. To address this issue, Focal Loss [23] as
defined in (1) is applied to automatically adjust the
weighting of samples based on the difficulty of their
prediction. Specifically, Focal Loss is defined by the
following formula:

FL(p)) = —a (1 = p)'log(p.) (M
Where p; is the predicted probability for the correct class,
a is a parameter that balances the classes, and y is a
focusing parameter that increases the penalty for hard-to-
classify samples. The term (1 — p,)? helps increase the
contribution of the loss from misclassified samples, this
formulation is flexible, allowing adjustments to the
parameters o and y.

Its flexibility in adjusting the parameters a and y, Focal
Loss improves the model’s ability to detect rare conditions
while maintaining strong overall accuracy. Thus, the fine-
tuning stage with Focal Loss allows the model to
effectively adapt to medical data, providing a solid
foundation for the subsequent retrieval stages.

3.1.2. Stage 2: Contrastive learning with Focal Loss and
Triplet Margin Loss

After Stage 1 establishes the basic classification
performance, Stage 2 aims to enhance the embedding space
to improve image retrieval effectiveness. The proposed
method combines Focal Loss — ensuring classification
performance — with Triplet Margin Loss (2) [15] to learn
representations such that the embedding vectors of images
from the same class are pulled closer together, while those
from different classes are pushed farther apart.

The formula for Triplet Margin Loss is defined as
follows:

Leripree = max(d(a,p) — d(a,n) + m,0)  (2)

where d(a, b) is the distance function (commonly the
Euclidean distance) between the embedding vectors of
images a and b; a is the query image (anchor), p is a same-
class image (positive sample), » is a different-class image
(negative sample), and m is the margin value that ensures
the distance between d(a, p) and d(a, n) reaches a certain
minimum threshold.

The sample selection process plays a crucial role in
triplet-based learning. Positive samples are selected from
the training set as images belonging to the same disease
category as the query image, while negative samples are
drawn from images of different disease categories,
ensuring that their similarity to the query image is
sufficiently high to present a challenge to the model.

The advantage of Triplet Margin Loss lies in its ability
to enhance discriminability in the embedding space: the
model is encouraged to pull together the vectors of images
from the same class and push apart those from different
classes, thereby producing more distinctive feature
representations. To balance the tasks of classification and
representation learning, the overall loss function (3) is
defined as a combination of Focal Loss and Triplet Margin
Loss:

Liotat =41+ FL + 15~ Ltriplet (3)

where 4; and 4, are weighting parameters that control the
importance of the two tasks.

3.1.3. Stage 3: Hard negative sample generation and
additional training

To enhance the model’s classification capability, the
third stage focuses on leveraging hard negative samples-
images from different classes that exhibit high similarity to
the query image-to enrich the information in the
embedding space. Initially, the model from Stage 2 is used
to evaluate similarity scores within the training set,
identifying the top 20 most similar images for each query
image. Among these, those that have different labels from
the query and are incorrectly predicted are selected as hard
negative samples. These samples are then incorporated into
the additional training process, together with randomly
selected negative samples from the previous stage. If the
number of hard samples exceeds a predefined threshold,
they replace the randomly selected negatives. Otherwise, if
hard samples are limited, the sampling strategy from the
previous stage is maintained.

To prevent the model from becoming “over-focused”
on difficult cases, the additional training phase is
conducted with a reduced learning rate, ensuring that the
model does not overfit to hard negative samples while still
maintaining its ability to recognize basic patterns. The loss
function in this stage is defined in (4) as follows:

Lhard—negative = )l3 : FLhurd + /Ll- : Ltriplet—hard (4)
where A3 and 4, are weighting parameters adjusted to fit
the characteristics of the hard negative sample set. This
method significantly enhances the model’s ability to
handle challenging cases, thereby improving the overall
effectiveness of the image retrieval system.
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3.2. Retrieval Method
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Figure 3. Image retrieval approach

This section proposes a novel method (Figure 3) to
enhance the efficiency of medical image retrieval, with
FAISS (FlatIP) serving as the central component.
According to Johnson et al. [22], FAISS is an optimized
and highly scalable nearest neighbor search library,
particularly well-suited for large datasets in high-
dimensional spaces.

The proposed method focuses on improving the pre-
processing and feature representation process, inspired by
previous research [15, 24]. This method introduces an
embedding strategy combined with dimensionality
reduction techniques to create compact and powerful
representations for medical image retrieval tasks.
Specifically, based on image retrieval studies. The
proposed method is designed to meet the specific needs of
medical image data, with the following key improvements:

- Representation Refinement with GMP and PCA: The
embedding process incorporates Global Max Pooling
followed by Principal Component Analysis to obtain
lower-dimensional  feature vectors. This reduces
computational cost while maintaining  essential
information for effective image retrieval.

- Optimization using Normalized Indexing: The method
leverages normalized embedding vectors within a FAISS
FlatIP index structure. This configuration improves
retrieval precision and ensures compatibility with large-
scale data scenarios.

Embedding and Vector Retrieval Process: To achieve a
discriminative and compact vector representation for input
images, the process is systematically built through a
combination of preprocessing techniques, dimensionality
reduction, and retrieval using FAISS.

Step 1: Feature extraction using the pretrained
ConvNeXt model. The input image is passed through the
ConvNeXt model — a deep learning architecture pre-trained
on ImageNet and optimized for large-scale classification
tasks [12]. This model generates feature representations
with high dimensionality, capturing important hierarchical
spatial features crucial for medical image retrieval
applications. Specifically, for each image, the model
produces a feature map E € R'°36X7*7 where:

— 1536 is the number of channels in the final
convolutional layer,

- 7 x 7 is the spatial size of the feature map.

The matrix E is considered as the input for the
subsequent processing steps.

Step 2: Apply Global Max Pooling for dimensionality
reduction. To convert the feature matrix £ into a one-
dimensional compact vector, the process uses the Global
Max Pooling operation, as defined in (5) by the following
formula:

v = GlobalMaxPooling(E),v € R3¢ (5)

Applying Global Max Pooling allows retaining the
maximum value from each channel, thereby reducing the
dimensionality of the representation while preserving
important features, and enhancing the stability of the
representation against spatial variations.

Step 3: L2 Normalization. To enhance the
comparability of embedding vectors, L2 normalization is
applied to the vector v, as defined in (6):

5o v _
o= llvll, = 1. (©)

This normalization ensures that the embedding vectors
have a unit norm, so that similarity measures (e.g., cosine
similarity) can accurately reflect the angular relationship
between vectors, thereby enhancing stability and
consistency during the search process.

Step 4: Dimensionality Reduction with Principal
Component Analysis (PCA)

Although the embedding vector v* possesses strong
discriminative capability, its original dimensionality of
1536 can lead to limitations in memory usage and retrieval
efficiency. Therefore, Principal Component Analysis (7)
(PCA) is applied to project these vectors into a lower-
dimensional space:

Dpca = PCA(D), Dpcs € R™® (7

In this process, PCA is trained offline on the entire
dataset to identify the principal components that capture
the maximum variance, with the number of components
retained such that over 95% of the variance is preserved.
This dimensionality reduction not only conserves
computational resources and memory, but also enables the
system to scale retrieval operations on large datasets while
maintaining high accuracy.

Step 5: Nearest Neighbor Search with FAISS.

After dimensionality reduction, the embedding vectors
DUpca are indexed using FAISS with the Inner Product
Space configuration. The similarity between the query
vector q and a database vector xi is computed as follows:
(7)

In this configuration, the use of normalized embeddings
ensures that the similarity measure effectively reflects the
cosine distance between vectors. FAISS, optimized for
GPU execution, enables fast indexing and retrieval even
with large datasets, while also ensuring scalability as both
the number of samples and the dimensionality of
embedding vectors increase. This allows the system to
maintain stable performance and high accuracy in large-
scale similarity search tasks.

Similarity(q,x;) = q - x;.
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4. Experiments
4.1. Dataset

The International Skin Imaging Collaboration (ISIC)
2017 dataset consists of dermoscopic images for
classifying skin lesions. We follow the same training and
test split as in the X-MIR experiment, using 2,000 training
images and 270 test images, annotated with three classes:
melanoma, nevus, and seborrheic keratosis. Sample images
from the dataset are shown in Figure 4.

Table 1. Data statistics for the ISIC 2017 and
COVID-19 chest X-ray training datasets

Dataset Labels Count |Total Images
Nevus 1372
ISIC 2017 |Seborrheic Ker-atosis 254 2000
Melanoma 374
COVID-19 Normal 8751
i Pneumonia 5964 19364
Chest X-ray
COVID-19 4649
Table 2. Data statistics for the ISIC 2017 and COVID-19 chest
X-ray test datasets.
Dataset Labels Count |Total Images
Nevus 90
ISIC 2017 | Seborrheic Keratosis 90 270
Melanoma 90
COVID-19 Normal 100
i Pneumonia 100 300
Chest X-ray
COVID-19 100
d 4
(a) Nevus

B0 ] =

(b) Seborrheic Keratosis

& [F] & &

(c) Melanoma
Figure 4. Sample images from the ISIC 2017 dataset.
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(b) Pneumonia

(c) COVID-19
Figure 5. Sample images from the COVID-19 chest X-ray dataset

The COVID-19 chest X-ray dataset is a comprehensive
collection of labeled chest X-ray images for detecting
COVID-19. This dataset differs from previous versions,
and in our experiment, we use 19,364 training images and
300 test images, distributed across three classes: normal,
pneumonia, and COVID-19. Sample images from this
dataset are shown in Figure 5.

4.2. Data Preprocessing

In both datasets, all images are resized to 224 x 224
pixels. For training images, data augmentation methods
include random horizontal flipping and rotation (+30
degrees). Finally, normalization is applied using the mean
and standard deviation values of the ImageNet dataset.

4.3. Training Process

The training process is divided into 3 phases with
different configuration strategies. In Phase 1, the model is
trained for 10 epochs using the Focal Loss function
(alpha = 1, gamma = 2) and the Adam optimizer with
learning rate le-4 and weight decay le-5. Furthermore,
learning rate adjustment is performed using StepLL.R with a
step size of 5 and a decay factor of 0.5, combined with the
gradient clipping technique with a max norm threshold of
2.0 to stabilize the training process.

Phase 2 for 10 training epochs, during which the
configuration of the Adam optimizer remains the same as
in Phase 1. However, the training strategy in this phase is
enhanced by combining the Focal Loss function with the
Triplet Margin Loss (with margin = 1.0), and adding a
Global Max Pooling layer to process the feature
embedding, aiming to optimize the model’s feature
extraction capability. In this phase, the loss weights are set
as 2, = 0.5 and 4, = 0.5 to balance the contributions of
the Focal Loss and Triplet Loss.

In Phase 3, model fine-tuning is performed over 8 epochs
with the learning rate reduced to 2e-5, while the model
architecture and loss function remain the same as in Phase 2.
This allows the training process to achieve a balance
between learning speed and accuracy, helping to improve
the overall performance of the system. Here, 2; = 0.4 and
A, = 0.6 are used to emphasize the Triplet Loss component,
as this phase focuses on learning from harder examples.

Techniques to stabilize the training process include
gradient clipping, weight decay, and learning rate
scheduling. The model is saved at the epoch with the best
performance on the validation set.

4.4. Implementation Details

All experiments conducted on PyTorch version 2.2.2
with Python 3.10.11, in an Ubuntu 22.04.3 LTS
environment. Training and evaluation were performed on
an NVIDIA A100 GPU (CUDA 12.6). All results were
repeated three times, and the average is reported.

4.5. Baselines

We compare our proposed method against three well-
established retrieval baselines:

- DELG [25]: Deep Local and Global Features model,

which extracts and aggregates both local and global image
descriptors for retrieval.



86 Nguyen Van Hoang Phuc, Le Quang Nhat, Duong Manh Quan, Hoang Phuong Le, Nguyen Van Hieu

- X-MIR with DenseNet [27]: A DenseNet-based
retrieval framework that leverages convolutional feature
maps for matching.

None of these baseline methods employs any explicit
class-imbalance mitigation techniques (e.g., weighted loss,
oversampling, or under-sampling), allowing us to isolate
and demonstrate the effectiveness of our imbalance-aware
strategy.

4.6. Evaluation

To evaluate the effectiveness of the proposed method,
we conducted comprehensive experiments on two widely
used datasets: ISIC 2017 and COVID-19 chest X-ray.
The performance of our method is compared with the
results obtained from the above baselines. Evaluation
metrics include Mean Average Precision at (mAP@J),
Precision at (P@1), and Precision at (P@)5).

Mean Average Precision (mAP@k) Mean Average
Precision (mAP) at £ provides a general evaluation of the
ranking ability of the system in the top k. First, we compute
AP@k (Average Precision at k) for each query:

AP@k =—TX_ P()) - rel() (8)
Where:
m: Number of relevant samples for a single query.
P (j): Precision at rank j, calculated as:
) Number of relevant samples in top j
P(j) = -
J
rel(j) Indicator function, where:
. 1,if the sample at rank j is relevant
rel(j) = { 0, otherwise

Then, the mean Average Precision at rank k (mAP@k)
is computed by averaging AP@k over all N queries:

mAP@k =~ YN, AP@k; 9)

Where: N: Total number of queries; AP@k;: Average
precision at rank k for the i-th query.

Precision at k (P@k)

Precision at rank & (P@k) measures the proportion of
relevant samples among the top k retrieved results: This
metric helps evaluate the accuracy of the system when
users only consider a limited number of results (top k), such
as the top 5 or top 10 results.

__ Number of relevant samples in the top k
P@k = p (10)
Experimental results show that on ISIC 2017, the
ConvNeXt model improved its accuracy from 73.7% to
75.4% after three training phases, while precision and
recall reached 76.9% and 75.1%, respectively, in the third
phase. On the COVID-19 chest X-ray dataset, the model
improved accuracy from 93.3% to 94.0% and recall from
92.3% to 94%. In comparison, with ViT-B-32, the highest
accuracy for ISIC 2017 (70.7%) and COVID-19 chest
X-ray (89.7%) was achieved in Phase 2.

Regarding image retrieval performance, as shown in
Table 5, the application of techniques such as Global Max
Pooling (GMP), L2 normalization, and dimensionality
reduction using PCA (Principal Component Analysis)

significantly improved the model’s performance. For ISIC
2017, the mAP@)5 increased from 60.3% with a standard
flattened vector to 71.4% when applying the full GMP +
L2 + PCA processing pipeline. Similarly, the P@1 and
P@5 metrics also showed noticeable improvements,
reaching 77.4% and 74.7%, respectively. On the COVID-
19 chest X-ray dataset, the improvement was even more
remarkable, with mAP@5 reaching 93.5% and P@l
reaching 94.3%.

Table 3. Classification performance of ConvNeXt over three
rounds on ISIC 2017 and COVID-19 datasets

Dataset Metric Round 1 | Round 2 | Round 3
Accuracy 73.7 75.2 75.4
ISIC 2017 Precision 74.3 76.4 76.9
Recall 72.2 74.5 75.1
COVID-19 Accuracy 93.3 93.0 94.0
Chest Precision 94.9 94.7 95.1
X-ray Recall 92.3 92.0 93.0

Table 4. Classification performance of ViT-B-32 over three
rounds on ISIC 2017 and COVID-19 datasets

Dataset Metric Round 1 | Round 2 | Round 3

Accuracy 68.5 70.7 70.2
ISIC 2017 Precision 69.1 71.3 70.8
Recall 67.4 69.9 69.3
COVID-19 Accuracy 88.2 89.7 89.5
j Precision 89.1 90.4 90.1

Chest X-ray
Recall 87.5 88.9 88.6

Table 5. Retrieval performance of ConvNeXt under different
index preprocessing steps

Flat GMP |GMP+L2 GMP +
Dataset | Metric | Features| (Max |Normaliz L2
Vector | Pooling) | ation +PCA
mAP@5 60.3 63.9 68.3 71.4
ISIC 2017| P@l 63.8 71.5 72.6 77.4
P@5 66.4 68.5 72.3 74.7
COVID- | mAP@5 81.4 88.3 89.7 93.5
19 Chest | P@1 85.3 91.0 93.3 94.3
X-ray P@5 84.2 90.9 91.3 94.1

Table 6. Method comparison on ISIC 2017 and
COVID-19 datasets

Dataset | Metric | X-MIR | DELG V(‘(T):l]igz C‘(’:‘)Vul::)m
mAP@5| 616 | 587 64.2 71.4
ISIC017| P@1 | 69.6 | 668 67.8 77.4
P@5 | 692 | 618 65.5 74.7
COVID- |mAP@s | 894 | 793 90.1 93.5
19 Chest| P@l | 908 | 83.7 922 943
Xray | p@s | 903 | 80.4 89.0 94.1

Table 6 compares the performance of the proposed
method with other state-of-the-art models such as X-MIR,
ViT-B-32, and DELG on the same two datasets. The
results demonstrate that our method outperforms all
others across every metric. Specifically, on ISIC 2017,
mAP@S5 reaches 71.4%, significantly higher than ViT-B-
32 (64.2%) and DELG (58.7%). At the same time, P@1
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and P@5 also achieve the highest values of 77.4% and
74.7%, respectively. Similarly, on the COVID-19 chest
X-ray dataset, our method continues to lead with a
mAP@5 of 93.5%, surpassing ViT-B-32 (90.1%) and X-
MIR (89.4%).

4.7. Grad-CAM Visualization and Inference Results

melanoma

ERN>»
o ¢

seborrheic keratosis

query 1 2 3 4

(b) Seborrheic Keratosis

nevus

.
ESE

query

I‘

,mg
 iRg &
oW O

(c) Nevus

Figure 6. Examples of inference results and Grad-CAM
visualizations on the ISIC 2017 dataset
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Figure 7. Examples of inference results and Grad-CAM
visualizations on the COVID-19 chest X-ray dataset

We demonstrate the interpretability of model using
Grad-CAM. Figures 6 and 7, we present both the original
input images and their corresponding Grad-CAM for
representative cases of melanoma, seborrheic keratosis,
and nevus from the ISIC 2017 dataset, as well as COVID-
19 and normal chest X-ray images from the COVID-19
dataset.

5. Conclusions

In this paper, we propose a multi-stage training pipeline
designed to enhance the performance of medical image
retrieval systems. By leveraging the ConvNeXt model,
fine-tuned on medical data with advanced loss functions
such as Focal Loss and Triplet Margin Loss, our approach
achieves higher accuracy and retrieval performance
compared to traditional methods. Furthermore, the
integration of Principal Component Analysis (PCA) for
dimensionality reduction and the use of FAISS for efficient
similarity search further enhance the retrieval process,
making it both scalable and highly effective.

Our experiments demonstrate the proposed method in
addressing the unique challenges of medical image
datasets, such as class imbalance and high intra-class
variability. The combination of these techniques enables
accurate and efficient retrieval of relevant medical
images-an essential aspect for real-world healthcare
applications.
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