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Abstract - This study presents an enhanced Economic Production
Quantity (EPQ) model that incorporates energy consumption and
product deterioration to promote sustainable operations. The
model simultaneously considers energy use during production
and storage phases, deterioration behavior modeled by
exponential decay, and a full backordering policy. It captures the
interactions between inventory levels, energy efficiency, and
product quality loss to better reflect real industrial conditions.
Numerical analysis shows that integrating energy-related costs
significantly reduces total expenses and minimizes deterioration
losses. The findings underscore the importance of setup and
energy costs in production planning and highlight energy
efficiency as a key technological innovation for sustainable
manufacturing. The proposed model offers practical guidance for
industries striving to align economic objectives with
environmental goals.
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1. Introduction and Literature review

The global energy crisis, exacerbated by geopolitical
instability, has intensified the urgent need to optimize
energy usage and reduce greenhouse gas emissions across
supply chains. In 2022, the industrial sector accounted for
26% of global CO; emissions (~9 Gt CO;) and remained
the largest energy consumer [1]. By 2023, global energy
consumption rose by 2.2%, with manufacturing and
construction contributing 57% of total emissions [2].
Emissions from fossil fuels and industrial activities are
projected to reach a record 37.41 Gt CO, by 2024 [3].
Despite ongoing government mitigation efforts, industrial
demand continues to drive 75% of post-COVID energy
growth and is expected to account for two-thirds of the
2.5% increase in global gas demand in 2024 [4].

A large share of industrial energy is used in cold supply
chain for storing temperature-sensitive products, with
refrigeration alone accounting for up to 30% of global
energy use [5]. At the same time, product deterioration
leads to resource loss and environmental harm. Solid waste
from the global food industry is expected to rise by 70%,
from 2.01 billion tons in 2016 to 3.4 billion tons by 2050
[6]. Improper disposal of spoiled goods can release harmful
substances, threatening ecosystems, public health, and
contributing further to emissions.

In response, many enterprises are shifting toward
sustainable production by optimizing energy consumption
and reducing CO, emissions throughout the product

lifecycle. Recent research has incorporated energy
considerations into the Economic Order Quantity (EOQ)
model, as proposed by F.W. Harris [7]. Research by S.
Zanoni et al. [8] developed a system where a single product
is manufactured on two machines with three buffers. Then,
the study is extended to consider energy usage [9-10] and
carbon emission [11] in both production and idle phases.
Several authors continued to analyze energy impacts in
warchouses, demonstrating that energy costs can constitute
a considerable portion of total inventory expenses [12-13].
More recently, some studies proposed an EPQ-based
model that accounts for energy consumption in both
warehousing and production [14-15]. These studies
underscore a growing academic and practical focus on
minimizing energy usage and carbon emissions in
inventory management.

Most models focus on general items and ignore time-
based deterioration, which is crucial for perishable goods
like food, pharmaceuticals, and chemicals. Effective
inventory control for such items reduces waste and boosts
profitability. The deterioration modeling stems from the
foundational work of R. P. Covert and G. C. Philip [16],
who applied the distribution to describe time-based quality
decay. Their framework has since been extended in many
EOQ/EPQ models for perishable products with constant or
variable deterioration rates as well as in several real-life
case studies [17-21]. In the context of rising emissions,
sustainability-oriented models for deteriorating products
have also emerged. The necessity of incorporating carbon
management into deteriorating inventory systems was
emphasized [22-23]. However, most of these models focus
primarily on economic or carbon costs, while neglecting
energy consumption, a core driver in sustainable
production.

This highlights a significant research gap: existing EPQ
models fail to simultaneously incorporate energy
consumption and product deterioration within a unified
framework. This lack of integration hinders the
formulation of comprehensive inventory strategies that can
jointly minimize costs and advance sustainability
objectives. To address this gap, this study proposes a novel
inventory model with the following contributions:
(1) Develop an EPQ model for deteriorating items that
integrates energy consumption and exponential product
decay, promoting sustainable inventory control.
(2) Evaluate the impact of input costs under full
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backordering to identify key cost drivers in real-world
production. (3) Deliver actionable insights from sensitivity
analysis to support long-term, sustainable decision-
making.

These contributions enrich inventory theory and offer
practical tools for businesses pursuing technological
innovation for sustainable development.

2. Model development

This study proposes an enhanced EPQ model for
deteriorating items in a single-product, single-machine
setting with energy considerations. After production ends,
the machine enters a standby mode that still consumes
energy. The model extends the classical EPQ by
incorporating  product deterioration, modeled via
exponential decay, and allowing for shortages. It captures
energy usage across production, idle, and storage phases
for a comprehensive assessment of energy impacts. The
production rate is adjustable within specified bounds and
remains higher than the constant demand. The objective is
to minimize the total average cost by optimizing cycle
time, production rate, machine utilization, and energy
consumption in all phases.
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Figure 1. Inventory level over the production cycle

2.1. Notations and assumptions

The following notation is used to describe the model:
Parameters

D: demand rate (unit/h);

S: setup cost ($/setup);

H: holding cost per unit ($/(unit.h));

C: unit production cost ($/unit.h);

B: backorder cost ($/(unit.h));

W idle energy consumption (kW);

K: energy consumption for one unit producing
(kWh/unit);

E: energy cost ($/kWh);

a: deterioration rate, assumed to remain constant rate;

T,,: expected warehouse temperature (°C);

T, referenced warehouse temperature (°C);

Thot: outside warehouse temperature (°C);

p: coefficient linking SEC to various storage temperatures;
coefficients

A, . positive dependent on the

characteristics of the warehouse, where p € (0, 1);

o, y: positive coefficients dependent on the filling level
of the warehouse;

Dependent variable
ty: time of production time (h);
t,: time of non-production time (h);
t;. time of consumption sub-time in shortage period (h);
t,: time of production sub-time in shortage period (h);
I: inventory level at time t (unit);
Lnay: maximum storage capacity of the warehouse (unit);
I, stockout demand (units).

Decision variable
P: production rate (unit/h);
t.: cycle time (h);

f : fraction of period length with positive inventory
level, f € (0,1].

The assumption of an inventory model for product life
cycle are as follows: Demand is known and has a constant
rate; The production rate P is bounded within [Puin, Pmax],
with P > D at the beginning of each cycle; Stortages are
allowed with complete backlogging; Lead time is
negligible, and items are available for immedia use after
production; Items begin to deteriorate immediately upon
storage, following an exponential decay with a constant
deterioration rate a; No replacement or repair is performed
for deteriorated items during the cycle; The cost of a
deteriorated item equals the unit production cost C,
including any salvage value; The machine remains idle
during non-production phases, consuming energy.

2.2. Mathematical modeling

As shown in Fig. 1, the inventory level starts at zero at
t = 0 and rises steadily to a maximum , I, , at t = t;.
After production stops at t;, the inventory declines due to
constant demand and exponential deterioration. By t = t,,
the inventory is exhausted. During t5, demand persists but
is unmet, resulting in backorder accumulation. Production
resumes at At t = t,, fulfilling both existing backorders
and ongoing demand. Let a denote the constant
deterioration rate, the inventory level over the entire cycle
[0; t.] is governed by the following system of differential
equations.

dl,

g Teh=P-D,  0<t<t 1)
%+a12=—D, 0<t<t, (2)
%:—D, 0<t<t, 3)
%=P—D, 0<t<t, 4)

The differential equations are solved using Spiegel's
method [24] under the following boundary conditions
I; = 0, the initial inventory, and at t = ty, I, = I,4,; at
t=t,,Iz=0andatt =t3, I, = I, are



ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 9C, 2025 95

o<t<t, ()

D eatz eat
122_[7]’ 0<t<t, (6)

a e
I; = —Dt, 0<t<t; @)
I, = (P —D)t, 0<t<t, (8)
Similarly, t = t; or t, = 0, I,;,4, can be write as:
Imax = % [1- e_atl] (16)
Lnax = B[e“fz - 1] (17)
a

As shown in Fig. 1, the time points ty,t,, t3,t, can be
approximated using linear-cycle assumptions to simplify
calculations. This approach, originally proposed by [16],
addresses the complexity of exact expressions. It was later
refined through the correction method of Newton, which
has been widely adopted in deterioration-related inventory
models. These time variables can then be expressed in
terms of f and ¢, as follows:

D
b= st as)
P-D
b= ft, (19)
=" -t 20)
ty=50-t (21)

Setup cost. Similar to the classical EPQ model, the
setup cost in this model is calculated using the standard
formulation as follows:

S

SC=—

c

Holding cost. The holding cost for deteriorating items

in inventory models is determined by calculating the

inventory level over the time intervals during which stock

is available, specifically t; and t,, and then multiplying

this by the average holding cost per cycle. By substituting

t; and ¢, as defined in Egs. (18) and (19), the holding cost
can be expressed as follows:

_ HDf?t.(P — D) (P —2D)
‘T( tita T) @3

Deterioration cost. Deterioration occurs in t; and t,,
so the cost is calculated as the number of deteriorated units
multiplied by the average unit value per cycle, as given in
Equation (24).

2 —
_ af?t.CD(P D)( +fra (P 31321))) 2

(22)

2P

Backorder cost. Similar to the calculation of
deterioration cost, the backorder cost is defined over the
shortage period (t; + t,). The backorder cost function is
derived as follows:

BC =

B(1 —f)ZtCD ( D) (25)

1——=
2 P

Average related-production energy consumption
cost. The system’s energy consumption comes from two
sources: the production phases (t; and t,) and the non-
production phases (t, and t3).

By using SEC, the average energy consumption cost
during production time (t; and t,) is formulated as (26).
w
ECproa. = (? + K) DE (26)
The energy cost of keeping the machine active during
idle periods, non-production phases, is expressed in Eq. (27).

=L+ =we(1-7) @)

Average related-warehousing energy consumption
cost. The SEC function for warehousing, introduced by
Zanoni et al. [25], depends on the storage level. Marchi et
al.[12] later extended it by considering the impact of
ambient temperature. Base on this, the warehousing energy
cost is define as follows

tc

SEC(T,,1(£)) gy dt

ECnonp.

EChare. = —

cJ0

(28)

The first term, ALk .. represents the baseline SEC
which depends on the reserved storage volume. Here, A
and u € (0;1) are positive coefficients, reflecting the
influence of ambient conditions, required temperature,
warehouse design, and operation. As the maximum volume
of the warehouse increases, SEC decreases. The second
term, & (1 Ok

Imax
cause by underutilized storage space. The coefficients 6

and y determine this effect, indicating that energy
consumption is lower when the warehouse is fully utilized.

)7’, captures the energy inefficiency

The final component, p, is the ratio of coefficients of
performance (COP) for refrigeration systems, defined as:
p= COPr, _ T, Thot — Ty
COPry  Thot — Ty Tw
The maximum inventory level is defined in Eq. (16)

and (17), and the inventory levels at time t, as mentioned
in Eq. (5), (6), (7), and (8), are recorded as follows

(29)

P_
—[1-e™] ifost<ty
={ Dfe%z —e®
1® E[T] ifo<t<t, (30)

0, ift;+t, <tz t, <t,
The elements of (28) can be separated and developed as
follows

te I(t Y
Cware. = [f /Umiglpdt + f 5 <(1 - l( )> plmaxdt]
0

max

= £ 1A + SphnaBO) (31)
Where
4@ =t o) e (32)
B(t) = Bi(t) + By(t) + B3 4(t) (33)
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tc D
Bi(t) = [t >
y+1DP
_ft (P - D)
BZ (t) - (y + 1) 2
Bya(t) =1 -flt.
After the simplification, (31) can be yielded as

P-D ~htl

ECyare. = M0E D (—=) f]
)11 G

The average total cost of the system in this case is
calculated as the sum of the Setup Cost, Holding Cost,
Deterioration Cost, Backorder Cost, Energy Consumption
Cost, and, as expressed in Eq. (35).

S HDf*t.(P-D
ATC (t.,f,P) = —+M

+ 6ptCED(

(1 + ftca w)

te 2P 3P

af?t,CD(P — D) (P —2D)

_ 2
+B(1 et

2 D(l_g)

+ (W+K>DE+WE<1 D)
P P

2]
+ 8pt.ED (?) (1 - %) (35)

3. Resolution approach

The objective of the model is to minimize the average
total cost function (35) by determining the optimum values
of the production rate (P), the cycle time (t.), and fraction
of period length (f). The problem can be summarized as
follows:

Minimize ATC (t., P, f)
Subject to
Pmin sP< Pmax'

0<f<1

We can use commercial solvers for NLP problems (e.g.,
LINGO, MATLAB) to find the two optimal
values: ATC (t;, Ppin, f) and  ATC (t;, Pnax, f). The
optimal solution is the smallest value among these two
values. Finally, we have the optimal decision values for
te, P*, .

4. Numerical Analysis

A numerical analysis has been carried out to
demonstrate the model's properties. The process includes:
(1) Implementing the resolution procedure for a specific
case using existing research data. (2) Analyzing the impact
of energy components on the production inventory model
by comparing the energy-based EPQ model with
deterioration items to the traditional EPQ model with
deterioration items. (3) Conducting a sensitivity analysis to
examine how input parameters influence the total cost and
decision variables.

4.1. Numerical examples

The input parameters related to the manufacturing
process (i.e.D, S, Ppin, Pnax, W) and the input parameters
related to warehousing (i.e. 4, i, §,y) have been obtained
from Nguyen et al. [14] and the parameter of deterioration
(a, C) from Misra [26]. Table 1 summarizes the data set
used in all the examples presented in this section.

Table 1. Input parameters for the numerical examples

D 100 unit/h a 0.02

S 300 $/h A 445-107%

H 1-107° $/unit - h u 0.23

w 100 1474 é 171.2-107*

K 0.05 kWh /unit y 0.5

E 0.2 $/(kWh) Tw -18 °C
B 0.01 $/unit-h T 6 °C
c 3 $/unit-h Tyt 16 °C
P [200:500] unit/h

The optimal solution based on the given input
parameters is shown in Fig. 2, which also demonstrates the
concave nature of the average total cost function with
respect to P. Based on the solution approach presented in
the previous section, the function ATC(t,, P, f ) attains its
minimum at t; = 18451 h, P* = P,,;,, f* = 0.057 with
the optimal value ATC*(t.,P,f) = 53.678 ($/h) . The
optimal solution obtained will be used to compare with the
traditional EPQ model considering deterioration, in order
to evaluate its effectiveness.

e |
[ ey
L»t glitjmal solutiop, |
mal so f
~—~

ATC

Figure 2. Average total cost with the variation fand t.

4.2. Impact of Energy-Related Factors on the Traditional
EPQ Model with Deterioration

To examine the impact of energy factors on production
and inventory storage, two models are analyzed: (1) the
traditional EPQ model with deterioration (EPQ-D) and (2)
an extended EPQ model that includes energy consumption
in both production and storage (EEPQ-D). This
comparison evaluates inventory policies and economic
performance, serving as a basis for further discussion.

In the EPQ-D model, the average total cost is
formulated based on traditional cost components, as
defined by Eq. (22) — (25). The comparison results are
presented in Table 2, with all input parameters specified in
Table 1. The sum of setup cost and holding cost is labeled
as Traditional cost (Cyrqq), Whereas the total energy-
related costs in production and storage are denoted as
Energy cost (EC) and Deterioration cost (DC).
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Table 2. Optimal solutions and component costs of two model

P* t2  ATC  Cpeq EC  DC
EEPQ-D 200 0.057 18.451 53.678 16260 33.224 0.089
EPQ-D 200 0.143 37412 62.174 8.026 46.136 1.142

Base on the result in Table 2, both models achieve the
same optimal production quantity (P* = 200). However,
the EEPQ-D model has a shorter production cycle (t.) and
a lower production time ratio (f) compared to the EPQ-D
model. This results in more frequent setups but shorter
machine operating periods, leading to notable energy
savings. Notably, the deterioration cost in the EEPQ-D
model is only 0.089 ($/h) — 92.24% lower than the
1.142 ($/h) observed in the EPQ-D model. The reduced
value of f shortens the deterioration period, thereby
lowering losses and preserving inventory value. Although
the traditional cost in the EEPQ-D model is higher
(16.260 ($/h) vs 8.026($/h), its energy cost is
substantially lower at 33.224 ($/h) compared to
46.136 ($/h) in the EPQ-D model (a reduction of
27.98%). As a result, the EEPQ-D model achieves a lower
total average cost of 53.678 ($/h), which is 13.66% less
than the 62.174 ($/h) in the EPQ-D. These results
highlight that incorporating energy considerations not only
reduces total cost but also minimizes deterioration, making
the system more efficient and sustainable — especially in
energy-intensive settings.

4.3. Sensitivity analysis

Changes in parameter values can significantly affect
system performance. To assess their impact, this study
conducts a sensitivity analysis by varying one parameter at
a time while keeping others fixed, based on the numerical
results presented earlier. Parameters are grouped into three
categories: group 1 includes general production parameters
(S,H,C,B, D), group 2 includes energy consumption and
deterioration factors (K,W,E,a); group 3 includes
inventory storage energy parameters (T, p, 4, 4,8,¥)

8
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4 + C

Percentage Change in Total Cost (%)
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Figure 3. Impact of varying Group 1 on the total cost

The analysis shows that demand (D) is the most
influential factor affecting total cost, followed by setup
cost (S). Specifically, increasing D and S by 25% leads to
a 6% increase in total cost, while reducing them by 25%
results in an 8% decrease. This highlights the significant
impact of market demand on total cost, which is consistent
with real-world production environments. Backorder cost
(B) also shows a noticeable effect, with a 25% increase in
B causing total cost to rise by approximately 2%. In

contrast, holding cost (H) and unit production cost (C)
have minimal influence, contributing less than 1% to total
cost variation under similar changes.

In group 2, energy cost (E) has the greatest impact,
increasing total cost by 15%, confirming the critical role of
energy in the model. Combined with the influence of setup
cost, this underscores the need to choose energy-efficient
machines. Idle energy consumption (W) is also important,
highlighting the value of managing standby energy. In
contrast, the deterioration rate () has minimal effect, as
the model already minimizes time-related losses.

151 - W —e— E

—— K alpha
10

Percentage Change in Total Cost (%)
o

-25 -20 -15 -10 -5 0 5 10 15 20 25
Percentage Change in Parameter (%)

Figure 4. Impact of varying Group 2 on the total cost

In group 3 energy efficiency (p), warehouse
temperature (7,,), and storage utilization factors (&,y)
significantly influence total cost approximately 4 - 6%,
while ¢ and A have minimal impact. Therefore, optimizing
warchouse temperature, energy efficiency, and storage
utilization is key to reducing costs.

—o— T, (°C)

4 P
—A—

Percentage Change in ATC (%)
f=]
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Percentage Change in Parameter (%)

Figure 5. Impact of varying Group 3 on the total cost

5. Conclusion

This study proposes an enhanced EPQ model that
integrates energy consumption, product deterioration, and
backordering to better reflect real-world production
environments. The model systematically considers energy
usage during both production and storage stages and
applies an exponential decay function to represent product
deterioration, thereby improving the accuracy and
practicality of inventory decision-making. Numerical
results indicate that integrating energy costs into the
deterioration inventory model results in significant cost
savings and improved operational efficiency. From a
managerial perspective, the findings highlight the
importance of accurate demand forecasting and responsive
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production planning to manage demand variability. The
important factors according to the study are energy cost
and setup costs thus emphasizing the importance of using
energy-efficient machinery and scheduling methods along
with energy-efficient operational practices. In addition,
maintaining optimal storage conditions and inventory
levels is essential for minimizing deterioration and
reducing energy waste in warehousing operations.

Future research may extend this model by
incorporating variable deterioration rates for greater
realism, expanding to multi-stage supply chains for
coordinated decisions, and including transportation energy
use to capture total system energy costs. Further integration
of carbon emissions and renewable energy could
strengthen the model's sustainability focus.
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