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Abstract - This study presents an enhanced Economic Production 

Quantity (EPQ) model that incorporates energy consumption and 

product deterioration to promote sustainable operations. The 

model simultaneously considers energy use during production 

and storage phases, deterioration behavior modeled by 

exponential decay, and a full backordering policy. It captures the 

interactions between inventory levels, energy efficiency, and 

product quality loss to better reflect real industrial conditions. 

Numerical analysis shows that integrating energy-related costs 

significantly reduces total expenses and minimizes deterioration 

losses. The findings underscore the importance of setup and 

energy costs in production planning and highlight energy 

efficiency as a key technological innovation for sustainable 

manufacturing. The proposed model offers practical guidance for 

industries striving to align economic objectives with 

environmental goals. 
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1. Introduction and Literature review 

The global energy crisis, exacerbated by geopolitical 

instability, has intensified the urgent need to optimize 

energy usage and reduce greenhouse gas emissions across 

supply chains. In 2022, the industrial sector accounted for 

26% of global CO2 emissions (~9 Gt CO2) and remained 

the largest energy consumer [1]. By 2023, global energy 

consumption rose by 2.2%, with manufacturing and 

construction contributing 57% of total emissions [2]. 

Emissions from fossil fuels and industrial activities are 

projected to reach a record 37.41 Gt CO2 by 2024 [3]. 

Despite ongoing government mitigation efforts, industrial 

demand continues to drive 75% of post-COVID energy 

growth and is expected to account for two-thirds of the 

2.5% increase in global gas demand in 2024 [4]. 

A large share of industrial energy is used in cold supply 

chain for storing temperature-sensitive products, with 

refrigeration alone accounting for up to 30% of global 

energy use [5]. At the same time, product deterioration 

leads to resource loss and environmental harm. Solid waste 

from the global food industry is expected to rise by 70%, 

from 2.01 billion tons in 2016 to 3.4 billion tons by 2050 

[6]. Improper disposal of spoiled goods can release harmful 

substances, threatening ecosystems, public health, and 

contributing further to emissions. 

In response, many enterprises are shifting toward 

sustainable production by optimizing energy consumption 

and reducing CO2 emissions throughout the product 

lifecycle. Recent research has incorporated energy 

considerations into the Economic Order Quantity (EOQ) 

model, as proposed by F.W. Harris [7]. Research by S. 

Zanoni et al. [8] developed a system where a single product 

is manufactured on two machines with three buffers. Then, 

the study is extended to consider energy usage [9-10]  and 

carbon emission [11] in both production and idle phases. 

Several authors continued to analyze energy impacts in 

warehouses, demonstrating that energy costs can constitute 

a considerable portion of total inventory expenses [12-13]. 

More recently, some studies proposed an EPQ-based 

model that accounts for energy consumption in both 

warehousing and production [14-15]. These studies 

underscore a growing academic and practical focus on 

minimizing energy usage and carbon emissions in 

inventory management.  

Most models focus on general items and ignore time-

based deterioration, which is crucial for perishable goods 

like food, pharmaceuticals, and chemicals. Effective 

inventory control for such items reduces waste and boosts 

profitability. The deterioration modeling stems from the 

foundational work of R. P. Covert and G. C. Philip [16], 

who applied the distribution to describe time-based quality 

decay. Their framework has since been extended in many 

EOQ/EPQ models for perishable products with constant or 

variable deterioration rates as well as in several real-life 

case studies [17-21]. In the context of rising emissions, 

sustainability-oriented models for deteriorating products 

have also emerged. The necessity of incorporating carbon 

management into deteriorating inventory systems was 

emphasized [22-23]. However, most of these models focus 

primarily on economic or carbon costs, while neglecting 

energy consumption, a core driver in sustainable 

production. 

This highlights a significant research gap: existing EPQ 

models fail to simultaneously incorporate energy 

consumption and product deterioration within a unified 

framework. This lack of integration hinders the 

formulation of comprehensive inventory strategies that can 

jointly minimize costs and advance sustainability 

objectives. To address this gap, this study proposes a novel 

inventory model with the following contributions:  

(1) Develop an EPQ model for deteriorating items that 

integrates energy consumption and exponential product 

decay, promoting sustainable inventory control. 

(2) Evaluate the impact of input costs under full 
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backordering to identify key cost drivers in real-world 

production. (3) Deliver actionable insights from sensitivity 

analysis to support long-term, sustainable decision-

making. 

These contributions enrich inventory theory and offer 

practical tools for businesses pursuing technological 

innovation for sustainable development. 

2. Model development 

This study proposes an enhanced EPQ model for 

deteriorating items in a single-product, single-machine 

setting with energy considerations. After production ends, 

the machine enters a standby mode that still consumes 

energy. The model extends the classical EPQ by 

incorporating product deterioration, modeled via 

exponential decay, and allowing for shortages. It captures 

energy usage across production, idle, and storage phases 

for a comprehensive assessment of energy impacts. The 

production rate is adjustable within specified bounds and 

remains higher than the constant demand. The objective is 

to minimize the total average cost by optimizing cycle 

time, production rate, machine utilization, and energy 

consumption in all phases. 

 

Figure 1. Inventory level over the production cycle 

2.1. Notations and assumptions 

The following notation is used to describe the model: 

Parameters 

D: demand rate (unit/h); 

𝑆: setup cost ($/setup); 

𝐻: holding cost per unit ($/(unit.h)); 

𝐶: unit production cost ($/unit.h); 

𝐵: backorder cost ($/(unit.h)); 

𝑊: idle energy consumption (kW); 

𝐾: energy consumption for one unit producing 

(kWh/unit); 

𝐸: energy cost ($/kWh); 

𝛼: deterioration rate, assumed to remain constant rate; 

𝑇𝑤: expected warehouse temperature (°C); 

𝑇𝑟: referenced warehouse temperature (°C);  

𝑇ℎ𝑜𝑡: outside warehouse temperature (°C);  

ρ: coefficient linking SEC to various storage temperatures;  

, : positive coefficients dependent on the 

characteristics of the warehouse, where  ∈ (0, 1);  

δ, γ: positive coefficients dependent on the filling level 

of the warehouse; 

Dependent variable 

𝑡1: time of production time (h); 

𝑡2: time of non-production time (h); 

𝑡3: time of consumption sub-time in shortage period (h); 

𝑡4: time of production sub-time in shortage period (h); 

𝐼: inventory level at time t (unit); 

𝐼𝑚𝑎𝑥: maximum storage capacity of the warehouse (unit); 

𝐼𝑏: stockout demand (units). 

Decision variable 

𝑃: production rate (unit/h); 

𝑡𝑐: cycle time (h); 

𝑓 : fraction of period length with positive inventory 

level, 𝑓 ∈  (0, 1]. 

The assumption of an inventory model for product life 

cycle are as follows: Demand is known and has a constant 

rate; The production rate 𝑃 is bounded within [Pmin, Pmax], 

with 𝑃 > 𝐷 at the beginning of each cycle; Stortages are 

allowed with complete backlogging; Lead time is 

negligible, and items are available for immedia use after 

production; Items begin to deteriorate immediately upon 

storage, following an exponential decay with a constant 

deterioration rate α; No replacement or repair is performed 

for deteriorated items during the cycle; The cost of a 

deteriorated item equals the unit production cost 𝐶, 

including any salvage value; The machine remains idle 

during non-production phases, consuming energy. 

2.2. Mathematical modeling 

As shown in Fig. 1, the inventory level starts at zero at 

𝑡 = 0 and rises steadily to a maximum ,  𝐼𝑚𝑎𝑥  , at 𝑡 = 𝑡1. 

After production stops at 𝑡1, the inventory declines due to 

constant demand and exponential deterioration. By 𝑡 = 𝑡2, 

the inventory is exhausted. During 𝑡3, demand persists but 

is unmet, resulting in backorder accumulation. Production 

resumes at At 𝑡 = 𝑡4, fulfilling both existing backorders 

and ongoing demand. Let 𝛼 denote the constant 

deterioration rate, the inventory level over the entire cycle 
[0; 𝑡𝑐] is governed by the following system of differential 

equations. 

 
𝑑𝐼1
𝑑𝑡

+ α𝐼1 = 𝑃 − 𝐷, 0 ≤ 𝑡 ≤ 𝑡1 (1) 

 
𝑑𝐼2
𝑑𝑡

+ 𝛼𝐼2 = −𝐷, 0 ≤ 𝑡 ≤ 𝑡2 (2) 

 
𝑑𝐼3
𝑑𝑡

= −𝐷, 0 ≤ 𝑡 ≤ 𝑡3 (3) 

 
𝑑𝐼4
𝑑𝑡

= 𝑃 − 𝐷, 0 ≤ 𝑡 ≤ 𝑡4 (4) 

The differential equations are solved using Spiegel's 

method [24] under the following boundary conditions 

𝐼1 = 0, the initial inventory, and at 𝑡 = 𝑡1, 𝐼2 = 𝐼𝑚𝑎𝑥; at 

𝑡 = 𝑡2, 𝐼3 = 0 and at 𝑡 = 𝑡3, 𝐼4 = 𝐼𝑏 , are 
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 𝐼1 =
𝑃 − 𝐷

𝛼
[1 − 𝑒−𝛼𝑡], 0 ≤ 𝑡 ≤ 𝑡1 (5) 

 𝐼2 = 
𝐷

𝛼
[
𝑒αt2 − 𝑒𝛼𝑡

𝑒𝛼𝑡
] , 0 ≤ 𝑡 ≤ 𝑡2 (6) 

 𝐼3 = −𝐷𝑡, 0 ≤ 𝑡 ≤ 𝑡3 (7) 

 𝐼4 = (𝑃 − 𝐷)𝑡, 0 ≤ 𝑡 ≤ 𝑡4 (8) 
Similarly, 𝑡 = 𝑡1 or 𝑡2 = 0, 𝐼𝑚𝑎𝑥  can be write as: 

 𝐼𝑚𝑎𝑥 = 
𝑃 − 𝐷

𝛼
[1 − 𝑒−𝛼𝑡1] (16) 

 𝐼𝑚𝑎𝑥 = 
𝐷

𝛼
[𝑒𝛼𝑡2 − 1]  (17) 

As shown in Fig. 1, the time points 𝑡1, 𝑡2, 𝑡3, 𝑡4 can be 

approximated using linear-cycle assumptions to simplify 

calculations. This approach, originally proposed by [16], 

addresses the complexity of exact expressions. It was later 

refined through the correction method of Newton, which 

has been widely adopted in deterioration-related inventory 

models. These time variables can then be expressed in 

terms of 𝑓 and  𝑡𝑐 as follows: 

𝑡1 =
𝐷

𝑃
𝑓𝑡𝑐 (18) 

𝑡2 =
𝑃 − 𝐷

𝑃
𝑓𝑡𝑐 (19) 

𝑡3 =
𝑃 − 𝐷

𝑃
(1 − 𝑓)𝑡𝑐 (20) 

𝑡4 =
𝐷

𝑃
(1 − 𝑓)𝑡𝑐 (21) 

Setup cost. Similar to the classical EPQ model, the 

setup cost in this model is calculated using the standard 

formulation as follows: 

 𝑆𝐶 =
𝑆

𝑡𝑐
 (22) 

Holding cost. The holding cost for deteriorating items 

in inventory models is determined by calculating the 

inventory level over the time intervals during which stock 

is available, specifically 𝑡1 and 𝑡2, and then multiplying 

this by the average holding cost per cycle. By substituting 

𝑡1 and 𝑡2 as defined in Eqs. (18) and (19), the holding cost 

can be expressed as follows: 

𝐻𝐶 =
𝐻𝐷𝑓2𝑡𝑐(𝑃 − 𝐷)

2𝑃
(1 + 𝑓𝑡𝑐𝛼

(𝑃 − 2𝐷)

3𝑃
)        (23) 

Deterioration cost. Deterioration occurs in 𝑡1 and 𝑡2, 

so the cost is calculated as the number of deteriorated units 

multiplied by the average unit value per cycle, as given in 

Equation (24). 

𝐷𝐶 =
𝛼𝑓2𝑡𝑐𝐶𝐷(𝑃 − 𝐷)

2𝑃
(1 + 𝑓𝑡𝑐𝛼

(𝑃 − 2𝐷)

3𝑃
)      (24) 

Backorder cost. Similar to the calculation of 

deterioration cost, the backorder cost is defined over the 

shortage period (𝑡3 + 𝑡4). The backorder cost function is 

derived as follows: 

 𝐵𝐶 =
𝐵(1 − 𝑓)2𝑡𝑐

2
𝐷 (1 −

𝐷

𝑃
) (25) 

Average related-production energy consumption 

cost. The system’s energy consumption comes from two 

sources: the production phases (𝑡1 and 𝑡4) and the non-

production phases (𝑡2 and 𝑡3).  

By using SEC, the average energy consumption cost 

during production time (𝑡1 and 𝑡4) is formulated as (26).  

 𝐸𝐶𝑝𝑟𝑜𝑑. = (
𝑊

𝑃
+ 𝐾)𝐷𝐸 (26) 

The energy cost of keeping the machine active during 

idle periods, non-production phases, is expressed in Eq. (27). 

 𝐸𝐶𝑛𝑜𝑛𝑝. =
𝑊𝐸

𝑡𝑐
(𝑡2 + 𝑡3) = 𝑊𝐸 (1 −

𝐷

𝑃
) (27) 

Average related-warehousing energy consumption 

cost. The SEC function for warehousing, introduced by 

Zanoni et al. [25], depends on the storage level. Marchi et 

al.[12] later extended it by considering the impact of 

ambient temperature. Base on this, the warehousing energy 

cost is define as follows 

 
𝐸𝐶𝑤𝑎𝑟𝑒. =

𝐸

𝑡𝑐
∫ 𝑆𝐸𝐶(𝑇𝑤𝐼(𝑡))𝐼𝑚𝑎𝑥𝑑𝑡 
𝑡𝑐

0

 (28) 

The first term, 𝜆𝐼𝑚𝑎𝑥
−𝜇

, represents the baseline SEC 

which depends on the reserved storage volume. Here, λ  

and 𝜇 ∈ (0; 1) are positive coefficients, reflecting the 

influence of ambient conditions, required temperature, 

warehouse design, and operation. As the maximum volume 

of the warehouse increases, SEC decreases. The second 

term, 𝛿 (1 −
𝐼(𝑡)

𝐼𝑚𝑎𝑥
) 𝛾, captures the energy inefficiency 

cause by underutilized storage space. The coefficients δ 

and γ  determine this effect, indicating that energy 

consumption is lower when the warehouse is fully utilized.  

The final component, ρ, is the ratio of coefficients of 

performance (COP) for refrigeration systems, defined as: 

 𝜌 =
𝐶𝑂𝑃𝑇𝑟
𝐶𝑂𝑃𝑇𝑤

=
𝑇𝑟

𝑇ℎ𝑜𝑡 − 𝑇𝑟

𝑇ℎ𝑜𝑡 − 𝑇𝑤
𝑇𝑤

 (29) 

The maximum inventory level is defined in Eq. (16) 

and (17), and the inventory levels at time t, as mentioned 

in Eq. (5), (6), (7), and (8), are recorded as follows 

𝐼(𝑡) =

{
 
 

 
 
𝑃 − 𝐷

𝛼
[1 − 𝑒−𝛼𝑡],   𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡1

𝐷

𝛼
[
𝑒αt2 − 𝑒𝛼𝑡

𝑒𝛼𝑡
] ,   𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡2

0,   𝑖𝑓 𝑡1 + 𝑡2 < 𝑡3, 𝑡4 ≤ 𝑡𝑐

              (30) 

The elements of (28) can be separated and developed as 

follows 

𝐸𝐶𝑤𝑎𝑟𝑒. =
𝐸

𝑡𝑐
[∫ 𝜆𝐼𝑚𝑎𝑥

−𝜇+1
𝜌𝑑𝑡 + ∫ 𝛿

𝑡𝑐

0

((1 −
𝐼(𝑡)

𝐼𝑚𝑎𝑥
)

𝛾

𝜌𝐼𝑚𝑎𝑥𝑑𝑡
𝑡𝑐

0

] 

 =
𝐸

𝑡𝑐
[𝐴(𝑡) + 𝛿𝜌𝐼𝑚𝑎𝑥𝐵(𝑡)] (31) 

Where 

𝐴(𝑡) = 𝜆𝜌𝑡𝑐 [𝐷 (
𝑃 − 𝐷

𝑃
) 𝑓𝑡𝑐]

−𝜇+1

 (32) 

𝐵(𝑡) = 𝐵1(𝑡) + 𝐵2(𝑡) + 𝐵3,4(𝑡) (33) 
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𝐵1(𝑡) =
𝑓𝑡𝑐

(𝛾 + 1)

𝐷

𝑃
  

𝐵2(𝑡) =
𝑓𝑡𝑐

(𝛾 + 1)
(
𝑃 − 𝐷

𝑃
)  

𝐵3,4(𝑡) = (1 − 𝑓)𝑡𝑐  

After the simplification, (31) can be yielded as 

𝐸𝐶𝑤𝑎𝑟𝑒. =  𝜆𝜌𝐸 [𝐷 (
𝑃 − 𝐷

𝑃
) 𝑓𝑡𝑐]

−𝜇+1

+  𝛿𝜌𝑡𝑐𝐸𝐷 (
𝑃 − 𝐷

𝑃
) (1 −

𝛾𝑓

𝛾 + 1
)   (34) 

The average total cost of the system in this case is 

calculated as the sum of the Setup Cost, Holding Cost, 

Deterioration Cost, Backorder Cost, Energy Consumption 

Cost, and, as expressed in Eq. (35). 

𝐴𝑇𝐶 (𝑡𝑐 , 𝑓, 𝑃) =  
𝑆

𝑡𝑐
+
𝐻𝐷𝑓2𝑡𝑐(𝑃 − 𝐷)𝜌

2𝑃
(1 + 𝑓𝑡𝑐𝛼

(𝑃 − 2𝐷)

3𝑃
) 

                          +
𝛼𝑓2𝑡𝑐𝐶𝐷(𝑃 − 𝐷)

2𝑃
(1 + 𝑓𝑡𝑐𝛼

(𝑃 − 2𝐷)

3𝑃
) 

                           + 
𝐵(1 − 𝑓)2𝑡𝑐

2
𝐷 (1 −

𝐷

𝑃
) 

                           + (
𝑊

𝑃
+ 𝐾)𝐷𝐸 +𝑊𝐸 (1 −

𝐷

𝑃
) 

                          + 𝜆𝜌𝐸 [𝐷 (
𝑃 − 𝐷

𝑃
) 𝑓𝑡𝑐]

−𝜇+1

 

                           + 𝛿𝜌𝑡𝑐𝐸𝐷 (
𝑃 − 𝐷

𝑃
) (1 −

𝛾𝑓

𝛾 + 1
)                 (35) 

3. Resolution approach 

The objective of the model is to minimize the average 

total cost function (35) by determining the optimum values 

of the production rate (𝑃), the cycle time (𝑡𝑐), and fraction 

of period length (𝑓). The problem can be summarized as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐴𝑇𝐶(𝑡𝑐 , 𝑃, 𝑓 ) 

Subject to 

𝑃𝑚𝑖𝑛  ≤  𝑃 ≤  𝑃𝑚𝑎𝑥 , 0 < 𝑓 < 1 

We can use commercial solvers for NLP problems (e.g., 

LINGO, MATLAB) to find the two optimal 

values: 𝐴𝑇𝐶(𝑡𝑐, 𝑃𝑚𝑖𝑛 , 𝑓) and 𝐴𝑇𝐶 (𝑡𝑐, 𝑃𝑚𝑎𝑥 , 𝑓). The 

optimal solution is the smallest value among these two 

values. Finally, we have the optimal decision values for 

𝑡𝑐
∗, 𝑃∗, 𝑓∗. 

4. Numerical Analysis 

A numerical analysis has been carried out to 

demonstrate the model's properties. The process includes: 

(1) Implementing the resolution procedure for a specific 

case using existing research data. (2) Analyzing the impact 

of energy components on the production inventory model 

by comparing the energy-based EPQ model with 

deterioration items to the traditional EPQ model with 

deterioration items. (3) Conducting a sensitivity analysis to 

examine how input parameters influence the total cost and 

decision variables. 

4.1. Numerical examples 

The input parameters related to the manufacturing 

process (𝑖. 𝑒. 𝐷, 𝑆, 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥 ,𝑊) and the input parameters 

related to warehousing (𝑖. 𝑒. 𝜆, 𝜇, 𝛿, 𝛾) have been obtained 

from Nguyen et al. [14] and the parameter of deterioration 

(𝛼, 𝐶) from Misra [26]. Table 1 summarizes the data set 

used in all the examples presented in this section. 

Table 1. Input parameters for the numerical examples 

𝐷 100 𝑢𝑛𝑖𝑡/ℎ 𝛼 0.02  

𝑆 300 $/ℎ 𝜆 445 ∙ 10−4  

𝐻 1 ∙ 10−5 $/𝑢𝑛𝑖𝑡 ∙ ℎ 𝜇 0.23  

𝑊 100 𝑘𝑊 𝛿 171.2 ∙ 10−4  

𝐾 0.05 𝑘𝑊ℎ/𝑢𝑛𝑖𝑡 𝛾 0.5  

𝐸 0.2 $/(𝑘𝑊ℎ) 𝑇𝑤 −18 °𝐶 

𝐵 0.01 $/𝑢𝑛𝑖𝑡 ∙ ℎ 𝑇𝑟 6 °𝐶 

𝐶 3 $/𝑢𝑛𝑖𝑡 ∙ ℎ 𝑇ℎ𝑜𝑡 16 °𝐶 

𝑃 [200:500] 𝑢𝑛𝑖𝑡/ℎ    

The optimal solution based on the given input 

parameters is shown in Fig. 2, which also demonstrates the 

concave nature of the average total cost function with 

respect to 𝑃. Based on the solution approach presented in 

the previous section, the function 𝐴𝑇𝐶(𝑡𝑐, 𝑃, 𝑓 ) attains its 

minimum at 𝑡𝑐
∗ = 18.451 ℎ, 𝑃∗ = 𝑃𝑚𝑖𝑛 , 𝑓

∗ = 0.057 with 

the optimal value 𝐴𝑇𝐶∗(𝑡𝑐 , 𝑃, 𝑓) = 53.678 ($/ℎ) . The 

optimal solution obtained will be used to compare with the 

traditional EPQ model considering deterioration, in order 

to evaluate its effectiveness. 

 

Figure 2. Average total cost with the variation f and tc 

4.2. Impact of Energy-Related Factors on the Traditional 

EPQ Model with Deterioration 

To examine the impact of energy factors on production 

and inventory storage, two models are analyzed: (1) the 

traditional EPQ model with deterioration (EPQ-D) and (2) 

an extended EPQ model that includes energy consumption 

in both production and storage (EEPQ-D). This 

comparison evaluates inventory policies and economic 

performance, serving as a basis for further discussion.  

In the EPQ-D model, the average total cost is 

formulated based on traditional cost components, as 

defined by Eq. (22) – (25). The comparison results are 

presented in Table 2, with all input parameters specified in 

Table 1. The sum of setup cost and holding cost is labeled 

as Traditional cost (𝐶𝑡𝑟𝑎𝑑.), whereas the total energy-

related costs in production and storage are denoted as 

Energy cost  (𝐸𝐶)  and Deterioration cost (𝐷𝐶). 
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Table 2. Optimal solutions and component costs of two model 
 

𝑃∗ 𝑓∗ 𝑡𝑐
∗ ATC 𝐶𝑡𝑟𝑎𝑑. 𝐸𝐶 𝐷𝐶 

EEPQ-D 200 0.057 18.451 53.678 16.260 33.224 0.089 

EPQ-D 200 0.143 37.412 62.174 8.026 46.136 1.142 

Base on the result in Table 2, both models achieve the 

same optimal production quantity (𝑃∗ = 200). However, 

the EEPQ-D model has a shorter production cycle (𝑡𝑐) and 

a lower production time ratio (𝑓) compared to the EPQ-D 

model. This results in more frequent setups but shorter 

machine operating periods, leading to notable energy 

savings. Notably, the deterioration cost in the EEPQ-D 

model is only 0.089 ($/ℎ)  −  92.24% lower than the 

1.142 ($/ℎ) observed in the EPQ-D model. The reduced 

value of 𝑓 shortens the deterioration period, thereby 

lowering losses and preserving inventory value. Although 

the traditional cost in the EEPQ-D model is higher 

(16.260 ($/ℎ) vs 8.026($/ℎ), its energy cost is 

substantially lower at 33.224 ($/ℎ) compared to 

46.136 ($/ℎ)  in the EPQ-D model (a reduction of 

27.98%). As a result, the EEPQ-D model achieves a lower 

total average cost of 53.678 ($/ℎ), which is 13.66% less 

than the 62.174 ($/ℎ) in the EPQ-D. These results 

highlight that incorporating energy considerations not only 

reduces total cost but also minimizes deterioration, making 

the system more efficient and sustainable – especially in 

energy-intensive settings. 

4.3. Sensitivity analysis 

Changes in parameter values can significantly affect 

system performance. To assess their impact, this study 

conducts a sensitivity analysis by varying one parameter at 

a time while keeping others fixed, based on the numerical 

results presented earlier. Parameters are grouped into three 

categories: group 1 includes general production parameters 
(𝑆, 𝐻, 𝐶, 𝐵, 𝐷); group 2 includes energy consumption and 

deterioration factors (𝐾,𝑊, 𝐸, 𝛼); group 3 includes 

inventory storage energy parameters (𝑇𝑤 , 𝜌, 𝜇, 𝜆, 𝛿, 𝛾) 

 

Figure 3. Impact of varying Group 1 on the total cost 

The analysis shows that demand (𝐷) is the most 

influential factor affecting total cost, followed by setup 

cost (𝑆). Specifically, increasing 𝐷 and 𝑆 by 25% leads to 

a 6% increase in total cost, while reducing them by 25% 

results in an 8% decrease. This highlights the significant 

impact of market demand on total cost, which is consistent 

with real-world production environments. Backorder cost 

(𝐵) also shows a noticeable effect, with a 25% increase in 

𝐵 causing total cost to rise by approximately 2%. In 

contrast, holding cost (𝐻) and unit production cost (𝐶) 
have minimal influence, contributing less than 1% to total 

cost variation under similar changes. 

In group 2, energy cost (𝐸) has the greatest impact, 

increasing total cost by 15%, confirming the critical role of 

energy in the model. Combined with the influence of setup 

cost, this underscores the need to choose energy-efficient 

machines. Idle energy consumption (𝑊) is also important, 

highlighting the value of managing standby energy. In 

contrast, the deterioration rate (𝛼) has minimal effect, as 

the model already minimizes time-related losses. 

 

Figure 4. Impact of varying Group 2 on the total cost 

In group 3 energy efficiency (𝜌), warehouse 

temperature (𝑇𝑤), and storage utilization factors (𝛿, 𝛾) 
significantly influence total cost approximately 4 - 6%, 

while 𝜇 and λ have minimal impact. Therefore, optimizing 

warehouse temperature, energy efficiency, and storage 

utilization is key to reducing costs. 

 

Figure 5. Impact of varying Group 3 on the total cost 

5. Conclusion 

This study proposes an enhanced EPQ model that 

integrates energy consumption, product deterioration, and 

backordering to better reflect real-world production 

environments. The model systematically considers energy 

usage during both production and storage stages and 

applies an exponential decay function to represent product 

deterioration, thereby improving the accuracy and 

practicality of inventory decision-making. Numerical 

results indicate that integrating energy costs into the 

deterioration inventory model results in significant cost 

savings and improved operational efficiency. From a 

managerial perspective, the findings highlight the 

importance of accurate demand forecasting and responsive 



98 Le Cam Tu Nguyen, Hong Nguyen Nguyen, Van Tien Duong, Nhan Quy Nguyen 

 

production planning to manage demand variability. The 

important factors according to the study are energy cost 

and setup costs thus emphasizing the importance of  using 

energy-efficient machinery and scheduling methods along 

with energy-efficient operational practices. In addition, 

maintaining optimal storage conditions and inventory 

levels is essential for minimizing deterioration and 

reducing energy waste in warehousing operations. 

Future research may extend this model by 

incorporating variable deterioration rates for greater 

realism, expanding to multi-stage supply chains for 

coordinated decisions, and including transportation energy 

use to capture total system energy costs. Further integration 

of carbon emissions and renewable energy could 

strengthen the model's sustainability focus. 
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