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Abstract - Motor unit decomposition from HD-sEMG (high
density surface electromyography) provides valuable information
for reviewing the neuromuscular system. The purpose of this
study was to implement and validate the framework of the
convolutional blind source separation proposed by Negro [1]. We
tested on the Hyser (High densitY Surface Electromyogram)
dataset with healthy subjects that perform low force finger
movements during the execution of a task performed with a
system of HD sEMG of 256 channels. Motor units were extracted
using 3-second sliding windows with strict quality criteria
(silhouette score >0.85). Decomposition yielded 4,536 quality
motor units with a mean silhouette score of 0.926+0.023. The
test-retest reliability indicated moderate stability of quality
assessed parameters (ICC=0.52-0.59), whereas appropriately
variable firing characteristics (ICC<0.10), confirming that the
algorithm produced consistent outputs while still able to detect
the temporal discharge variability.
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1. Introduction
1.1. Background and clinical context

Motor unit behavior remains a fundamental area of
understanding of human neuromuscular function and
control of movement. Since this area of study was first
examined by Adrian and Bronk in 1929 [2], recording and
analysis of motor unit discharge during voluntary
contractions has greatly advanced our understanding of the
neural mechanisms associated with human movement. In
simple terms, motor units represent the final common
pathway for centrally generated commands to the muscles.
Motor units consist of a motor neuron and all of the muscle
fibers it innervates.

Motor unit analysis has clinical applications across
healthcare and rehabilitative services. In clinical
neurophysiology, the decomposition of electromyography
(EMG) signals allows assessment of neuromuscular
disorders; for example, it aids in the early identification of
the conditions characterized as amyotrophic lateral
sclerosis, peripheral neuropathies, and myopathies. In
rehabilitation medicine, motor unit analysis provides
objective measures of the recovery and adaptation of
muscle function following injury or intervention.
Furthermore, the analysis of EMG signals is pivotal in the
rapidly changing area of neural prosthetics and brain-
machine interfaces, where accurate decomposition of EMG
signals is essential in developing intuitive control of
assistive devices and prosthetic limbs.

Advances in EMG analysis had been limited
historically by technology, for instance, the inability to
extract individual motor unit activity from recordings that
are inherently multi-unit signals. Motor units generate
action potentials that superimpose on top of each other. In
the past, it has been cumbersome to study motor unit
behavior due to this decomposition limitation.

1.2. Literature Review

The advancement of EMG decomposition methods
over the past decades has coincided with improvements to
signal processing and computational techniques. Earlier
methods made significant use of invasive technologies
(e.g., wire or needle electrodes) and employed either a
manual or semi-automatic decomposition algorithm. While
traditional decomposition methods can provide important
information, they have important limitations.

Conventional decomposition approaches, such as
template matching and clustering algorithms, have
benefitted from the recent work of McGill et al. [3],
Florestal et al. [4], and Nawab et al. [5]. However, these
methods generally can only identify a small number of
motor units at once, have low task-specific contraction
forces, and cannot generally be identified with high
selectivity due to both recording selective (not recording
from specific motor units) and computational difficulty to
assess many overlapping sources.

With the development of multi-channel recording
technologies, some novel approaches to distinguishing
different motor unit activity emerged. Recently, high-
density surface EMG systems with arrays of several
hundred electrodes were developed to distinguish the
individual motor unit activity with spatial representation of
the action potentials. Similarly, multi-channel invasive
recordings with a closely spaced array of electrodes were
developed to maximize the number of identifiable units
while keeping selectivity acceptably high.

The development of blind source separation (BSS)
procedures has been promising for EMG decomposition
applications. One example of a promising approach is the
use of the Convolution Kernel Compensation (CKC)
algorithm by Holobar and Zazula [6] in high-density surface
EMG decomposition. Also, the use of Independent
Component Analysis (ICA), including its various
implementations such as FastICA by Chen and Zhou [7], has
shown the possible advantages of a latent component
analysis approach to multi-channel EMG.
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Two impressive studies have made significant
advancements in surface EMG signal processing: J. Ma in
[8] developed ML-DRSNet, which has a 5x speed with
15.15 ms latency compared to any previous deep learning
solutions with the same accuracy, presenting a pathway to
real-time applications in prosthetics and rehabilitation.
Grison and colleagues [9] introduced the SCD algorithm
using adaptive optimization and sequential peel-off
methodologies, producing twice the detectable motor units
compared to traditional methods and identifying small and
deep motor units that could not be characterized previously.
These studies represent significant steps forward in non-
invasive neuromuscular signal detection that advance the
speed and comprehension of analysis in a variety of clinical
and supported technologies. Although these algorithms are
sophisticated developments with significant improvements
related to noise robustness and speed for real-time signal
processing, we have chosen to first develop a comprehensive
understanding of the original convolutive blind source
separation algorithm by Holobar [10] to better understand
the signal format and to appreciate the new algorithms.

2. Materials and Methods
2.1. Algorithm

This paper implements the methodology proposed by
Francesco Negro in [1], which is a blind source separation
method for multi-channel EMG decomposition. The
algorithm combines FastlCA and Convolution Kernel
Compensation (CKC) approaches to employ convolutive
sphering on the SEMG signal. A new element of this work
was the use of sparseness assumptions for motor-unit spike
trains, and orthogonalisation procedures to avoid repeated
convergence to the same sources. The framework was
separately validated on three different muscles (Abductor
Digiti Minimi, Tibialis Anterior, and First Dorsal
Interosseous) through thorough experimental studies. That
work achieved greater than 90% accuracy in spike timing
of motor units in the investigated signals, and it provides a
valuable tool for automatic extraction of 10 - 60 motor
units simultaneously [1], thus facilitating the research on
the neural control of human movement.

2.2. Dataset description

The convolutive blind source separation algorithm
described by Negro [1] requires multichannel EMG signals in
which the number of time-extended measurements exceeds
the number of sources multiplied by the duration of MUAP,
called the extension factor R. The condition for R is:

R > (n/m)L (1)
With:

n = the number of sources.
m = the number of channels.
L =length of MUAP (in samples).

Therefore, for 10 kHz sampled intramuscular EMG, R
should be larger than 16 as the durations of MUAPs are
relatively short (<10 ms). For 2 kHz sampled surface EMG
the R factor usually applied is R = 10 as described in the
original studies of the CKC algorithms [6]. This difference

reflects the fact that the MUAP durations in surface
recordings are longer (10-30 ms) due to the spatial filtering
effects of subcutaneous tissue (hence the need for higher R
values to accommodate the longer temporal opportunities
afforded by the action potentials).

This study uses the Hyser (High densitY Surface
Electromyogram (HD-sEMG) Recordings) dataset. The
Hyser dataset records surface EMG by means of a grid of
64 electrodes (13 x 5) sampled at 2048 Hz and having inter
electrodic distances of 4 mm (FDI muscle) and 8 mm
(TA muscle), the above being significant aspects to ensure
that requirements with respect to the algorithm will be
satisfied. The 64-channel configuration allows sufficient
observations of the extension to give an overdeterminate
system, particularly when the extension is taken to the
factor of R = 10-15. This satisfies the conditions that the
extended observations (64 x 10 = 640 effective
observations) will be very great in excess of the number of
motor units identifiable under average instances with
surface recording. The dense electrode configuration with
possesses relatively small inter-electrodic  distances
(4-8 mm) maximises the spatial sampling resolution, which
bears particular importance with reference to surface EMG

3. Experimental Setup
3.1. Participant

Twenty healthy participants (12 males and 8 females,
age range 22-34 years) with intact hands and no history of
neuromuscular disorders or upper limb injuries performed
the experiment. All participants were right-handed as
established by self-report, ensuring that motor control
patterns and muscle activation strategies were similar
among subjects. Exclusion criteria included neurological
diseases affecting motor function, recent trauma or surgery
of the upper extremities, chronic pain syndromes affecting
forearm or hand musculature, peripheral neuritis, and
contraindications to surface electromyography electrode
placement. All subjects provided written informed consent
prior to participation after being fully informed of the
purpose and procedures of the investigation. The research
protocol was reviewed and approved by the ethics
committee of Fudan University (approval number
BE2035) and was performed in accordance with the
principles authored in the Declaration of Helsinki for
research involving human subjects.

3.2. Hardware and Data Acquisition System

Electromyography (EMGQG) signals were recorded using a
high-density surface EMG system (Quattrocento, OT
Bioelettronica, Turin, Italy), which consisted of 256
recording channels arranged in four separate 8x8 electrode
lead arrays encircling the musculature of the forearms, but
each of the arrays of electrodes consisted of 64 separate
gelled elliptical electrodes (5 mm major axis, 2.8 mm minor
axis, 10 mm interelectrode spacing, center-to-center). The
system utilized 16-bit resolution analog/digital converters
with a hardware gain of 150 and a sampling frequency of
2048 Hz per channel. The hardware filtering included a
second-order high-pass filter with a cut-off frequency of
10 Hz and a low-pass filter with a cut-off frequency of
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500 Hz, with a transition bandwidth of approximately 25 Hz
and stop-band attenuation of <100 dB, providing sufficient
time and spatial resolution for decomposition of individual
motor unit action potentials during the low force
contractions. Synchronous force transduction occurred with
five separate sensor/amplifier pairs (sensor: SAS, Huatran,
Shen Zhen, China; amplifier: HSGA, Huatran, Shen Zhen,
China) at a sampling rate of 100 Hz, with one force sensor
placed under each fingertip, permitting independent
measurement of the forces of individual fingers during
isolated contractions of the digits. Hardware synchronization
of EMG and force signals was effected by the transmission
of'a common trigger signal to each acquisition system at the
onset of the task, permitting all neural and mechanical
signals to be temporally aligned during subsequent
correlation analyses, the data is stored in waveform (WFDB)
format comprised of paired .dat (binary signal data) and .hea
(header metadata) files for offline processing.

3.3. Electrode Configuration and Placement

Four 8x8 electrode arrays (64 channels each, 256 total)
were centered longitudinally over the compartments of the
muscles of the forearm responsible for flexion and
extension, two electrode arrays on each muscle group
consisting of two adjacent 16x8 arrays located respectively
on the anterior (flexor) and posterior (extensor) aspects of
the forearm, the long axis of each composite array aligned
parallel to the direction of the underlying orientation of the
muscle fibers. Anatomical limits for electrode placement
were defined by the radial and ulnar aspects of the forearm
laterally; the humero-ulnar joint of the forearm cranially,
and the head of the ulna caudally, and standardized surface
landmarks (medial and lateral epicondyle of the humerus,
ulnar and radial styloid processes) were used to ensure that
this placement was consistent relative to the underlying
musculature across participants and experimental sessions,
despite inter-individual anatomical variability. Prior to
electrode application, skin preparation included epidermal
cleansing of the right forearm with abrasive gel, so as to
remove any superficial keratinized epithelial cells. This
was followed by thorough wiping of the area with
isopropyl alcohol pads to remove any residual oil, and thus
minimize impedance between skin and electrode to typical
levels below 5 kQ at 10 Hz, wherein common mode noise
and power-line interference will be minimized. A
monopolar reference electrode was placed over the
olecranon process of the ulna, providing a stable reference
potential over minimal underlying muscle tissue, and a
right leg drive electrode was placed over the head of the
ulna, this maximizing common mode rejection and
minimizes electromagnetic interference.

3.4. Signal Preprocessing and Motor Unit Decomposition

Procedures to preprocess raw electromyographic signals
were done offline using an eighth-order Butterworth
bandpass filter (10-500 Hz) to reduce low-frequency motion
artifacts and high-frequency noise. This was followed by
cascaded notch filters to remove power line interference at
50 Hz and its subsequent harmonic frequencies (up to 400
Hz with £2 Hz bandwidth), which allows recording of all
motor-unit frequencies before they are detected. The

concurrently recorded force signals were low-pass filtered at
10 Hz using an eighth-order Butterworth filter to remove any
sensor noise, but keep any physiologically important force
fluctuations. Motor unit decomposition was achieved using
the convolutive blind source separation framework of Negro
[1], which uses the spatiotemporal nature of multiple
electrode arrays to separate overlapping motor unit sources.
The extension factor R = 1000/m = 3.9 was used, which
satisfies the mathematical requirement that R > (n/m)L,
whereby n sources, plus noise, could be detected from
m = 256 recording channels. The decomposition was
affected in sliding temporal windows (3.0 s long) with a 50%
overlap (1.5 s shift), giving approximately 15 windows per
25 s trial. This decomposition was carried out in the
following process:

e Temporal extension by creating four time-shifted
copies of each channel and stacking them,

e Whitening by eigenvalue decomposition,

e FastiCA  optimization  with  activity-based
initialization [1] to identify independent sources,

o Spike detection by adaptive threshold and k-means
clustering of spike trains, and

e Calculate the silhouette (sil) score as a quantitative
measure of cluster separation.

After the original decomposition, spike trains of motor
units underwent matching to find greater temporal accuracy
and were brought to polished conditions using constrained
kernel-correlation (CKC) matching and Gram-Schmidt
orthogonalization to eliminate duplicate motor units when
two windows of the software converged on the same source.
Very stringent quality control criteria were employed, so that
only those motor units that were physiologically valid and
manifested the following traits were retained:

o SIL score > 0.85, indicating strong cluster separation,
where values above 0.70 are generally considered to reflect
well-separated clusters [11];

o Coefficient of wvariation < 1.0 reflecting
physiologically regular discharge patterns, consistent with
established motor unit firing statistics [12];

e Mean firing rate between 3.5-25 Hz, corresponding to
the physiological range documented for low-force
voluntary contractions, [13];

e Minimum of 25 discharges to ensure statistical
reliability of firing pattern estimates [14];

e Detection occurring in greater than 2 temporally
bound windows in order that sustained rather than activity-
disappearing transient activity was tested.

The multi-dimensional quality criteria for the various
motor units serve the purpose that the relevant cluster of
motor units is given in satisfactory form, but it acts as a filter
to reject poor motor units that arise from noise, electrode
motion, or incorrect noise or erroneous decomposition.

3.5. Testing Methodology and Statistical Analysis
Framework

The validation of decomposition conducted a multi-
faceted analytical process implemented within a
framework of complementary metrics for assessing
algorithm performance. The main quality metrics were
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based on the silhouette (SIL) score to numerically quantify
the clustering of spike waveforms, and the coefficient of
variation (CoV) to characterize the stability of the action
potential morphology (waveforms) within the different
detection windows, with library quality levels defined
based on a combination of SIL & CoV thresholds. The
metrics for physiological validity were based on inter-spike
interval statistics of means and medians, and variances and
coefficients of variation, to provide an evaluation of
regularity of discharge, frequency spectrum analyses of
discharge events. Welch's Method is used as an estimator
to provide evaluations of the dominant frequencies of
discharge as well as the spectral power distributions in the
physiological range, and force correlation coefficients
(Pearson and Spearman). The metrics involved with
statistical validation included normality tests (Shapiro-
Wilk method), enabling selection of the various tests,
comparisons across conditions with the use of ANOVA or
Kruskal, while tests with eta-squared effect sizes were
reported to describe the significance of the variance that
was attributed to the various experimental factors (finger,
subject, session). The use of Tukey HSD post-hoc tests
enabling assessment of differences between pairs of
conditioned measurements, the evaluation of reliability
using intra-class correlation (ICC) coefficients (2,1), with
2-way random effects models.

Collectively, these metrics demonstrate decomposition
accuracy through converging evidence of successful source
separation and physiological validity. High SIL scores
paired with CoV values show the algorithm can reliably pick
out motor units from background noise and untangle
overlapping sources - real motor units keep their
action-potential morphology consistent, whereas spurious
detections produce irregular waveforms. The inter-spike
intervals display regularity that fits the coefficients of
variation it tells us the discharge patterns are genuine

motor-neuron firing signatures. Frequency spectrum
characteristics within physiological ranges confirm that
discharge patterns match known motor unit firing properties
rather than algorithmic artifacts, as spurious sources
typically exhibit non-physiological spectral signatures.
Across conditions, the motor-unit yield remains balanced
with an outlier, which signals that the algorithm delivers
steady performance even in diverse recording setups and
avoids systematic breakdowns. Moreover, the population
distributions sit comfortably within the expected ranges,
indicating that the extracted sources represent actual motor
units rather than by-products of decomposition errors.

4. Results
4.1. Performance Evaluation

The automated decomposition on the Hyser dataset
achieved 4,536 quality motor units from 600 HD-sEMG
recordings in 20 subjects, demonstrating exceptional
performance metrics with a mean SIL score of 0.926 +
0.023, which exceeded the reference standard of 0.735
attained from earlier CKC studies. The high quality of all
units obtained (SIL > 0.85) resulted in a 100% quality
yield, with a mean quality coefficient of variation of 1.017
+ 0.579. The units exhibited a balanced yield with 169-274
units/subject and approximately 900 units/individual
finger, which further supports the cohesive nature of the
algorithm, for which unit extraction was not overly
dependent on anatomical variation or different task
requirements. The physiologically normal attributes of the
motor units extracted supported the low force exploratory
type of movements associated with the hand with a firing
rate of 5.04 + 1.35 Hz, mean ISI of 86.4 + 24.9 ms,
dominant frequency of 17.18 + 15.86 Hz well within
physiological limits (1-50 Hz), and negligible force
correlations (mean |r]=0.042) as expected with the non-
tracking properties of the tasks employed.
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Figure 1. Population distribution analysis of 4,536 motor units
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To help better explicate this aspect, motor units were
each classified into quality tiers based on their cumulative
SIL-CoV thresholds, with values assigned as follows:

¢ Excellent (SIL > 0.95, CoV <0.5),

e Very Good (SIL > 0.90, CoV < 0.75),

¢ Good (SIL > 0.85, CoV < 1.0),

e Acceptable (SIL > 0.85, CoV < 1.0, but failing to
meet threshold for higher tier).

The frequency distribution of units revealed 94 which
(2.1%) were classed as Excellent, 1856 (40.9%) as Very
Good, 1129 (24.9%) as Good, and 1457 (32.1%) as
Acceptable, which with the considerable prominence of the
Very Good and Good classes (65.8% in all) demonstrates
that the muscle units in the present material showed
continuing good decomposition performance. This method
of classifying quality demonstrates that not only does the
algorithm achieve universal acceptance at the low
minimum limit (100% pass rate for all SIL > 0.85) in
quality terms but that it has separately achieved a good
percentage of motor units exhibiting high source separation
properties indicative of the success of the method used
because no less than 43.0% of motor units were classed as
exceeding fairly rigourous (SIL > 0.90, CoV < 0.75) Very
Good standards, and only a minority (32.1%) were deemed
to be of merely an Acceptable type.

The Shapiro-Wilk normality test demonstrated
significant evidence of non-normality for all metrics
(p <0.001 for SIL score, CoV, firing rate, mean ISI, ISI
CoV, dominant frequency, force correlation, and total
spikes), therefore demonstrating non-normal distributions
of the data suited to non-parametric testing and requiring

non-parametric statistical tests to be subsequently applied
between conditions to adhere to parametric testing
assumptions. The non-normal distributions demonstrated
physiological explicability, demonstrated, for example,
by the right-skewed distributions of CoV and ISI
variability metrics, consistent with the existing bounded
lower limit (zero) and absence of an upper physiological
limit of normal for both waveform variability and
discharge irregularity. Outlier detection analysis using £3
standard deviation z-score thresholds identified minimal
false positive values across the key metrics employed
within the study; specifically, 18 outlier values for SIL
score (0.40%), 67 outliers for CoV (1.48%), 27 outliers
for firing rate (0.60%), and 63 outliers for mean ISI
(1.39%), the outlier percentages for all cases remaining
below 1.5% within the total population sampled. The
remarkably low outlier rates reported are demonstrative
of high data quality with limited artifactual
contamination, indicating that the quality filtering criteria
employed were successful in eliminating erroneous motor
unit detections arising as a consequence of decomposition
errors, noise transient disturbances, or electrode motion
artifacts, whilst preserving physiologically-plausible
units which spanned the range of normal variability in
motor unit characteristics.

4.2. Statistical Validation

Cross-condition statistics exhibit small but significant
finger effects (Mean firing rate n* = 0.007, p < 0.01)
explaining only 0.7% of the variance in metrics,
contrasting greatly with large inter-subject effects
(m? = 0.132-0.202, p < 0.001) which dominate all metrics
20-30x better than condition differences.
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This demonstrates that the decomposition captures true
inter-individual physiological heterogeneity instead of
introducing systematic artifacts. Test-retest reliability
calculated from Intraclass Correlation Coefficient (ICC) as
a measure of inter-session measurement consistency,
separated stable from variable traits (metric reliability
quality indices = moderate, CoV ICC = 0.588, SIL ICC =
0.518) which suggest that individual characteristics are
consistent, while firing dynamics are poor metrics of
reliability (firing rate ICC = 0.093, Mean ISI ICC = 0.092)

which imply true variability of task performance rather
than measurement error. The dissociation between the
stable component of quality of separation and the variable
discharge patterns demonstrates that the algorithm
consistently recognises the same motor units across
sessions, appropriately capturing temporal changes in
neuromuscular activation during execution, with few
outliers and a reasonable physiological range of parameters
confirming that the sources extracted represent true Motor
Units, not artifactually generated by the algorithm.
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Figure 3. Test-retest reliability showing stable quality metrics (moderate ICC) versus variable firing dynamics (poor ICC)

5. Discussion
5.1. Summary and Interpretation of Key Findings

Applying the Negroetal. Blind source separation
framework [1] the study parsed 600 multi-channel
recordings from the Hyser dataset and extracted 4,536
high-quality motor units. These units achieved a SIL of
0.926 - above the reference benchmark of 0.735 -, and
all met the quality criteria, resulting in a 100 % pass rate.
With its 256-channel architecture - four 8 x 8 electrode
arrays sampled at 2 048 Hz and spaced 4—-8 mm apart - the
Hyser dataset, when stretched by an extension factor of
R=10-15, furnishes 2560-3840 observations
comfortably meeting the algorithm’s requirement for an
overdetermined system. The algorithm held its
performance steady across subjects - each contributing,
between 169 and 274 units - and across fingers, where
900 units per digit were recorded, with outliers showing
up (only about0.4-1.5%). The motor units that we
extracted displayed discharge patterns that fit
expectations: they fired at a rate of 5.04 Hz, their
inter-spike intervals were moderately regular their
frequency spectra fell squarely inside the 1-50Hz

window. They showed weak force correlations as would
be typical for a non-tracking task.

The statistical validation revealed an intriguing
hierarchical variance pattern which endorsed the veracity
of the decomposition; finger effects were statistically
significant, but accounted for but little wvariance
> = 0.007, only 0.7%), whereas subject effects
dominated all aspects (n* = 0.130 - 0.20, 13 - 20%
variance accounted for), thus biological differences were
of 20-30 fold greater differences than experimental ones.
In terms of the biological differences, the effects among
subjects outstrips experimental-condition effects by a
factor of twenty-to-thirty. The pattern makes clear that the
algorithm is picking up physiological differences rather
than conjuring systematic errors; genuine methodological
noise would manifest as haphazard variance, not the
consistent subject-level signatures observed. Test-retest
reliability separates the attributes ( ICCs spanning
0.52-0.59) from the more fleeting conditions
(firing-dynamics ICC <0.10), confirming that the
algorithm can reliably flag the same motor units across
sessions while still faithfully tracking temporal discharge
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variability. The convergence of top-tier SIL scores, a
scarcity of outliers, sensible signatures, variance that
seems driven more by biology than by the quirks of the
measurement method, and reliability profiles that line up
as expected all together provide strong evidence that the
extracted sources are genuine motor units rather than
algorithmic artefacts - making the approach suitable for
large-scale motor-unit population studies.

The average SIL score we achieved: 0.926,
comfortably surpasses the published standards, from
blind source separation research that uses methods
translating to roughly a26% boost, over the 0.735
reference figure reported in the foundational CKC
decomposition studies. What drives this top-tier
performance is the source-to-sensor ratio that the
256-channel Hyser electrode configuration provides
(m =256 channels arranged in four 88 arrays) combined
with a set of multi-dimensional quality filters that retain
only motor units showing convergent evidence of
successful source separation across several independent
criteria: SIL >0.85 CoV < 1.0 physiological firing rates,
between 3.5 and 25 Hz a minimum of 25 spikes and
detection, in two temporal windows. The theoretical
condition, for blind source separation - R > [n/m] L with
R the extension factor n the number of sources, m the
channel count, and L the span of an action potential - was
put to the test by sweeping R through a set of values
(2,4,8 16 32 64). Those systematic trials confirmed that
the sweet spot lands at R = 1000/m, which works out to
about 3.9 for the 256-channel Hyser configuration. The
Hyser dataset employs a 256-channel layout, with
electrodes spaced 10 mm apart and sampled at 2,048 Hz.
This configuration blankets 160 cm? of forearm skin
spanning both the flexor and extensor regions and
provides spatial variety to isolate motor units reliably
without depending heavily on long recording windows.
As a result, the match between the algorithm and the
dataset is confirmed, making it suitable for large-scale

motor-unit population studies that demand both
high-precision  decomposition and computational
practicality.

5.2. Limitations

This study has a number of limitations that will impact
the generalizability of the findings. The current work
represents laboratory-phase validation under controlled
conditions. The dataset consisted of only low-force
exploratory movements of the fingers from 20 healthy
subjects, so results will not apply to high-force
contractions, dynamic tasks, clinical populations, and
muscles other than those of the forearm. Higher-force
contractions would increase motor unit recruitment and
signal overlap, likely requiring adjustment of quality
thresholds. Dynamic contractions would challenge the
stationarity  assumptions underlying blind source
separation, potentially requiring shorter analysis windows
or adaptive preprocessing. Clinical populations with
altered motor unit properties (e.g., neuropathies,
myopathies) would likely require condition-specific
threshold calibration. These extensions have not been

tested and represent important directions for future
research. The test-retest intervals were also quite short
(3 - 25 days), so the long-term stability of the
measurements is unknown. The results are specific to the
Hyser electrode configuration used (256 channels,
interelectrode spacings of 4 -10 mm, sampling rate of 2048
Hz), and will not generalize to other electrode system
configurations and varying sampling rates. The statistical
analyses employed used non-parametric tests because of
the non-normal distributions of the data, which limited the
power to detect small effects, and family-wise error rates
were not used for some multiple comparisons, leading to
inflated probabilities of Type 1 errors. Finally, the
decomposition was not done in real-time but using offline
batch mode, so the feasibility of real-time implementation
of these techniques is unknown. Real-time implementation
would reduce applicability to closed-loop neuroprosthetics
immediately, requiring identification of motor units with
low latency.

5.3. Practical Implications

The results also underscore the implications of motor
unit populations for both research applications. The large
amount of inter-subject variability (n?> = 0.13-0.20 overall)
exceeding the effects of experimental conditions (finger:
n? = 0.003-0.007) by a factor of 20-30, indicates that
subject specific normalization of data is necessary for
longitudinal studies and that naturally the within-subject
controls are important in interventional studies otherwise
the natural inter-individual variability is wrongly attributed
to experimental influence. The dissociation of a moderate
test-retest reliability of quality indices (ICC = 0.52-0.59)
and very poor reliability of firing dynamics (ICC < 0.10)
indicates that quality indices are based on stable traits of
individual subjects, which might be of help in individual
characterizations or a means of biometric identification. As
patterns of reliability shown confirm that the identified
classification of the same motor units is being used
(moderate quality ICC), as well as being able to show the
reality of the temporal variability of the discharges (poor
firing ICC), these produced sources represent true motor
units and not algorithmic artifacts.

The result of the 100% of the identifications of quality
with minimum outliers (0.4-1.5%) of classification given
by different subjects (169-274 MUs) and even conditions
(in the region about 900 MUs/finger) indicate the ability
of the Hyser dataset being a good model for the
development of an algorithm, or benchmarks in validation
studies and establishment criteria for normative values of
motor unit characteristics in normal subjects. The
extreme qualitative nature of the data gives rise to the
knowledge that the patterns observed above are
representatives of neuromuscular physiology and not
involved in erroneous measures, so that future algorithm
developers can use this validated data, which will provide
absolute grounds for appreciating improvements in the
decomposition algorithm and establish the lower
performance variables required for clinical transfers.
Finally, the weak correlations between force (1| = 0.042)
during exploratory finger movements would indicate that
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explicitly quantified force-matched tasks with the
performance of force trajectories may be necessary for
generating stronger EMG-force relationships, which
result in a greater success for transfer to proportional
myoelectric control. It is likely also that the type of values
which would be given by the training algorithms used in
the exploratory movements, which were used where the
force was not quantified in the targets of motor tasks,
would generate control systems which appear to be poor
in obtaining a good quality of matching proportions of the
force used.
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