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Abstract - Motor unit decomposition from HD-sEMG (high 

density surface electromyography) provides valuable information 

for reviewing the neuromuscular system. The purpose of this 

study was to implement and validate the framework of the 

convolutional blind source separation proposed by Negro [1]. We 

tested on the Hyser (High densitY Surface Electromyogram) 

dataset with healthy subjects that perform low force finger 

movements during the execution of a task performed with a 

system of HD sEMG of 256 channels. Motor units were extracted 

using 3-second sliding windows with strict quality criteria 

(silhouette score ≥0.85). Decomposition yielded 4,536 quality 

motor units with a mean silhouette score of 0.926±0.023. The 

test-retest reliability indicated moderate stability of quality 

assessed parameters (ICC=0.52-0.59), whereas appropriately 

variable firing characteristics (ICC<0.10), confirming that the 

algorithm produced consistent outputs while still able to detect 

the temporal discharge variability. 

Key words - Surface electromyography (sEMG); decomposition; 

blind source separation (BSS) 

1. Introduction  

1.1. Background and clinical context 

Motor unit behavior remains a fundamental area of 

understanding of human neuromuscular function and 

control of movement. Since this area of study was first 

examined by Adrian and Bronk in 1929 [2], recording and 

analysis of motor unit discharge during voluntary 

contractions has greatly advanced our understanding of the 

neural mechanisms associated with human movement. In 

simple terms, motor units represent the final common 

pathway for centrally generated commands to the muscles. 

Motor units consist of a motor neuron and all of the muscle 

fibers it innervates. 

Motor unit analysis has clinical applications across 

healthcare and rehabilitative services. In clinical 

neurophysiology, the decomposition of electromyography 

(EMG) signals allows assessment of neuromuscular 

disorders; for example, it aids in the early identification of 

the conditions characterized as amyotrophic lateral 

sclerosis, peripheral neuropathies, and myopathies. In 

rehabilitation medicine, motor unit analysis provides 

objective measures of the recovery and adaptation of 

muscle function following injury or intervention. 

Furthermore, the analysis of EMG signals is pivotal in the 

rapidly changing area of neural prosthetics and brain-

machine interfaces, where accurate decomposition of EMG 

signals is essential in developing intuitive control of 

assistive devices and prosthetic limbs. 

Advances in EMG analysis had been limited 

historically by technology, for instance, the inability to 

extract individual motor unit activity from recordings that 

are inherently multi-unit signals. Motor units generate 

action potentials that superimpose on top of each other. In 

the past, it has been cumbersome to study motor unit 

behavior due to this decomposition limitation. 

1.2. Literature Review 

The advancement of EMG decomposition methods 

over the past decades has coincided with improvements to 

signal processing and computational techniques. Earlier 

methods made significant use of invasive technologies 

(e.g., wire or needle electrodes) and employed either a 

manual or semi-automatic decomposition algorithm. While 

traditional decomposition methods can provide important 

information, they have important limitations. 

Conventional decomposition approaches, such as 

template matching and clustering algorithms, have 

benefitted from the recent work of McGill et al. [3], 

Florestal et al. [4], and Nawab et al. [5]. However, these 

methods generally can only identify a small number of 

motor units at once, have low task-specific contraction 

forces, and cannot generally be identified with high 

selectivity due to both recording selective (not recording 

from specific motor units) and computational difficulty to 

assess many overlapping sources. 

With the development of multi-channel recording 

technologies, some novel approaches to distinguishing 

different motor unit activity emerged. Recently, high-

density surface EMG systems with arrays of several 

hundred electrodes were developed to distinguish the 

individual motor unit activity with spatial representation of 

the action potentials. Similarly, multi-channel invasive 

recordings with a closely spaced array of electrodes were 

developed to maximize the number of identifiable units 

while keeping selectivity acceptably high. 

The development of blind source separation (BSS) 

procedures has been promising for EMG decomposition 

applications. One example of a promising approach is the 

use of the Convolution Kernel Compensation (CKC) 

algorithm by Holobar and Zazula [6] in high-density surface 

EMG decomposition. Also, the use of Independent 

Component Analysis (ICA), including its various 

implementations such as FastICA by Chen and Zhou [7], has 

shown the possible advantages of a latent component 

analysis approach to multi-channel EMG. 
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Two impressive studies have made significant 

advancements in surface EMG signal processing: J. Ma in 

[8] developed ML-DRSNet, which has a 5x speed with 

15.15 ms latency compared to any previous deep learning 

solutions with the same accuracy, presenting a pathway to 

real-time applications in prosthetics and rehabilitation. 

Grison and colleagues [9] introduced the SCD algorithm 

using adaptive optimization and sequential peel-off 

methodologies, producing twice the detectable motor units 

compared to traditional methods and identifying small and 

deep motor units that could not be characterized previously. 

These studies represent significant steps forward in non-

invasive neuromuscular signal detection that advance the 

speed and comprehension of analysis in a variety of clinical 

and supported technologies. Although these algorithms are 

sophisticated developments with significant improvements 

related to noise robustness and speed for real-time signal 

processing, we have chosen to first develop a comprehensive 

understanding of the original convolutive blind source 

separation algorithm by Holobar [10] to better understand 

the signal format and to appreciate the new algorithms. 

2. Materials and Methods 

2.1. Algorithm 

This paper implements the methodology proposed by 

Francesco Negro in [1], which is a blind source separation 

method for multi-channel EMG decomposition. The 

algorithm combines FastICA and Convolution Kernel 

Compensation (CKC) approaches to employ convolutive 

sphering on the sEMG signal. A new element of this work 

was the use of sparseness assumptions for motor-unit spike 

trains, and orthogonalisation procedures to avoid repeated 

convergence to the same sources. The framework was 

separately validated on three different muscles (Abductor 

Digiti Minimi, Tibialis Anterior, and First Dorsal 

Interosseous) through thorough experimental studies. That 

work achieved greater than 90% accuracy in spike timing 

of motor units in the investigated signals, and it provides a 

valuable tool for automatic extraction of 10 - 60 motor 

units simultaneously [1], thus facilitating the research on 

the neural control of human movement. 

2.2. Dataset description 

The convolutive blind source separation algorithm 

described by Negro [1] requires multichannel EMG signals in 

which the number of time-extended measurements exceeds 

the number of sources multiplied by the duration of MUAP, 

called the extension factor R. The condition for R is:  

( )  /R n m L  (1) 

With: 

n = the number of sources. 

m = the number of channels. 

L = length of MUAP (in samples). 

Therefore, for 10 kHz sampled intramuscular EMG, R 

should be larger than 16 as the durations of MUAPs are 

relatively short (<10 ms). For 2 kHz sampled surface EMG 

the R factor usually applied is R = 10 as described in the 

original studies of the CKC algorithms [6]. This difference 

reflects the fact that the MUAP durations in surface 

recordings are longer (10-30 ms) due to the spatial filtering 

effects of subcutaneous tissue (hence the need for higher R 

values to accommodate the longer temporal opportunities 

afforded by the action potentials).  

This study uses the Hyser (High densitY Surface 

Electromyogram (HD-sEMG) Recordings) dataset. The 

Hyser dataset records surface EMG by means of a grid of 

64 electrodes (13 x 5) sampled at 2048 Hz and having inter 

electrodic distances of 4 mm (FDI muscle) and 8 mm  

(TA muscle), the above being significant aspects to ensure 

that requirements with respect to the algorithm will be 

satisfied. The 64-channel configuration allows sufficient 

observations of the extension to give an overdeterminate 

system, particularly when the extension is taken to the 

factor of R = 10-15. This satisfies the conditions that the 

extended observations (64 x 10 = 640 effective 

observations) will be very great in excess of the number of 

motor units identifiable under average instances with 

surface recording. The dense electrode configuration with 

possesses relatively small inter-electrodic distances  

(4-8 mm) maximises the spatial sampling resolution, which 

bears particular importance with reference to surface EMG 

3. Experimental Setup 

3.1. Participant 

Twenty healthy participants (12 males and 8 females, 

age range 22-34 years) with intact hands and no history of 

neuromuscular disorders or upper limb injuries performed 

the experiment. All participants were right-handed as 

established by self-report, ensuring that motor control 

patterns and muscle activation strategies were similar 

among subjects. Exclusion criteria included neurological 

diseases affecting motor function, recent trauma or surgery 

of the upper extremities, chronic pain syndromes affecting 

forearm or hand musculature, peripheral neuritis, and 

contraindications to surface electromyography electrode 

placement. All subjects provided written informed consent 

prior to participation after being fully informed of the 

purpose and procedures of the investigation. The research 

protocol was reviewed and approved by the ethics 

committee of Fudan University (approval number 

BE2035) and was performed in accordance with the 

principles authored in the Declaration of Helsinki for 

research involving human subjects. 

3.2. Hardware and Data Acquisition System 

Electromyography (EMG) signals were recorded using a 

high-density surface EMG system (Quattrocento, OT 

Bioelettronica, Turin, Italy), which consisted of 256 

recording channels arranged in four separate 8×8 electrode 

lead arrays encircling the musculature of the forearms, but 

each of the arrays of electrodes consisted of 64 separate 

gelled elliptical electrodes (5 mm major axis, 2.8 mm minor 

axis, 10 mm interelectrode spacing, center-to-center). The 

system utilized 16-bit resolution analog/digital converters 

with a hardware gain of 150 and a sampling frequency of 

2048 Hz per channel. The hardware filtering included a 

second-order high-pass filter with a cut-off frequency of 

10 Hz and a low-pass filter with a cut-off frequency of  
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500 Hz, with a transition bandwidth of approximately 25 Hz 

and stop-band attenuation of <100 dB, providing sufficient 

time and spatial resolution for decomposition of individual 

motor unit action potentials during the low force 

contractions. Synchronous force transduction occurred with 

five separate sensor/amplifier pairs (sensor: SAS, Huatran, 

Shen Zhen, China; amplifier: HSGA, Huatran, Shen Zhen, 

China) at a sampling rate of 100 Hz, with one force sensor 

placed under each fingertip, permitting independent 

measurement of the forces of individual fingers during 

isolated contractions of the digits. Hardware synchronization 

of EMG and force signals was effected by the transmission 

of a common trigger signal to each acquisition system at the 

onset of the task, permitting all neural and mechanical 

signals to be temporally aligned during subsequent 

correlation analyses, the data is stored in waveform (WFDB) 

format comprised of paired .dat (binary signal data) and .hea 

(header metadata) files for offline processing. 

3.3. Electrode Configuration and Placement 

Four 8×8 electrode arrays (64 channels each, 256 total) 

were centered longitudinally over the compartments of the 

muscles of the forearm responsible for flexion and 

extension, two electrode arrays on each muscle group 

consisting of two adjacent 16×8 arrays located respectively 

on the anterior (flexor) and posterior (extensor) aspects of 

the forearm, the long axis of each composite array aligned 

parallel to the direction of the underlying orientation of the 

muscle fibers. Anatomical limits for electrode placement 

were defined by the radial and ulnar aspects of the forearm 

laterally; the humero-ulnar joint of the forearm cranially, 

and the head of the ulna caudally, and standardized surface 

landmarks (medial and lateral epicondyle of the humerus, 

ulnar and radial styloid processes) were used to ensure that 

this placement was consistent relative to the underlying 

musculature across participants and experimental sessions, 

despite inter-individual anatomical variability. Prior to 

electrode application, skin preparation included epidermal 

cleansing of the right forearm with abrasive gel, so as to 

remove any superficial keratinized epithelial cells. This 

was followed by thorough wiping of the area with 

isopropyl alcohol pads to remove any residual oil, and thus 

minimize impedance between skin and electrode to typical 

levels below 5 kΩ at 10 Hz, wherein common mode noise 

and power-line interference will be minimized. A 

monopolar reference electrode was placed over the 

olecranon process of the ulna, providing a stable reference 

potential over minimal underlying muscle tissue, and a 

right leg drive electrode was placed over the head of the 

ulna, this maximizing common mode rejection and 

minimizes electromagnetic interference. 

3.4. Signal Preprocessing and Motor Unit Decomposition 

Procedures to preprocess raw electromyographic signals 

were done offline using an eighth-order Butterworth 

bandpass filter (10-500 Hz) to reduce low-frequency motion 

artifacts and high-frequency noise. This was followed by 

cascaded notch filters to remove power line interference at 

50 Hz and its subsequent harmonic frequencies (up to 400 

Hz with ±2 Hz bandwidth), which allows recording of all 

motor-unit frequencies before they are detected. The 

concurrently recorded force signals were low-pass filtered at 

10 Hz using an eighth-order Butterworth filter to remove any 

sensor noise, but keep any physiologically important force 

fluctuations. Motor unit decomposition was achieved using 

the convolutive blind source separation framework of Negro 

[1], which uses the spatiotemporal nature of multiple 

electrode arrays to separate overlapping motor unit sources. 

The extension factor R = 1000/m = 3.9 was used, which 

satisfies the mathematical requirement that R ≥ (n/m)L, 

whereby n sources, plus noise, could be detected from  

m = 256 recording channels. The decomposition was 

affected in sliding temporal windows (3.0 s long) with a 50% 

overlap (1.5 s shift), giving approximately 15 windows per 

25 s trial. This decomposition was carried out in the 

following process:  

• Temporal extension by creating four time-shifted 

copies of each channel and stacking them,  

• Whitening by eigenvalue decomposition,  

• FastICA optimization with activity-based 

initialization [1] to identify independent sources,  

• Spike detection by adaptive threshold and k-means 

clustering of spike trains, and  

• Calculate the silhouette (sil) score as a quantitative 

measure of cluster separation.  

After the original decomposition, spike trains of motor 

units underwent matching to find greater temporal accuracy 

and were brought to polished conditions using constrained 

kernel-correlation (CKC) matching and Gram-Schmidt 

orthogonalization to eliminate duplicate motor units when 

two windows of the software converged on the same source. 

Very stringent quality control criteria were employed, so that 

only those motor units that were physiologically valid and 

manifested the following traits were retained:  

• SIL score ≥ 0.85, indicating strong cluster separation, 

where values above 0.70 are generally considered to reflect 

well-separated clusters [11];  

• Coefficient of variation ≤ 1.0 reflecting 

physiologically regular discharge patterns, consistent with 

established motor unit firing statistics [12]; 

• Mean firing rate between 3.5-25 Hz, corresponding to 

the physiological range documented for low-force 

voluntary contractions, [13]; 

• Minimum of 25 discharges to ensure statistical 

reliability of firing pattern estimates [14]; 

• Detection occurring in greater than 2 temporally 

bound windows in order that sustained rather than activity-

disappearing transient activity was tested.  

The multi-dimensional quality criteria for the various 

motor units serve the purpose that the relevant cluster of 

motor units is given in satisfactory form, but it acts as a filter 

to reject poor motor units that arise from noise, electrode 

motion, or incorrect noise or erroneous decomposition. 

3.5. Testing Methodology and Statistical Analysis 

Framework 

The validation of decomposition conducted a multi-

faceted analytical process implemented within a 

framework of complementary metrics for assessing 

algorithm performance. The main quality metrics were 
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based on the silhouette (SIL) score to numerically quantify 

the clustering of spike waveforms, and the coefficient of 

variation (CoV) to characterize the stability of the action 

potential morphology (waveforms) within the different 

detection windows, with library quality levels defined 

based on a combination of SIL & CoV thresholds. The 

metrics for physiological validity were based on inter-spike 

interval statistics of means and medians, and variances and 

coefficients of variation, to provide an evaluation of 

regularity of discharge, frequency spectrum analyses of 

discharge events. Welch's Method is used as an estimator 

to provide evaluations of the dominant frequencies of 

discharge as well as the spectral power distributions in the 

physiological range, and force correlation coefficients 

(Pearson and Spearman). The metrics involved with 

statistical validation included normality tests (Shapiro-

Wilk method), enabling selection of the various tests, 

comparisons across conditions with the use of ANOVA or 

Kruskal, while tests with eta-squared effect sizes were 

reported to describe the significance of the variance that 

was attributed to the various experimental factors (finger, 

subject, session). The use of Tukey HSD post-hoc tests 

enabling assessment of differences between pairs of 

conditioned measurements, the evaluation of reliability 

using intra-class correlation (ICC) coefficients (2,1), with 

2-way random effects models.  

Collectively, these metrics demonstrate decomposition 

accuracy through converging evidence of successful source 

separation and physiological validity. High SIL scores 

paired with CoV values show the algorithm can reliably pick 

out motor units from background noise and untangle 

overlapping sources - real motor units keep their 

action‑potential morphology consistent, whereas spurious 

detections produce irregular waveforms. The inter‑spike 

intervals display regularity that fits the coefficients of 

variation it tells us the discharge patterns are genuine 

motor‑neuron firing signatures. Frequency spectrum 

characteristics within physiological ranges confirm that 

discharge patterns match known motor unit firing properties 

rather than algorithmic artifacts, as spurious sources 

typically exhibit non-physiological spectral signatures. 

Across conditions, the motor‑unit yield remains balanced 

with an outlier, which signals that the algorithm delivers 

steady performance even in diverse recording setups and 

avoids systematic breakdowns. Moreover, the population 

distributions sit comfortably within the expected ranges, 

indicating that the extracted sources represent actual motor 

units rather than by‑products of decomposition errors. 

4. Results 

4.1. Performance Evaluation 

The automated decomposition on the Hyser dataset 

achieved 4,536 quality motor units from 600 HD-sEMG 

recordings in 20 subjects, demonstrating exceptional 

performance metrics with a mean SIL score of 0.926 ± 

0.023, which exceeded the reference standard of 0.735 

attained from earlier CKC studies. The high quality of all 

units obtained (SIL ≥ 0.85) resulted in a 100% quality 

yield, with a mean quality coefficient of variation of 1.017 

± 0.579. The units exhibited a balanced yield with 169-274 

units/subject and approximately 900 units/individual 

finger, which further supports the cohesive nature of the 

algorithm, for which unit extraction was not overly 

dependent on anatomical variation or different task 

requirements. The physiologically normal attributes of the 

motor units extracted supported the low force exploratory 

type of movements associated with the hand with a firing 

rate of 5.04 ± 1.35 Hz, mean ISI of 86.4 ± 24.9 ms, 

dominant frequency of 17.18 ± 15.86 Hz well within 

physiological limits (1-50 Hz), and negligible force 

correlations (mean |r|=0.042) as expected with the non-

tracking properties of the tasks employed. 

 

Figure 1. Population distribution analysis of 4,536 motor units 
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To help better explicate this aspect, motor units were 

each classified into quality tiers based on their cumulative 

SIL-CoV thresholds, with values assigned as follows: 

• Excellent (SIL ≥ 0.95, CoV ≤ 0.5),  

• Very Good (SIL ≥ 0.90, CoV ≤ 0.75),  

• Good (SIL ≥ 0.85, CoV ≤ 1.0),  

• Acceptable (SIL ≥ 0.85, CoV ≤ 1.0, but failing to 

meet threshold for higher tier).  

The frequency distribution of units revealed 94 which 

(2.1%) were classed as Excellent, 1856 (40.9%) as Very 

Good, 1129 (24.9%) as Good, and 1457 (32.1%) as 

Acceptable, which with the considerable prominence of the 

Very Good and Good classes (65.8% in all) demonstrates 

that the muscle units in the present material showed 

continuing good decomposition performance. This method 

of classifying quality demonstrates that not only does the 

algorithm achieve universal acceptance at the low 

minimum limit (100% pass rate for all SIL ≥ 0.85) in 

quality terms but that it has separately achieved a good 

percentage of motor units exhibiting high source separation 

properties indicative of the success of the method used 

because no less than 43.0% of motor units were classed as 

exceeding fairly rigourous (SIL ≥ 0.90, CoV ≤ 0.75) Very 

Good standards, and only a minority (32.1%) were deemed 

to be of merely an Acceptable type. 

The Shapiro-Wilk normality test demonstrated 

significant evidence of non-normality for all metrics  

(p < 0.001 for SIL score, CoV, firing rate, mean ISI, ISI 

CoV, dominant frequency, force correlation, and total 

spikes), therefore demonstrating non-normal distributions 

of the data suited to non-parametric testing and requiring 

non-parametric statistical tests to be subsequently applied 

between conditions to adhere to parametric testing 

assumptions. The non-normal distributions demonstrated 

physiological explicability, demonstrated, for example, 

by the right-skewed distributions of CoV and ISI 

variability metrics, consistent with the existing bounded 

lower limit (zero) and absence of an upper physiological 

limit of normal for both waveform variability and 

discharge irregularity. Outlier detection analysis using ±3 

standard deviation z-score thresholds identified minimal 

false positive values across the key metrics employed 

within the study; specifically, 18 outlier values for SIL 

score (0.40%), 67 outliers for CoV (1.48%), 27 outliers 

for firing rate (0.60%), and 63 outliers for mean ISI 

(1.39%), the outlier percentages for all cases remaining 

below 1.5% within the total population sampled. The 

remarkably low outlier rates reported are demonstrative 

of high data quality with limited artifactual 

contamination, indicating that the quality filtering criteria 

employed were successful in eliminating erroneous motor 

unit detections arising as a consequence of decomposition 

errors, noise transient disturbances, or electrode motion 

artifacts, whilst preserving physiologically-plausible 

units which spanned the range of normal variability in 

motor unit characteristics. 

4.2. Statistical Validation 

Cross-condition statistics exhibit small but significant 

finger effects (Mean firing rate η² = 0.007, p < 0.01) 

explaining only 0.7% of the variance in metrics, 

contrasting greatly with large inter-subject effects  

(η² = 0.132-0.202, p < 0.001) which dominate all metrics 

20-30× better than condition differences.  

 

Figure 2. Subject-level variability demonstrating inter-individual differences dominate experimental factors 
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This demonstrates that the decomposition captures true 

inter-individual physiological heterogeneity instead of 

introducing systematic artifacts. Test-retest reliability 

calculated from Intraclass Correlation Coefficient (ICC) as 

a measure of inter-session measurement consistency, 

separated stable from variable traits (metric reliability 

quality indices = moderate, CoV ICC = 0.588, SIL ICC = 

0.518) which suggest that individual characteristics are 

consistent, while firing dynamics are poor metrics of 

reliability (firing rate ICC = 0.093, Mean ISI ICC = 0.092) 

which imply true variability of task performance rather 

than measurement error. The dissociation between the 

stable component of quality of separation and the variable 

discharge patterns demonstrates that the algorithm 

consistently recognises the same motor units across 

sessions, appropriately capturing temporal changes in 

neuromuscular activation during execution, with few 

outliers and a reasonable physiological range of parameters 

confirming that the sources extracted represent true Motor 

Units, not artifactually generated by the algorithm.

 

Figure 3. Test-retest reliability showing stable quality metrics (moderate ICC) versus variable firing dynamics (poor ICC) 

5. Discussion 

5.1. Summary and Interpretation of Key Findings 

Applying the Negro et al. Blind source separation 

framework [1] the study parsed 600 multi‑channel 

recordings from the Hyser dataset and extracted 4,536 

high‑quality motor units. These units achieved a SIL of 

0.926 -  above the reference benchmark of 0.735 - , and 

all met the quality criteria, resulting in a 100 % pass rate. 

With its 256‑channel architecture - four 8 × 8 electrode 

arrays sampled at 2 048 Hz and spaced 4–8 mm apart - the 

Hyser dataset, when stretched by an extension factor of 

R = 10–15, furnishes 2560–3840 observations 

comfortably meeting the algorithm’s requirement for an 

overdetermined system. The algorithm held its 

performance steady across subjects - each contributing, 

between 169 and 274 units - and across fingers, where 

900 units per digit were recorded, with outliers showing 

up (only about 0.4‑1.5 %). The motor units that we 

extracted displayed discharge patterns that fit 

expectations: they fired at a rate of 5.04 Hz, their 

inter‑spike intervals were moderately regular their 

frequency spectra fell squarely inside the 1‑50 Hz 

window. They showed weak force correlations as would 

be typical for a non‑tracking task. 

The statistical validation revealed an intriguing 

hierarchical variance pattern which endorsed the veracity 

of the decomposition; finger effects were statistically 

significant, but accounted for but little variance  

(η² = 0.007, only 0.7%), whereas subject effects 

dominated all aspects (η² = 0.130 - 0.20, 13 - 20% 

variance accounted for), thus biological differences were 

of 20-30 fold greater differences than experimental ones. 

In terms of the biological differences, the effects among 

subjects outstrips experimental‑condition effects by a 

factor of twenty‑to‑thirty. The pattern makes clear that the 

algorithm is picking up physiological differences rather 

than conjuring systematic errors; genuine methodological 

noise would manifest as haphazard variance, not the 

consistent subject‑level signatures observed. Test‑retest 

reliability separates the attributes ( ICCs spanning  

0.52–0.59) from the more fleeting conditions 

(firing‑dynamics ICC < 0.10), confirming that the 

algorithm can reliably flag the same motor units across 

sessions while still faithfully tracking temporal discharge 
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variability. The convergence of top‑tier SIL scores, a 

scarcity of outliers, sensible signatures, variance that 

seems driven more by biology than by the quirks of the 

measurement method, and reliability profiles that line up 

as expected all together provide strong evidence that the 

extracted sources are genuine motor units rather than 

algorithmic artefacts - making the approach suitable for 

large‑scale motor‑unit population studies. 

The average SIL score we achieved: 0.926, 

comfortably surpasses the published standards, from 

blind source separation research that uses methods 

translating to roughly a 26 % boost, over the 0.735 

reference figure reported in the foundational CKC 

decomposition studies. What drives this top‑tier 

performance is the source‑to‑sensor ratio that the 

256‑channel Hyser electrode configuration provides 

(m = 256 channels arranged in four 8×8 arrays) combined 

with a set of multi‑dimensional quality filters that retain 

only motor units showing convergent evidence of 

successful source separation across several independent 

criteria: SIL ≥ 0.85 CoV ≤ 1.0 physiological firing rates, 

between 3.5 and 25 Hz a minimum of 25 spikes and 

detection, in two temporal windows. The theoretical 

condition, for blind source separation - R ≥ [n/m] L with 

R the extension factor n the number of sources, m the 

channel count, and L the span of an action potential - was 

put to the test by sweeping R through a set of values 

(2, 4, 8 16 32 64). Those systematic trials confirmed that 

the sweet spot lands at R = 1000/m, which works out to 

about 3.9 for the 256‑channel Hyser configuration. The 

Hyser dataset employs a 256‑channel layout, with 

electrodes spaced 10 mm apart and sampled at 2,048 Hz. 

This configuration blankets 160 cm² of forearm skin 

spanning both the flexor and extensor regions and 

provides spatial variety to isolate motor units reliably 

without depending heavily on long recording windows. 

As a result, the match between the algorithm and the 

dataset is confirmed, making it suitable for large‑scale 

motor‑unit population studies that demand both 

high‑precision decomposition and computational 

practicality. 

5.2. Limitations 

This study has a number of limitations that will impact 

the generalizability of the findings. The current work 

represents laboratory-phase validation under controlled 

conditions. The dataset consisted of only low-force 

exploratory movements of the fingers from 20 healthy 

subjects, so results will not apply to high-force 

contractions, dynamic tasks, clinical populations, and 

muscles other than those of the forearm. Higher-force 

contractions would increase motor unit recruitment and 

signal overlap, likely requiring adjustment of quality 

thresholds. Dynamic contractions would challenge the 

stationarity assumptions underlying blind source 

separation, potentially requiring shorter analysis windows 

or adaptive preprocessing. Clinical populations with 

altered motor unit properties (e.g., neuropathies, 

myopathies) would likely require condition-specific 

threshold calibration. These extensions have not been 

tested and represent important directions for future 

research. The test-retest intervals were also quite short  

(3 - 25 days), so the long-term stability of the 

measurements is unknown. The results are specific to the 

Hyser electrode configuration used (256 channels, 

interelectrode spacings of 4 -10 mm, sampling rate of 2048 

Hz), and will not generalize to other electrode system 

configurations and varying sampling rates. The statistical 

analyses employed used non-parametric tests because of 

the non-normal distributions of the data, which limited the 

power to detect small effects, and family-wise error rates 

were not used for some multiple comparisons, leading to 

inflated probabilities of Type 1 errors. Finally, the 

decomposition was not done in real-time but using offline 

batch mode, so the feasibility of real-time implementation 

of these techniques is unknown. Real-time implementation 

would reduce applicability to closed-loop neuroprosthetics 

immediately, requiring identification of motor units with 

low latency. 

5.3. Practical Implications 

The results also underscore the implications of motor 

unit populations for both research applications. The large 

amount of inter-subject variability (η² = 0.13-0.20 overall) 

exceeding the effects of experimental conditions (finger:  

η² = 0.003-0.007) by a factor of 20-30, indicates that 

subject specific normalization of data is necessary for 

longitudinal studies and that naturally the within-subject 

controls are important in interventional studies otherwise 

the natural inter-individual variability is wrongly attributed 

to experimental influence. The dissociation of a moderate 

test-retest reliability of quality indices (ICC = 0.52-0.59) 

and very poor reliability of firing dynamics (ICC < 0.10) 

indicates that quality indices are based on stable traits of 

individual subjects, which might be of help in individual 

characterizations or a means of biometric identification. As 

patterns of reliability shown confirm that the identified 

classification of the same motor units is being used 

(moderate quality ICC), as well as being able to show the 

reality of the temporal variability of the discharges (poor 

firing ICC), these produced sources represent true motor 

units and not algorithmic artifacts.  

The result of the 100% of the identifications of quality 

with minimum outliers (0.4-1.5%) of classification given 

by different subjects (169-274 MUs) and even conditions 

(in the region about 900 MUs/finger) indicate the ability 

of the Hyser dataset being a good model for the 

development of an algorithm, or benchmarks in validation 

studies and establishment criteria for normative values of 

motor unit characteristics in normal subjects. The 

extreme qualitative nature of the data gives rise to the 

knowledge that the patterns observed above are 

representatives of neuromuscular physiology and not 

involved in erroneous measures, so that future algorithm 

developers can use this validated data, which will provide 

absolute grounds for appreciating improvements in the 

decomposition algorithm and establish the lower 

performance variables required for clinical transfers. 

Finally, the weak correlations between force (|r| = 0.042) 

during exploratory finger movements would indicate that 
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explicitly quantified force-matched tasks with the 

performance of force trajectories may be necessary for 

generating stronger EMG-force relationships, which 

result in a greater success for transfer to proportional 

myoelectric control. It is likely also that the type of values 

which would be given by the training algorithms used in 

the exploratory movements, which were used where the 

force was not quantified in the targets of motor tasks, 

would generate control systems which appear to be poor 

in obtaining a good quality of matching proportions of the 

force used. 
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