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Abstract - High penetration of renewable energy poses
significant challenges to power system operational security. This
paper presents the development of a comprehensive framework
for operational risk assessment using a data-driven Probabilistic
Power Flow (PPF) approach. The proposed framework
automatically identifies the best-fit probability distributions for
loads and generation sources, constructs a cluster-based
correlation model, and quantifies risks via an enhanced Monte
Carlo simulation using Latin Hypercube Sampling (LHS). The
framework's effectiveness is validated through a case study on the
Vietnamese Central Power System. Results demonstrate that the
methodology accurately quantifies operational risks, highlighting
the critical importance of correlation modeling. This framework
provides a powerful and widely applicable tool to support secure
grid operation and planning.
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1. Introduction

The global energy transition is progressing vigorously,
oriented towards carbon emission reduction and
prioritizing the development of clean energy sources. In
line with this trend, Vietnam has been implementing
breakthrough policies to promote renewable energy,
concretized in Resolution 55-NQ/TW of the Politburo,
which outlines the strategic direction for national energy
development. Central Vietnam is a region with tremendous
potential for solar and wind energy, having become a
renewable energy hub of the country, with thousands of
megawatts of installed capacity from these sources in
recent years.

However, integrating a large proportion of renewable
energy sources, which are inherently variable and
weather-dependent, has posed unprecedented challenges
to power system operation. The uncertainty and
randomness of these generation sources, combined with
the natural variability of loads, make grid operating states
increasingly difficult to forecast. The deterministic power
flow (DPF) method, which has traditionally been used,
can only assess the system under a few individual
scenarios and is no longer sufficient to comprehensively
quantify operational risks.

To address these limitations, the Probabilistic Power
Flow (PPF) method has been introduced and widely
recognized [1-3]. Fundamentally, a PPF problem consists
of two main components: (1) probabilistic modeling of
uncertain input variables, and (2) computational methods

to propagate these uncertainties throughout the system.
For the first component, a common practice in previous
studies is to pre-assume probability distributions for
uncertain factors (e.g., load following a Normal
distribution, wind power following a Weibull
distribution) [1-2]. This approach may not accurately
reflect the actual behavior of each element. For the second
component, computational methods are typically divided
into two main categories: analytical methods and
simulation methods.

To overcome the aforementioned limitations and
enhance the accuracy of the analytical model, this study
proposes a PPF methodology with the following key
differences and contributions:

Development of data-driven probabilistic models:
Unlike assuming probability distributions, this study
employs an automated process to analyze SCADA
operational data, thereby fitting and validating the most
appropriate statistical model for each individual load and
renewable energy plant.

Development of an automated and efficient framework:
The study constructs a complete PPF algorithm using the
Python programming language to automate the entire
analysis process. In this framework, PSS/E software is used
as the core power flow engine, combined with an improved
Monte Carlo simulation [5] utilizing high-efficiency Latin
Hypercube Sampling (LHS) [6] to enhance convergence
speed compared to traditional Monte Carlo simulation.

Integration of realistic correlation modeling: The study
develops and integrates a cluster-based correlation model
to capture the interdependencies among renewable energy
sources, an often overlooked factor that significantly
impacts risk assessment results.

2. Proposed PPF analytical framework
2.1. Overview of the PPF analytical framework

The methodology proposed in this study is a
comprehensive PPF analytical process, constructed with a
modular and automated architecture. The objective of this
framework is to transform raw operational data from the
SCADA system into meaningful operational risk indices,
providing quantitative information for system operators.
The entire process is divided into three main stages,
illustrated in Figure 1 and detailed in the following
sections.
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Figure 1. PPF analytical process

Stage 1 — Probabilistic Input Modeling: This stage
focuses on constructing probabilistic models for uncertain
input factors. Instead of traditional assumptions, a
dedicated algorithm is developed to automatically process,
clean, filter, and analyze historical SCADA data. The most
suitable probability density function (PDF) is then
identified and validated for each individual load, renewable
energy source, and random event. This stage ensures that
input models have high fidelity and accurately reflect
actual operating characteristics.

Stage 2 — Correlation Structure Modeling: This
stage addresses the interdependencies among renewable
energy sources. Based on a cluster-based analysis method,
a correlation matrix is constructed to describe the
spatiotemporal relationships between generation sources
within the same geographical area or sharing similar
weather characteristics. This correlation structure is a
crucial input to ensure the realism of simulation scenarios.

Stage 3 — PPF Simulation and Risk Assessment: This
is the core computational stage. An algorithm written in
Python orchestrates the entire simulation loop. This
algorithm employs the Monte Carlo Simulation method,
enhanced with the Latin Hypercube Sampling (LHS)
technique to generate correlated operational scenarios. For
each scenario, the PSS/E software is called to perform
power flow calculations. Results from thousands of
iterations are aggregated to construct probability
distributions for system state variables (voltage, power
flow) and to quantify risk indices.

2.2. Probabilistic modeling from SCADA data

The initial stage of the framework focuses on
constructing high-fidelity probabilistic models for
uncertain factors, based on historical operational data. This
approach replaces pre-assumed distributions, ensuring that
the PPF model inputs accurately reflect the characteristics
of the actual power system.

2.2.1. Data sources and storage structure

The input data source consists of time-series datasets
collected from the SCADA system of the Central Vietnam

power grid over a three-year period. To ensure efficient
retrieval and processing of large volumes of data - up to
millions of records - all data are stored in Parquet file
format. This columnar storage format allows for
significantly faster querying and loading compared to
traditional text formats such as CSV, which is essential for
large-scale analysis.

2.2.2. Preprocessing and filtering by “Time Slices”

Raw SCADA data first undergo a preprocessing stage
for cleaning, including handling missing values and
removing invalid data points (e.g., negative power values
for renewable energy plants).

To ensure reliable model inputs, the data processing
workflow is fully automated using Python algorithms and
the Pandas library for high-performance processing of
large datasets. Data cleaning is performed using a multi-
layer filter to remove invalid samples:

Layer 1: Handling Missing Values: Remove data
points with missing values (NaN/Null) due to
communication losses.

Layer 2: Handling Physical Limit Violations:
Remove values outside the feasible operating range of
equipment, such as negative generation values for power
plants.

Layer 3: Outlier Detection: To address outliers
caused by measurement errors or transmission noise, the
Interquartile Range (IQR) method is applied. For each
dataset, the boundaries for filtering outliers are determined
as:

[Limitiower, Limitupper] = [Q1 — 1.5*IQR, Q3 + 1.5*IQR] (1)
Where:

o Limitjower: Lower boundary.

e Limityper: Upper boundary.

e Q1: First quartile, the value below which 25% of the
data fall.

¢ Q3: Third quartile, the value below which 75% of the
data fall.

¢ IQR = Q3 — Q1: Interquartile range.

Any data point outside this range is considered an
outlier and removed from the dataset. Sensitivity analysis
with other methods (such as Z-score or Modified Z-score)
shows that the IQR method (with a threshold of 1.5)
offers the best balance: it effectively removes
measurement noise without discarding valid extreme
operational points, which methods based on the normal
distribution often miss or wrongly exclude. Quantitative
results for processing an operational parameter (active
power through bay 233 at the 220kV Hoa Khanh
substation) are detailed in Table 1.

Table 1. Comparison of outlier detection methods

Method Threshold f;:?g::; l::t[: (()(:Z )l
Z-score 3.0 274 0.13%
Modified Z-score 3.5 5522 2.62%
IQR 1.5 3519 1.67%
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With the proposed three-layer filter, the proportion of
data removed is less than 2% of the total samples. Since
power system parameters typically do not fluctuate much
over short intervals (with a 5-minute sampling period),
removed values are replaced by the previous valid value.
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A core aspect of the proposed methodology is
transforming raw time-series data into meaningful datasets
representing characteristic operational scenarios of the
system. To achieve this, a technique called “time slicing”
is applied.

This technique involves filtering and partitioning the
SCADA dataset based on specific time frames, such as
hours of the day and months of the year. Combining these
filters allows for precise extraction of data samples
corresponding to critical operational states of the power
system.

Analyzing each “time slice” separately enables targeted
risk assessment. For example, the “midday off-peak in dry
season” scenario is crucial for evaluating overvoltage risk
due to low load and high solar generation, while the
“evening peak in rainy season” scenario is central to
analyzing line overload risk.

2.2.3. Automated fitting and selection of probability
distributions

For each dataset corresponding to a characteristic
operational scenario, the next stage is to identify the
mathematical model (Probability Density Function - PDF)
that best describes the data distribution. This study
employs a two-step automated model selection process to
ensure statistical accuracy and reliability.

Step 1: Goodness-of-Fit Test. Each candidate
distribution (e.g., Student, Normal, Weibull, Beta, Gamma,
etc.) is fitted to the actual data. The Kolmogorov-Smirnov
(K-S) test [7] is then applied to assess whether the data
follow the theoretical distribution. The K-S test is non-
parametric, with the following hypotheses:

e Hy (Null hypothesis): The data follow the specified
distribution.

e H; (Alternative hypothesis): The data do not follow
the specified distribution.

A p-value is calculated from the test. With a pre-
selected significance level a (typically a = 0.05), the
decision rule is:

o [f p-value < 0.05, Hy is rejected. The distribution is
considered unsuitable and excluded.

o If p-value > 0.05, there is insufficient evidence to
reject Ho. The distribution is considered statistically
suitable and proceeds to the next selection step.

Step 2: Model Selection by AIC Criterion. After
Step 1 filters out unsuitable distributions, several candidate
models may remain. To select the best among them, the
Akaike Information Criterion (AIC) [8] is used. AIC is a
statistical indicator that compares the relative quality of
models by balancing goodness of fit and model
complexity. The general formula for AIC is:

AIC =2k — 2In(L) )

Where:

e k: Number of estimated parameters in the model,
penalizing model complexity. For example, the Normal
distribution includes mean and standard deviation.

e L. Maximum likelihood of the model. The log-
likelihood value represents the goodness of fit; the higher
the value, the better the fit.

The final result of this stage is a set of characteristic
parameters for the selected distribution for each load and
renewable energy source, corresponding to each
operational scenario. These parameters are used as inputs
for the PPF simulation stage, ensuring accuracy and
practicality throughout the analysis process.

Figures 3 and 4 illustrate a system parameter (reactive
power at the 220kV Tuy Hoa substation) extracted from
SCADA, represented as the empirical probability
distribution and the fitted theoretical Student-t distribution
(with p-value > 0.05 and lowest AIC in Table 2).
The estimated parameters for the Student-t distribution are:
df: 6.3606, loc: 1.1389, scale: 4.2107.
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Figure 3. PDF Plot of SCADA actual data and fitted
distribution
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Figure 4. Cumulative distribution function (CDF) plots of
actual SCADA data and estimated
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Table 2. p-value and AIC for each distribution type

student 967 0.10
lognorm 969 0.48
gamma 976 0.38
beta 978 0.38
norm 1047 0.01

2.2.4. Modeling discrete events

In addition to continuous uncertainties such as load and
renewable generation, a comprehensive operational risk
assessment must consider low-probability but high-impact
discrete events, typically random failures of system
components. In this study, failures of critical elements such
as transmission lines and generator units are modeled as
discrete random variables.

Each component (generator i or line j) is modeled using
a Bernoulli distribution with two possible states:

1. In-service (normal operation)
2. Outage (failure)

The probability of each state is determined by a key
statistical parameter, the Forced Outage Rate (FOR). FOR
is defined as the probability that a component is
unavailable at any given time due to intrinsic failures. It is
calculated from historical operation and maintenance data
as follows:

Z TOumge

FOR = 3)

2 Touage + 2T s

Where:
- ZT Ouage - TOtal time the device is out of service.

- ZT,MWW.CE: Total time the device is in normal
operation.

By integrating these models, the Monte Carlo
simulation algorithm (Stage 3) is enhanced as follows: In
each simulation iteration, in addition to random sampling
for continuous variables (load, renewable generation), the
states of lines and generators are also randomly sampled
based on their FOR. For example, with FOR =0.01, in each
iteration, a random number between [0, 1] is generated; if
the number is less than 0.01, the component is simulated in
the outage state for that iteration.

2.3. Construction of correlation structure

Accurately  modeling  individual  probability
distributions (as described in Stage 1) is necessary but not
sufficient for a realistic PPF problem. In actual operation,
renewable energy sources, especially solar and wind power
plants, do not operate entirely independently. Their output
is often correlated due to shared exposure to large-scale
meteorological factors such as cloud cover, wind direction,
and solar irradiance within the same region [9].

Ignoring correlations and assuming independent
uncertainties can dangerously underestimate operational
risks. For example, an uncorrelated model may fail to

capture scenarios where widespread cloud cover or calm
winds simultaneously cause large power fluctuations
across the system. Therefore, constructing a realistic
correlation model is a core stage in the proposed analytical
framework.

2.3.1. Cluster-based correlation analysis method

To capture the most significant correlations without
making the problem overly complex, this study adopts a
cluster-based correlation analysis method. The main idea is
to group loads and renewable sources that are closely
related geographically or meteorologically into the same
“cluster”, with reasonable assumptions:

e Loads and generation sources within a cluster are
correlated.

¢ Loads and generation sources in different clusters are
assumed independent.

For example, all wind farms in Quang Tri province can
be grouped into one cluster, and all solar plants in Gia Lai
region into another.

2.3.2. Calculation of correlation matrices

Stage 3: PPF Simulation Algorithm Stage 1 & 2:
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For each defined cluster, the internal correlation matrix
is calculated from SCADA time-series data. This study
uses the Spearman rank correlation coefficient (rs) instead
of the Pearson coefficient, as the latter only measures linear
correlation and is sensitive to outliers and non-normal data.
In contrast, operational data for renewables and loads often
do not follow normal distributions (as shown in Stage 1),
and their relationships are not always linear. Spearman’s
coefficient is non-parametric, operating on the ranks of
data rather than their actual values, making it robust to
outliers and capable of capturing monotonic relationships -
i.e., when one variable tends to increase, so does the other
(or vice versa), regardless of linearity.

The Spearman correlation coefficient rs between two
random variables X; and X; (which can be source-source,
load-load, or source-load) is calculated by applying the
Pearson formula to their ranked data:

cov(rg(X;),rg(X;))

Prg(x1)rg(x;)

Ts = Prgxprgxj) = C))

Where:

¢ X; and X;: Time series of random variables;

¢ rg(X;) and rg(X;): Ranked data of X; and Xj;

e cov(rg(X;), rg(X;)): Covariance of ranked values;

® Org(xp), Org(x))" Standard deviations of ranked values.

After calculating Spearman correlation matrices for
each cluster, they are combined into an overall block-
diagonal correlation matrix. This matrix is a key input,
determining the dependency structure of random samples
generated in Stage 3, ensuring simulation scenarios
accurately reflect the complex relationships among system
elements.

2.4. PPF simulation and risk assessment

The probabilistic models and correlation structures
built are integrated with the power system model to
quantify operational risks. This process is executed via an
automated simulation algorithm, integrating Python
programming with the specialized power system analysis
software PSS/E by Siemens.

2.4.1. Monte Carlo Simulation with Latin Hypercube
Sampling (LHS)

The selected computational method is Monte Carlo
Simulation (MCS), a powerful and flexible approach
capable of handling complex problems with multiple
random variables and arbitrary distributions. To improve
computational efficiency and reduce the required number
of iterations, this study applies an advanced sampling
technique: Latin Hypercube Sampling (LHS).

Unlike simple random sampling (which may produce
uneven sample clusters), LHS is a stratified sampling
method. It divides the cumulative distribution function
(CDF) of each random variable into N intervals with equal
probability, ensuring each interval is sampled exactly once.
This results in random sample sets that are more evenly
distributed across the entire probability space, thereby
significantly accelerating the convergence of output
statistics.

Convergence Rate Comparison: MCS vs. MCS with LHS

+— Monte Carlo
=~ Monte Carlo with Latin Hypercube Sampling (LHS)

Mean Squared Error (MSE)

10
Number of Samples (N)

Note: X and Y axes are on a iogarthmic scale

Figure 6. Comparison of convergence speed between MCS and
MCS with LHS

2.4.2. Generation of correlated random samples
To ensure simulated scenarios accurately reflect the
dependency structure built in Stage 2, random samples
must be correlated. This is achieved using the
mathematical technique of Cholesky decomposition [10].
The correlation matrix R (output of Stage 3) is
decomposed into the product of a lower triangular matrix
L and its transpose LT
R=L.L T 5)
An independent standard normal random vector Zing
(generated by LHS) is transformed into a correlated
standard normal vector Zr via matrix multiplication:
Zeow =L+ Zing (6)
Finally, actual random variables X; (generation, load)
are determined by applying the inverse cumulative
distribution function (Inverse CDF) of each distribution
defined in Stage 1 to Zcor
Xi = Fi ' (®(Zeorr) ()
Where:

e O: CDF of the standard normal distribution;
e F;'!: Inverse CDF of the actual probability distribution
(e.g., Student-t, Beta) for element i.

Figure 7. Heatmap of the correlation matrix
2.4.3. Automation loop and PSS/E integration

The entire simulation process is controlled by a
Python script executing an N-iteration loop. In each
iteration i = 1, ..., N, the following stages are performed
automatically:
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1. Scenario generation: Generate a set of correlated
random samples X; for all continuous variables (load,
renewable generation) and sample discrete states
(generator/line outages) based on their FOR.

2. Model Update: Using PSS/E API functions, the
Python script updates power values from sample set X; into
the power system model. If a failure is sampled, the
corresponding element is set to “out of service”.

3. Computation Execution: Call the PSS/E power flow
solution function (e.g., psspy.fnsl()) to calculate the system
operating state for the current scenario [11-12].

4. Result Collection: Upon successful computation, the
Python script retrieves key output results (bus voltages,
power flows, branch loadings) and stores them.

2.4.4. Statistical analysis and risk assessment

Upon completion of the simulation loop, the result is a
large dataset containing N possible operating states of the
system. From this dataset, empirical probability
distributions (as histograms or cumulative distribution
functions - CDFs) for output variables are constructed.
Operational risk indices are directly quantified, for
example:

o Probability of voltage limit violation: P(Vius<Vmin Or
Vbus<Vmax);

e Probability of line overload: P(%Loadingjinc >100%).

These indices provide a quantitative and clear view of
system security under uncertainty.

3. Application to the 220kV Central Vietnam power
system

3.1. System Under Study

The selected system for applying and validating the
analytical framework is the Central Vietnam power system,
focusing on the 220kV voltage level. This system is chosen
as a representative case study for the following reasons:

e High penetration of renewable energy: This region
has experienced a rapid expansion of solar and wind power
sources in recent years, creating a complex operational
environment with high uncertainty - an ideal scenario for
testing a probabilistic risk assessment method.

e Representativeness: The system encompasses all
essential components of a modern power grid, including
conventional power plants, large-scale renewable energy
farms, and diverse load centers (industrial, residential,
etc.), enabling a comprehensive and generalizable risk
evaluation.

3.2. Model and data

Power system model: The simulation model of the
220kV Central Vietnam power system is developed using
the specialized PSS/E software. The model includes
complete grid topology parameters (buses, branches,
transformers) and equipment characteristics (generators,
loads). This foundational model serves as the physical
object to which the uncertainty scenarios generated by the
analytical framework are applied.

Analytical data: As described in the methodology, the

input dataset consists of three years of SCADA operational
data, stored in Parquet format. This dataset provides time
series of active power (P) and reactive power (Q) for
hundreds of measurement points, including loads at 220kV
and 110kV buses, as well as connection points for major
solar and wind plants in the region.

3.3. Simulation and result analysis

The scenario analyzed is the midday off-peak during
the dry season, characterized by low system load while
solar generation can reach its maximum. The primary
objective of analyzing this scenario is to assess the risk of
overload on transmission lines near renewable energy
centers.

The element under consideration is the 220kV Quy
Nhon — Tuy Hoa transmission line, which is responsible for
supplying electricity to the eastern areas of Gia Lai and
Dak Lak provinces. Additionally, this line plays a crucial
role in evacuating renewable energy (especially solar
power) from the region. The loading level of the line is
represented by probability density function (PDF) and
cumulative distribution function (CDF) curves.

Probability Density Function (PDF] - Branch Loading
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Figure 8. PDF curve of loading level for
the 220kV Quy Nhon - Tuy Hoa transmission line
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Figure 9. CDF curve of loading level for
the 220kV Quy Nhon - Tuy Hoa transmission line

Analysis of the PDF and CDF curves yields the
following observations:

e Operational trend: The peak of the PDF curve
indicates that the most probable loading level for this line
is in the range of 80-85%. This represents the typical
operating state during midday off-peak in the dry season
when solar generation is high.

¢ Degree of fluctuation: The distribution curve spans
from about 70% to nearly 98%, indicating significant
variation in power flow on the line. This variability
accurately reflects the impact of renewable energy sources
and load.
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o Asymmetry: The distribution is slightly skewed to
the right, suggesting a higher likelihood of high loading
conditions compared to low loading cases.

o Risk assessment: The probability that the line
exceeds the warning threshold (loading level at 90% of
rated capacity or higher) is 4.57%.

4. Conclusion

This paper has presented the development and
validation of a comprehensive analytical framework for
power system operational risk assessment using
probabilistic power flow based on actual data. The
proposed framework addresses the limitations of
traditional methods by integrating an automated process,
from raw SCADA data processing to systematic
quantification of risk indices. The core methodological
contributions include the automated identification of the
most appropriate statistical models for each uncertain
factor, construction of realistic cluster-based correlation
structures, and the application of Monte Carlo simulation
combined with Latin Hypercube Sampling (LHS).

Through the case study on the 220kV Central Vietnam
power system model, the effectiveness of the analytical
framework has been clearly demonstrated. The results
quantitatively —assessed risks under characteristic
operational scenarios. The study also emphasizes the
critical importance of modeling the correlation between
renewable energy sources and loads to avoid
underestimating system risks.

This analytical framework has practical application
potential for entities such as Power System Operation
Centers and Power Companies. Thanks to its open
architecture, Python-based platform, and industry-
standard PSS/E computational engine, it can be readily
deployed as a decision support system. In actual
operation, this tool can effectively assist short-term
operational planning by providing early probabilistic risk
warnings, as well as support medium- and long-term
system security assessments. The adoption of this
framework marks a significant shift from “deterministic”
operational thinking to “probabilistic risk management”,
aligning with the increasingly uncertain nature of modern
power systems.

Future research and development directions are
proposed to focus on expanding the scope of application.
An important direction is to integrate statistical models
from historical SCADA data with scenarios of load growth
and generation development. This approach will enable a
transition from current operational risk assessment to near-
future risk evaluation, providing quantitative information
for short-term power grid planning.
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