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Abstract - High penetration of renewable energy poses 

significant challenges to power system operational security. This 

paper presents the development of a comprehensive framework 

for operational risk assessment using a data-driven Probabilistic 

Power Flow (PPF) approach. The proposed framework 

automatically identifies the best-fit probability distributions for 

loads and generation sources, constructs a cluster-based 

correlation model, and quantifies risks via an enhanced Monte 

Carlo simulation using Latin Hypercube Sampling (LHS). The 

framework's effectiveness is validated through a case study on the 

Vietnamese Central Power System. Results demonstrate that the 

methodology accurately quantifies operational risks, highlighting 

the critical importance of correlation modeling. This framework 

provides a powerful and widely applicable tool to support secure 

grid operation and planning. 
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1. Introduction  

The global energy transition is progressing vigorously, 

oriented towards carbon emission reduction and 

prioritizing the development of clean energy sources. In 

line with this trend, Vietnam has been implementing 

breakthrough policies to promote renewable energy, 

concretized in Resolution 55-NQ/TW of the Politburo, 

which outlines the strategic direction for national energy 

development. Central Vietnam is a region with tremendous 

potential for solar and wind energy, having become a 

renewable energy hub of the country, with thousands of 

megawatts of installed capacity from these sources in 

recent years. 

However, integrating a large proportion of renewable 

energy sources, which are inherently variable and 

weather-dependent, has posed unprecedented challenges 

to power system operation. The uncertainty and 

randomness of these generation sources, combined with 

the natural variability of loads, make grid operating states 

increasingly difficult to forecast. The deterministic power 

flow (DPF) method, which has traditionally been used, 

can only assess the system under a few individual 

scenarios and is no longer sufficient to comprehensively 

quantify operational risks. 

To address these limitations, the Probabilistic Power 

Flow (PPF) method has been introduced and widely 

recognized [1-3]. Fundamentally, a PPF problem consists 

of two main components: (1) probabilistic modeling of 

uncertain input variables, and (2) computational methods 

to propagate these uncertainties throughout the system. 

For the first component, a common practice in previous 

studies is to pre-assume probability distributions for 

uncertain factors (e.g., load following a Normal 

distribution, wind power following a Weibull 

distribution) [1-2]. This approach may not accurately 

reflect the actual behavior of each element. For the second 

component, computational methods are typically divided 

into two main categories: analytical methods and 

simulation methods. 

To overcome the aforementioned limitations and 

enhance the accuracy of the analytical model, this study 

proposes a PPF methodology with the following key 

differences and contributions: 

Development of data-driven probabilistic models: 

Unlike assuming probability distributions, this study 

employs an automated process to analyze SCADA 

operational data, thereby fitting and validating the most 

appropriate statistical model for each individual load and 

renewable energy plant. 

Development of an automated and efficient framework: 

The study constructs a complete PPF algorithm using the 

Python programming language to automate the entire 

analysis process. In this framework, PSS/E software is used 

as the core power flow engine, combined with an improved 

Monte Carlo simulation [5] utilizing high-efficiency Latin 

Hypercube Sampling (LHS) [6] to enhance convergence 

speed compared to traditional Monte Carlo simulation. 

Integration of realistic correlation modeling: The study 

develops and integrates a cluster-based correlation model 

to capture the interdependencies among renewable energy 

sources, an often overlooked factor that significantly 

impacts risk assessment results. 

2. Proposed PPF analytical framework 

2.1. Overview of the PPF analytical framework 

The methodology proposed in this study is a 

comprehensive PPF analytical process, constructed with a 

modular and automated architecture. The objective of this 

framework is to transform raw operational data from the 

SCADA system into meaningful operational risk indices, 

providing quantitative information for system operators. 

The entire process is divided into three main stages, 

illustrated in Figure 1 and detailed in the following 

sections. 
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Figure 1. PPF analytical process 

Stage 1 – Probabilistic Input Modeling: This stage 

focuses on constructing probabilistic models for uncertain 

input factors. Instead of traditional assumptions, a 

dedicated algorithm is developed to automatically process, 

clean, filter, and analyze historical SCADA data. The most 

suitable probability density function (PDF) is then 

identified and validated for each individual load, renewable 

energy source, and random event. This stage ensures that 

input models have high fidelity and accurately reflect 

actual operating characteristics. 

Stage 2 – Correlation Structure Modeling: This 

stage addresses the interdependencies among renewable 

energy sources. Based on a cluster-based analysis method, 

a correlation matrix is constructed to describe the 

spatiotemporal relationships between generation sources 

within the same geographical area or sharing similar 

weather characteristics. This correlation structure is a 

crucial input to ensure the realism of simulation scenarios. 

Stage 3 – PPF Simulation and Risk Assessment: This 

is the core computational stage. An algorithm written in 

Python orchestrates the entire simulation loop. This 

algorithm employs the Monte Carlo Simulation method, 

enhanced with the Latin Hypercube Sampling (LHS) 

technique to generate correlated operational scenarios. For 

each scenario, the PSS/E software is called to perform 

power flow calculations. Results from thousands of 

iterations are aggregated to construct probability 

distributions for system state variables (voltage, power 

flow) and to quantify risk indices. 

2.2. Probabilistic modeling from SCADA data 

The initial stage of the framework focuses on 

constructing high-fidelity probabilistic models for 

uncertain factors, based on historical operational data. This 

approach replaces pre-assumed distributions, ensuring that 

the PPF model inputs accurately reflect the characteristics 

of the actual power system. 

2.2.1. Data sources and storage structure 

The input data source consists of time-series datasets 

collected from the SCADA system of the Central Vietnam 

power grid over a three-year period. To ensure efficient 

retrieval and processing of large volumes of data - up to 

millions of records - all data are stored in Parquet file 

format. This columnar storage format allows for 

significantly faster querying and loading compared to 

traditional text formats such as CSV, which is essential for 

large-scale analysis. 

2.2.2. Preprocessing and filtering by “Time Slices” 

Raw SCADA data first undergo a preprocessing stage 

for cleaning, including handling missing values and 

removing invalid data points (e.g., negative power values 

for renewable energy plants). 

To ensure reliable model inputs, the data processing 

workflow is fully automated using Python algorithms and 

the Pandas library for high-performance processing of 

large datasets. Data cleaning is performed using a multi-

layer filter to remove invalid samples: 

Layer 1: Handling Missing Values: Remove data 

points with missing values (NaN/Null) due to 

communication losses. 

Layer 2: Handling Physical Limit Violations: 

Remove values outside the feasible operating range of 

equipment, such as negative generation values for power 

plants. 

Layer 3: Outlier Detection: To address outliers 

caused by measurement errors or transmission noise, the 

Interquartile Range (IQR) method is applied. For each 

dataset, the boundaries for filtering outliers are determined 

as:  

[Limitlower, Limitupper] = [Q1 – 1.5*IQR, Q3 + 1.5*IQR] (1) 

Where:  

• Limitlower: Lower boundary. 

• Limituper: Upper boundary. 

• Q1: First quartile, the value below which 25% of the 

data fall. 

• Q3: Third quartile, the value below which 75% of the 

data fall. 

• IQR = Q3 – Q1: Interquartile range. 

Any data point outside this range is considered an 

outlier and removed from the dataset. Sensitivity analysis 

with other methods (such as Z-score or Modified Z-score) 

shows that the IQR method (with a threshold of 1.5) 

offers the best balance: it effectively removes 

measurement noise without discarding valid extreme 

operational points, which methods based on the normal 

distribution often miss or wrongly exclude. Quantitative 

results for processing an operational parameter (active 

power through bay 233 at the 220kV Hoa Khanh 

substation) are detailed in Table 1. 

Table 1. Comparison of outlier detection methods 

Method Threshold 
Samples 

removed 

Removal 

rate (%) 

Z-score 3.0 274 0.13% 

Modified Z-score 3.5 5522 2.62% 

IQR 1.5 3519 1.67% 
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With the proposed three-layer filter, the proportion of 

data removed is less than 2% of the total samples. Since 

power system parameters typically do not fluctuate much 

over short intervals (with a 5-minute sampling period), 

removed values are replaced by the previous valid value. 

 

Figure 2. Multi-layer data cleaning filter 

A core aspect of the proposed methodology is 

transforming raw time-series data into meaningful datasets 

representing characteristic operational scenarios of the 

system. To achieve this, a technique called “time slicing” 

is applied. 

This technique involves filtering and partitioning the 

SCADA dataset based on specific time frames, such as 

hours of the day and months of the year. Combining these 

filters allows for precise extraction of data samples 

corresponding to critical operational states of the power 

system.  

Analyzing each “time slice” separately enables targeted 

risk assessment. For example, the “midday off-peak in dry 

season” scenario is crucial for evaluating overvoltage risk 

due to low load and high solar generation, while the 

“evening peak in rainy season” scenario is central to 

analyzing line overload risk. 

2.2.3. Automated fitting and selection of probability 

distributions 

For each dataset corresponding to a characteristic 

operational scenario, the next stage is to identify the 

mathematical model (Probability Density Function - PDF) 

that best describes the data distribution. This study 

employs a two-step automated model selection process to 

ensure statistical accuracy and reliability. 

Step 1: Goodness-of-Fit Test. Each candidate 

distribution (e.g., Student, Normal, Weibull, Beta, Gamma, 

etc.) is fitted to the actual data. The Kolmogorov-Smirnov 

(K-S) test [7] is then applied to assess whether the data 

follow the theoretical distribution. The K-S test is non-

parametric, with the following hypotheses: 

• H0 (Null hypothesis): The data follow the specified 

distribution. 

• H1 (Alternative hypothesis): The data do not follow 

the specified distribution. 

A p-value is calculated from the test. With a pre-

selected significance level α (typically α = 0.05), the 

decision rule is:  

• If p-value < 0.05, H0 is rejected. The distribution is 

considered unsuitable and excluded. 

• If p-value > 0.05, there is insufficient evidence to 

reject H0. The distribution is considered statistically 

suitable and proceeds to the next selection step. 

Step 2: Model Selection by AIC Criterion. After 

Step 1 filters out unsuitable distributions, several candidate 

models may remain. To select the best among them, the 

Akaike Information Criterion (AIC) [8] is used. AIC is a 

statistical indicator that compares the relative quality of 

models by balancing goodness of fit and model 

complexity. The general formula for AIC is: 

AIC = 2k – 2ln(L)    (2) 

Where:  

• k: Number of estimated parameters in the model, 

penalizing model complexity. For example, the Normal 

distribution includes mean and standard deviation. 

• L: Maximum likelihood of the model. The log-

likelihood value represents the goodness of fit; the higher 

the value, the better the fit. 

The final result of this stage is a set of characteristic 

parameters for the selected distribution for each load and 

renewable energy source, corresponding to each 

operational scenario. These parameters are used as inputs 

for the PPF simulation stage, ensuring accuracy and 

practicality throughout the analysis process. 

Figures 3 and 4 illustrate a system parameter (reactive 

power at the 220kV Tuy Hoa substation) extracted from 

SCADA, represented as the empirical probability 

distribution and the fitted theoretical Student-t distribution 

(with p-value > 0.05 and lowest AIC in Table 2).  

The estimated parameters for the Student-t distribution are: 

df: 6.3606, loc: 1.1389, scale: 4.2107. 

 

Figure 3. PDF Plot of SCADA actual data and fitted 

distribution 

 

Figure 4. Cumulative distribution function (CDF) plots of 

actual SCADA data and estimated  
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Table 2. p-value and AIC for each distribution type 

Distribution  AIC p-value 

student 967 0.10 

lognorm 969 0.48 

gamma 976 0.38 

beta 978 0.38 

norm 1047 0.01 

2.2.4. Modeling discrete events 

In addition to continuous uncertainties such as load and 

renewable generation, a comprehensive operational risk 

assessment must consider low-probability but high-impact 

discrete events, typically random failures of system 

components. In this study, failures of critical elements such 

as transmission lines and generator units are modeled as 

discrete random variables. 

Each component (generator i or line j) is modeled using 

a Bernoulli distribution with two possible states: 

1. In-service (normal operation) 

2. Outage (failure)  

The probability of each state is determined by a key 

statistical parameter, the Forced Outage Rate (FOR). FOR 

is defined as the probability that a component is 

unavailable at any given time due to intrinsic failures. It is 

calculated from historical operation and maintenance data 

as follows: 

Outage

Outage In service

T

FOR

T T −

=

+



 

   (3) 

Where:  

- OutageT : Total time the device is out of service. 

- In serviceT − : Total time the device is in normal 

operation. 

By integrating these models, the Monte Carlo 

simulation algorithm (Stage 3) is enhanced as follows: In 

each simulation iteration, in addition to random sampling 

for continuous variables (load, renewable generation), the 

states of lines and generators are also randomly sampled 

based on their FOR. For example, with FOR = 0.01, in each 

iteration, a random number between [0, 1] is generated; if 

the number is less than 0.01, the component is simulated in 

the outage state for that iteration. 

2.3. Construction of correlation structure 

Accurately modeling individual probability 

distributions (as described in Stage 1) is necessary but not 

sufficient for a realistic PPF problem. In actual operation, 

renewable energy sources, especially solar and wind power 

plants, do not operate entirely independently. Their output 

is often correlated due to shared exposure to large-scale 

meteorological factors such as cloud cover, wind direction, 

and solar irradiance within the same region [9]. 

Ignoring correlations and assuming independent 

uncertainties can dangerously underestimate operational 

risks. For example, an uncorrelated model may fail to 

capture scenarios where widespread cloud cover or calm 

winds simultaneously cause large power fluctuations 

across the system. Therefore, constructing a realistic 

correlation model is a core stage in the proposed analytical 

framework. 

2.3.1. Cluster-based correlation analysis method 

To capture the most significant correlations without 

making the problem overly complex, this study adopts a 

cluster-based correlation analysis method. The main idea is 

to group loads and renewable sources that are closely 

related geographically or meteorologically into the same 

“cluster”, with reasonable assumptions: 

• Loads and generation sources within a cluster are 

correlated. 

• Loads and generation sources in different clusters are 

assumed independent. 

For example, all wind farms in Quang Tri province can 

be grouped into one cluster, and all solar plants in Gia Lai 

region into another. 

2.3.2. Calculation of correlation matrices 

 

Figure 5. PPF simulation flowchart 
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For each defined cluster, the internal correlation matrix 

is calculated from SCADA time-series data. This study 

uses the Spearman rank correlation coefficient (rs) instead 

of the Pearson coefficient, as the latter only measures linear 

correlation and is sensitive to outliers and non-normal data. 

In contrast, operational data for renewables and loads often 

do not follow normal distributions (as shown in Stage 1), 

and their relationships are not always linear. Spearman’s 

coefficient is non-parametric, operating on the ranks of 

data rather than their actual values, making it robust to 

outliers and capable of capturing monotonic relationships - 

i.e., when one variable tends to increase, so does the other 

(or vice versa), regardless of linearity.  

The Spearman correlation coefficient rs between two 

random variables Xi and Xj (which can be source-source, 

load-load, or source-load) is calculated by applying the 

Pearson formula to their ranked data: 

𝑟𝑠 = 𝜌𝑟𝑔(𝑋𝑖),𝑟𝑔(𝑋𝑗) =
𝑐𝑜𝑣(𝑟𝑔(𝑋𝑖),𝑟𝑔(𝑋𝑗))

𝜎𝑟𝑔(𝑋𝑖)𝜎
𝑟𝑔(𝑋𝑗)

    (4) 

Where:  

• Xi and Xj: Time series of random variables; 

• rg(Xi) and rg(Xj): Ranked data of Xi and Xj; 

• cov(rg(Xi), rg(Xj)): Covariance of ranked values; 

• 𝜎𝑟𝑔(𝑋𝑖), 𝜎𝑟𝑔(𝑋𝑗): Standard deviations of ranked values. 

After calculating Spearman correlation matrices for 

each cluster, they are combined into an overall block-

diagonal correlation matrix. This matrix is a key input, 

determining the dependency structure of random samples 

generated in Stage 3, ensuring simulation scenarios 

accurately reflect the complex relationships among system 

elements. 

2.4. PPF simulation and risk assessment 

The probabilistic models and correlation structures 

built are integrated with the power system model to 

quantify operational risks. This process is executed via an 

automated simulation algorithm, integrating Python 

programming with the specialized power system analysis 

software PSS/E by Siemens. 

2.4.1. Monte Carlo Simulation with Latin Hypercube 

Sampling (LHS) 

The selected computational method is Monte Carlo 

Simulation (MCS), a powerful and flexible approach 

capable of handling complex problems with multiple 

random variables and arbitrary distributions. To improve 

computational efficiency and reduce the required number 

of iterations, this study applies an advanced sampling 

technique: Latin Hypercube Sampling (LHS). 

Unlike simple random sampling (which may produce 

uneven sample clusters), LHS is a stratified sampling 

method. It divides the cumulative distribution function 

(CDF) of each random variable into N intervals with equal 

probability, ensuring each interval is sampled exactly once. 

This results in random sample sets that are more evenly 

distributed across the entire probability space, thereby 

significantly accelerating the convergence of output 

statistics. 

 

Figure 6. Comparison of convergence speed between MCS and 

MCS with LHS 

2.4.2. Generation of correlated random samples 

To ensure simulated scenarios accurately reflect the 

dependency structure built in Stage 2, random samples 

must be correlated. This is achieved using the 

mathematical technique of Cholesky decomposition [10]. 

The correlation matrix R (output of Stage 3) is 

decomposed into the product of a lower triangular matrix 

L and its transpose L^T: 

R = L. L^T     (5) 

An independent standard normal random vector Zind 

(generated by LHS) is transformed into a correlated 

standard normal vector Zcorr via matrix multiplication: 

Zcorr = L⋅ Zind     (6) 

Finally, actual random variables Xi (generation, load) 

are determined by applying the inverse cumulative 

distribution function (Inverse CDF) of each distribution 

defined in Stage 1 to Zcorr: 

Xi = Fi
-1(Φ(Zcorr)     (7) 

Where:  

• Φ: CDF of the standard normal distribution; 

• Fi
-1: Inverse CDF of the actual probability distribution 

(e.g., Student-t, Beta) for element i. 

 

Figure 7. Heatmap of the correlation matrix 

2.4.3. Automation loop and PSS/E integration 

The entire simulation process is controlled by a 

Python script executing an N-iteration loop. In each 

iteration i = 1, ..., N, the following stages are performed 

automatically: 
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1. Scenario generation: Generate a set of correlated 

random samples 𝑋𝑖 for all continuous variables (load, 

renewable generation) and sample discrete states 

(generator/line outages) based on their FOR. 

2. Model Update: Using PSS/E API functions, the 

Python script updates power values from sample set 𝑋𝑖 into 

the power system model. If a failure is sampled, the 

corresponding element is set to “out of service”. 

3. Computation Execution: Call the PSS/E power flow 

solution function (e.g., psspy.fnsl()) to calculate the system 

operating state for the current scenario [11-12]. 

4. Result Collection: Upon successful computation, the 

Python script retrieves key output results (bus voltages, 

power flows, branch loadings) and stores them. 

2.4.4. Statistical analysis and risk assessment 

Upon completion of the simulation loop, the result is a 

large dataset containing N possible operating states of the 

system. From this dataset, empirical probability 

distributions (as histograms or cumulative distribution 

functions - CDFs) for output variables are constructed. 

Operational risk indices are directly quantified, for 

example: 

• Probability of voltage limit violation: P(Vbus<Vmin or 

Vbus<Vmax); 

• Probability of line overload: P(%Loadingline >100%). 

These indices provide a quantitative and clear view of 

system security under uncertainty. 

3. Application to the 220kV Central Vietnam power 

system 

3.1. System Under Study 

The selected system for applying and validating the 

analytical framework is the Central Vietnam power system, 

focusing on the 220kV voltage level. This system is chosen 

as a representative case study for the following reasons: 

• High penetration of renewable energy: This region 

has experienced a rapid expansion of solar and wind power 

sources in recent years, creating a complex operational 

environment with high uncertainty - an ideal scenario for 

testing a probabilistic risk assessment method. 

• Representativeness: The system encompasses all 

essential components of a modern power grid, including 

conventional power plants, large-scale renewable energy 

farms, and diverse load centers (industrial, residential, 

etc.), enabling a comprehensive and generalizable risk 

evaluation. 

3.2. Model and data 

Power system model: The simulation model of the 

220kV Central Vietnam power system is developed using 

the specialized PSS/E software. The model includes 

complete grid topology parameters (buses, branches, 

transformers) and equipment characteristics (generators, 

loads). This foundational model serves as the physical 

object to which the uncertainty scenarios generated by the 

analytical framework are applied. 

Analytical data: As described in the methodology, the 

input dataset consists of three years of SCADA operational 

data, stored in Parquet format. This dataset provides time 

series of active power (P) and reactive power (Q) for 

hundreds of measurement points, including loads at 220kV 

and 110kV buses, as well as connection points for major 

solar and wind plants in the region. 

3.3. Simulation and result analysis 

The scenario analyzed is the midday off-peak during 

the dry season, characterized by low system load while 

solar generation can reach its maximum. The primary 

objective of analyzing this scenario is to assess the risk of 

overload on transmission lines near renewable energy 

centers.  

The element under consideration is the 220kV Quy 

Nhon – Tuy Hoa transmission line, which is responsible for 

supplying electricity to the eastern areas of Gia Lai and 

Dak Lak provinces. Additionally, this line plays a crucial 

role in evacuating renewable energy (especially solar 

power) from the region. The loading level of the line is 

represented by probability density function (PDF) and 

cumulative distribution function (CDF) curves. 

 

Figure 8. PDF curve of loading level for  

the 220kV Quy Nhon - Tuy Hoa transmission line 

Figure 9. CDF curve of loading level for  

the 220kV Quy Nhon - Tuy Hoa transmission line 

Analysis of the PDF and CDF curves yields the 

following observations: 

• Operational trend: The peak of the PDF curve 

indicates that the most probable loading level for this line 

is in the range of 80–85%. This represents the typical 

operating state during midday off-peak in the dry season 

when solar generation is high. 

• Degree of fluctuation: The distribution curve spans 

from about 70% to nearly 98%, indicating significant 

variation in power flow on the line. This variability 

accurately reflects the impact of renewable energy sources 

and load. 
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• Asymmetry: The distribution is slightly skewed to 

the right, suggesting a higher likelihood of high loading 

conditions compared to low loading cases. 

• Risk assessment: The probability that the line 

exceeds the warning threshold (loading level at 90% of 

rated capacity or higher) is 4.57%. 

4. Conclusion 

This paper has presented the development and 

validation of a comprehensive analytical framework for 

power system operational risk assessment using 

probabilistic power flow based on actual data. The 

proposed framework addresses the limitations of 

traditional methods by integrating an automated process, 

from raw SCADA data processing to systematic 

quantification of risk indices. The core methodological 

contributions include the automated identification of the 

most appropriate statistical models for each uncertain 

factor, construction of realistic cluster-based correlation 

structures, and the application of Monte Carlo simulation 

combined with Latin Hypercube Sampling (LHS). 

Through the case study on the 220kV Central Vietnam 

power system model, the effectiveness of the analytical 

framework has been clearly demonstrated. The results 

quantitatively assessed risks under characteristic 

operational scenarios. The study also emphasizes the 

critical importance of modeling the correlation between 

renewable energy sources and loads to avoid 

underestimating system risks. 

This analytical framework has practical application 

potential for entities such as Power System Operation 

Centers and Power Companies. Thanks to its open 

architecture, Python-based platform, and industry-

standard PSS/E computational engine, it can be readily 

deployed as a decision support system. In actual 

operation, this tool can effectively assist short-term 

operational planning by providing early probabilistic risk 

warnings, as well as support medium- and long-term 

system security assessments. The adoption of this 

framework marks a significant shift from “deterministic” 

operational thinking to “probabilistic risk management”, 

aligning with the increasingly uncertain nature of modern 

power systems. 

Future research and development directions are 

proposed to focus on expanding the scope of application. 

An important direction is to integrate statistical models 

from historical SCADA data with scenarios of load growth 

and generation development. This approach will enable a 

transition from current operational risk assessment to near-

future risk evaluation, providing quantitative information 

for short-term power grid planning. 
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