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Abstract - This paper presents a comprehensive dynamic
investigation of a rotor-bearing system using the finite element
method (FEM). The modeled system comprises a uniform shaft,
two disk masses, an elastic coupling, and two journal bearings. A
numerical model is developed using beam elements with eight
degrees of freedom (DOFs) per element, leading to the assembly
of global mass, damping, gyroscopic, and stiffness matrices.
Modal analysis is performed to extract the natural frequencies and
associated mode shapes. In addition, the study includes static
deflection analysis, Campbell diagram construction, and forced
vibration simulations under unbalanced excitation. The results
highlight critical rotational speeds and key dynamic behaviors
essential for ensuring the reliable and efficient operation of high-
speed rotating machinery. These findings provide valuable
insights for the design, balancing, and predictive maintenance of
rotor-bearing systems.
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1. Introduction

Rotor-bearing systems are essential components in a
wide range of industrial machines such as turbines,
compressors, generators, and electric motors. These
systems often operate at high speeds, where vibration and
dynamic instability can significantly impact performance,
safety, and longevity.

To model and predict dynamic behavior, the finite
element method (FEM) has been widely employed. Recent
advances have demonstrated its effectiveness in capturing
the vibration characteristics of rotor-bearing systems under
various excitation conditions, including unbalance and
misalignment. For example, a recent study used FEM to
investigate a rotor system with time-dependent
misalignment, illustrating the method’s capacity for
nonlinear dynamic analysis [1]. Another approach
developed a second-order FEM model for analyzing flexible
rotor—bearing structures with improved accuracy [2].

Experimental rotor test rigs also play a crucial role in
validating numerical models and exploring dynamic
responses. A virtual rotor test rig was introduced to support
balancing experiments and simulate operational conditions
[3], while a separate study constructed a full-scale rotor test
setup to measure dynamic behavior using force and
displacement sensors [4]. These platforms enable
researchers to derive key parameters such as stiffness,
damping, and critical speeds, and are particularly useful for
benchmarking FEM simulations.

The integration of FEM with empirical methods has
gained traction. In [5], researchers combined FEM with
experimental modal testing to investigate the response of
an elastic Jeffcott rotor supported by fluid film bearings.
The resulting hybrid methodology provided accurate
insight into mode shapes and resonance behavior.
Similarly, another study analyzed time-varying system
parameters in a rotor rig to highlight the influence of
transient dynamics [6].

In hydropower and large-scale systems, FEM has been
employed to model rotor—bearing—stator interactions with
realistic boundary conditions. For example, [7] presented a
full 3D finite element study on the rotor dynamics of
vertical hydropower units, accounting for structural
flexibility and bearing behavior. These efforts support
system-level diagnostics and design optimization.

Advanced sub structuring and component-level
modeling techniques are also being developed. A recent
contribution applied experimental dynamic sub structuring
to isolate and characterize specific subsystems within a
rotor-bearing assembly [8], offering new avenues for
health monitoring and fault detection.

Comprehensive numerical models can also inform
predictive maintenance strategies. A study in [9] developed
a FEM framework to assess critical speeds, mode shapes,
and stress distributions in rotor systems. Additionally,
FEM-based vibration analysis has been applied to evaluate
dynamic stability and optimize the design of high-speed
rotating machinery [10].

Building upon these advancements, the present
study aims to develop and validate a finite element
model of a rotor-bearing system subjected to static
gravitational loading and unbalanced excitation. The
analysis includes modal extraction, Campbell diagram
construction, and forced vibration response, providing a
complete assessment of the system’s dynamic
characteristics

2. System Configuration

The modeled system consists of a uniform shaft
supported by two journal bearings, with two disks mounted
along its length and connected to a motor through an elastic
coupling. The geometric layout and element positions,
including the locations of bearings and mass disks, are
described in Figure 1 and specification of this system are
listed in Table 1.
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Table 1. Specification of the modeled system

Component Parameter Value Unit

Shaft Material Steel -
Diameter 10 mm
Length 580 mm
Young’s Modulus 205 GPa
Density 7800 kg/m?

Disk Material Steel -
Diameter 75 mm
Thickness 25 mm
Mass 0.8675 kg

Bearing Mass 0.150 kg
Stiffness (X-direction) ~ 1,25x10° N/m
Stiffness (Y-direction)  3,83x10%° N/m
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Figure 1. Geometry and element configuration of the modeled
rotor-bearing system

3. Numerical model

A finite element approach is employed using beam
elements with 8 DOFs per element. The total number of
degrees of freedom is defined as 4 times the number of
nodes. The governing equation of motion is:

[M]x + ([C] + 2[GDx + [K]x =W + F(t)

where [M], [C], [G], and [K] are the global mass, damping,
gyroscopic, and stiffness matrices, respectively.
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Figure 2. 3D finite element model of rotor system

To numerically analyze the rotor-bearing system using
the finite element method (FEM), all structural
components must be represented in the model. The system
is composed of the following elements:

- One rotating shaft;

- One elastic coupling;

- Two rigid disk masses mounted along the shaft;
- Two supporting bearings.

The shaft is discretized into beam elements. Each
element connects two nodes and includes both translational
and rotational degrees of freedom. The finite element
formulation is defined as follows:

- Number of elements: Nel;

- Number of nodes: Npoge = Nel+1;

- Degrees of freedom per element: 8 (4 DOFs per node
x 2 nodes);

- Total number of degrees of freedom: Nor = 4 X Niyode.

The nodal displacement vector of a generic element j is
expressed as:

x}r)
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Where:

-uand w represent translational displacements in the X
and Z directions, respectively.

- ij and l,sz denote the rotations around the X and Z
axes, respectively.

This formulation allows for the accurate representation
of shaft bending in both vertical and horizontal planes and
is suitable for modeling the coupled dynamic behavior of
rotor-bearing systems

4. Results and discussion
4.1. Modal analysis and mode shapes

Modal analysis is a fundamental step in understanding
the dynamic characteristics of a rotor-bearing system. By
solving the eigenvalue problem derived from the finite
element formulation, the system's natural frequencies and
corresponding mode shapes are obtained. These mode
shapes describe how the shaft deforms at each frequency,
providing insight into potential resonance conditions and
dynamic behavior under excitation.

The first six mode shapes of the system are extracted
and visualized in 3D (see in Figure 3), revealing a range
of bending patterns in both the horizontal (X) and vertical
(Z) planes. The computed natural frequencies are as
follows:

- Mode #1: 28.8 Hz — predominantly vertical bending;

- Mode #2: 28.8 Hz — predominantly horizontal bending;

- Mode #3: 125.4 Hz — vertical bending with additional
inflection points;

- Mode #4: 125.8 Hz — horizontal bending with similar
dynamic behavior;

- Mode #5: 347.1 Hz — higher-order vertical bending;

- Mode #6: 357.5 Hz — higher-order horizontal bending.

It is noteworthy that each pair of modes (1 & 2, 3 & 4,
5 & 6) exhibit very close natural frequencies. This is
typical for rotor systems with symmetric properties in the
X and Z directions, where modal shapes manifest as
coupled pairs of orthogonal bending vibrations.

From the mode shapes:

- Modes 1 and 2 indicate the fundamental flexural
behavior of the shaft, where maximum displacement
occurs near the mid-span. These modes are the most
critical, as they are often associated with low-speed
resonances.

- Modes 3 and 4 show increased curvature, signifying
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higher stiffness regions due to disk influence and shaft
dynamics. These modes are sensitive to unbalance-induced
excitations in the mid-frequency range.

- Modes 5 and 6 display complex deformations with
multiple inflection points, highlighting the shaft’s response
at high frequencies. They typically relate to structural
resonances that could occur at high rotational speeds.

Mode #1 - Freq. = 28.8Hz

0 Y - Length [m]

Mode # 3 - Freq. = 125.4Hz

o Y - Length [m]

Mode # 5 - Freq. = 347.1Hz

0 ) ¥ - Length [m]

Understanding these modal patterns is essential for
predicting the behavior of the rotor under operating
conditions. Matching the mode shapes with physical
insights - such as disk locations, bearing positions, and
coupling stiffness - allows for accurate diagnostic
interpretation and the design of appropriate vibration
control strategies.

Mode # 2 - Freq. = 28.8Hz

Y - Length [m]

Mode # 4 - Freq. = 125.8Hz

X 0 Y - Length [m]

Mode # 6 - Freq. = 357.5Hz

0 Y - Length [m]

Figure 3. First six mode shapes of the rotor in 3D (X—Z planes)

4.2. Campbell diagram

The Campbell diagram is a powerful tool used to
visualize the evolution of a rotor system’s natural
frequencies with respect to shaft rotational speed. It is
constructed by plotting the computed natural frequencies
(modal frequencies) on the vertical axis against the shaft
speed on the horizontal axis. Superimposed on this diagram
are excitation lines, typically at 1x and 2x the rotational
frequency (shown as red dashed lines), which represent the
frequencies at which unbalance or other periodic forces act
on the rotor.

It can be seen in Figure 4, the Campbell diagram reveals
multiple natural frequency branches, with both forward
and backward whirl components evident in the higher
modes. The slopes of these frequency curves reflect the
gyroscopic effects introduced by the rotating disks. As
shaft speed increases:

- Some branches (particularly the backward whirl
modes) slightly decrease in frequency.

- Others increase linearly, showing typical forward
whirl behavior.
The critical speeds correspond to the intersection points

of the natural frequency curves with the 1X and 2X
excitation lines:

- The first intersection with the 1X line (near ~1700
RPM) corresponds to the fundamental critical speed.

- Higher-order intersections represent additional
resonance conditions and should be considered carefully in
rotor design and operational planning.

These intersections indicate regions where the system
may experience resonance, potentially leading to excessive
vibration amplitudes, increased dynamic loading on
bearings, and structural fatigue. Therefore, they must be
avoided during continuous machine operation.

The identification of critical speeds offers direct
insights into potential resonance zones. These critical
speeds can serve as reference thresholds in real-time
condition monitoring systems. By tracking the operational
speed in relation to these thresholds, engineers can
schedule preventive maintenance or perform rotor
balancing procedures to proactively avoid resonance and
extend machinery lifespan.

The Campbell diagram also provides valuable insight
into the system’s dynamic stiffness and stability margins,
aiding in:

- Identifying safe operating speed ranges;

- Evaluating the influence of gyroscopic effects;

- Supporting decisions related to design modifications
or the inclusion of damping mechanisms.

Overall, this diagram serves as an essential reference
for ensuring safe and reliable operation of the rotor-bearing
system under variable-speed conditions.
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Figure 4. Campbell diagram of the system
4.3. Static deflection

To evaluate the structural deformation under steady-
state conditions, a static deflection analysis was performed
by applying gravitational loading on the rotor-bearing
system. The results are presented in terms of displacement
amplitudes along both the vertical and horizontal directions
over the shaft span.

As illustrated in the Figure 5, the shaft undergoes
significant deflection in the vertical direction (blue curve),
while the displacement in the horizontal direction (orange
curve) remains negligible throughout the entire length.
This is consistent with expectations, as gravity acts
vertically and induces bending in the Z-direction. The
static deflection curve follows a parabolic shape, with
maximum deflection occurring near the mid-span between
the two disks. This behavior is in agreement with classical
Euler—Bernoulli beam theory, where the deflection of a
simply supported beam under uniform distributed load is
greatest at the center.
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Figure 5. Static deflection of rotor
4.4. Forced displacement response

In rotating machinery, unbalance is one of the most
common and critical sources of excitation, leading to
significant dynamic responses. To simulate this condition,
an unbalanced mass is introduced on the rotor, creating a
centrifugal force that acts radially outward during rotation.

4.4.1. Modeling Unbalance Force

As illustrated in the Figure 6, the unbalance is modeled
as a small mass m = 0.4 g placed at an eccentricity
0G = 30 mm from the rotor’s geometric center. This
results in a harmonic excitation force acting at the rotation
frequency Q defined as:

F=mxO0G x 0?

This force induces lateral vibrations that are

proportional to the square of the rotational speed and vary

in both the horizontal (X) and vertical (Y) directions.
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Figure 6. Schematic of a rotating disk with unbalance mass

4.4.2. Excitation setup and observation nodes

To investigate the rotor's forced response, the
unbalance is applied at a specific location along the shaft,
and the system response is monitored at four key nodes (see
Figure 7):

- Node #5: near the coupling;

- Node #15: near the first disk;

- Node #20: between two disks;

- Node #30: near the free end.

These positions allow for observing the spatial
distribution of vibration amplitudes and how proximity to

the unbalanced mass affects the response
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Figure 7. Finite element mesh with boundary conditions,
disk positions, and unbalance location

4.4.3. Response Analysis
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Figure 8. Frequency response functions (FRFs) at key nodes
under unbalance excitation, for both X and Z directions
The frequency response functions (FRFs) at these
nodes are illustrated in the displacement versus frequency
plots shown in Figure 8, covering both vertical and
horizontal directions. Key observations can be concluded:

- Prominent resonance peaks appear at the natural
frequencies identified in modal analysis, indicating that the
system is highly sensitive to excitation near those speeds.

- The first critical speed occurs around 28.8 Hz,
matching the first mode. This peak is dominant in all
nodes, with particularly high amplitudes observed at
Node #30.
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- A second peak appears around 125 Hz, correlating
with the second mode shape.

- Higher amplitude responses are recorded at nodes
closer to the unbalance location, due to the direct
transmission of centrifugal force.

The maximum displacement recorded at Node #30
exceeds 3000 pm, indicating that high-speed operation in
the resonance region can lead to dangerous shaft
excursions and potential mechanical failure. These
findings underscore the importance of rotor balancing and
provide quantitative guidelines for identifying safe speed
ranges in real-world applications.

5. Conclusion

This research delivers an in-depth investigation into the
dynamic behavior of a rotor-bearing assembly through the
application of the finite element method (FEM). By
systematically modeling critical components—including
the shaft, disk masses, elastic coupling, and journal
bearings—the developed numerical model effectively
characterizes both static deformations and dynamic
responses of the system.

The modal analysis yields essential insights into the
system’s vibrational behavior by extracting both
fundamental and higher-order natural frequencies along
with their respective mode shapes. These findings are
corroborated through the construction of a Campbell
diagram, which not only confirms the computed
eigenfrequencies but also pinpoints critical rotational
speeds and potential resonance regions influenced by
gyroscopic forces and harmonic excitations.

Under gravitational loading, the static deflection
analysis reveals the shaft’s bending profile and offers a
basis for understanding preload conditions at the bearings.
Additionally, a forced response analysis under unbalanced
excitation highlights localized amplification of vibration
amplitudes, particularly at nodes situated near the
disturbance. Resonant peaks aligned with the system’s
natural frequencies underscore the need for precise speed
management and rotor mass balancing.

The simulation results presented in this work provide a
practical foundation for:

- Engineering rotor systems with enhanced stability and
durability,

- Avoiding resonance-prone speed ranges during
operation,

- Facilitating condition-based maintenance through
targeted vibration diagnostics.

Furthermore, the developed FEM model can be
integrated into existing industrial simulation environments
such as ANSYS or MATLAB/Simulink by exporting
stiffness and damping matrices. These allow real-time
monitoring algorithms or predictive maintenance modules
to be deployed effectively, enabling continuous assessment
of critical vibration indicators during operation.

Ultimately, the proposed modeling strategy and
analytical outcomes set the stage for future explorations
involving nonlinear dynamics, bearing clearance
modeling, thermal effects, and experimental validation
using a rotor test bench.
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