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Abstract -  This paper presents a comprehensive dynamic 

investigation of a rotor-bearing system using the finite element 

method (FEM). The modeled system comprises a uniform shaft, 

two disk masses, an elastic coupling, and two journal bearings. A 

numerical model is developed using beam elements with eight 

degrees of freedom (DOFs) per element, leading to the assembly 

of global mass, damping, gyroscopic, and stiffness matrices. 

Modal analysis is performed to extract the natural frequencies and 

associated mode shapes. In addition, the study includes static 

deflection analysis, Campbell diagram construction, and forced 

vibration simulations under unbalanced excitation. The results 

highlight critical rotational speeds and key dynamic behaviors 

essential for ensuring the reliable and efficient operation of high-

speed rotating machinery. These findings provide valuable 

insights for the design, balancing, and predictive maintenance of 

rotor-bearing systems. 
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1. Introduction 

Rotor-bearing systems are essential components in a 

wide range of industrial machines such as turbines, 

compressors, generators, and electric motors. These 

systems often operate at high speeds, where vibration and 

dynamic instability can significantly impact performance, 

safety, and longevity. 

To model and predict dynamic behavior, the finite 

element method (FEM) has been widely employed. Recent 

advances have demonstrated its effectiveness in capturing 

the vibration characteristics of rotor-bearing systems under 

various excitation conditions, including unbalance and 

misalignment. For example, a recent study used FEM to 

investigate a rotor system with time-dependent 

misalignment, illustrating the method’s capacity for 

nonlinear dynamic analysis [1]. Another approach 

developed a second-order FEM model for analyzing flexible 

rotor–bearing structures with improved accuracy [2]. 

Experimental rotor test rigs also play a crucial role in 

validating numerical models and exploring dynamic 

responses. A virtual rotor test rig was introduced to support 

balancing experiments and simulate operational conditions 

[3], while a separate study constructed a full-scale rotor test 

setup to measure dynamic behavior using force and 

displacement sensors [4]. These platforms enable 

researchers to derive key parameters such as stiffness, 

damping, and critical speeds, and are particularly useful for 

benchmarking FEM simulations. 

The integration of FEM with empirical methods has 

gained traction. In [5], researchers combined FEM with 

experimental modal testing to investigate the response of 

an elastic Jeffcott rotor supported by fluid film bearings. 

The resulting hybrid methodology provided accurate 

insight into mode shapes and resonance behavior. 

Similarly, another study analyzed time-varying system 

parameters in a rotor rig to highlight the influence of 

transient dynamics [6]. 

In hydropower and large-scale systems, FEM has been 

employed to model rotor–bearing–stator interactions with 

realistic boundary conditions. For example, [7] presented a 

full 3D finite element study on the rotor dynamics of 

vertical hydropower units, accounting for structural 

flexibility and bearing behavior. These efforts support 

system-level diagnostics and design optimization. 

Advanced sub structuring and component-level 

modeling techniques are also being developed. A recent 

contribution applied experimental dynamic sub structuring 

to isolate and characterize specific subsystems within a 

rotor-bearing assembly [8], offering new avenues for 

health monitoring and fault detection. 

Comprehensive numerical models can also inform 

predictive maintenance strategies. A study in [9] developed 

a FEM framework to assess critical speeds, mode shapes, 

and stress distributions in rotor systems. Additionally, 

FEM-based vibration analysis has been applied to evaluate 

dynamic stability and optimize the design of high-speed 

rotating machinery [10]. 

Building upon these advancements, the present  

study aims to develop and validate a finite element  

model of a rotor-bearing system subjected to static 

gravitational loading and unbalanced excitation. The 

analysis includes modal extraction, Campbell diagram 

construction, and forced vibration response, providing a 

complete assessment of the system’s dynamic 

characteristics 

2. System Configuration 

The modeled system consists of a uniform shaft 

supported by two journal bearings, with two disks mounted 

along its length and connected to a motor through an elastic 

coupling. The geometric layout and element positions, 

including the locations of bearings and mass disks, are 

described in Figure 1 and specification of this system are 

listed in Table 1. 
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Table 1. Specification of the modeled system 

Component Parameter Value Unit 

Shaft Material Steel –  
Diameter 10 mm  
Length 580 mm  
Young’s Modulus 205 GPa  
Density 7800 kg/m³ 

Disk Material Steel –  
Diameter 75 mm  
Thickness 25 mm  
Mass 0.8675 kg 

Bearing Mass 0.150 kg  
Stiffness (X-direction) 1,25×105 N/m  
Stiffness (Y-direction) 3,83×108 N/m 

 

Figure 1. Geometry and element configuration of the modeled 

rotor-bearing system 

3. Numerical model 

A finite element approach is employed using beam 

elements with 8 DOFs per element. The total number of 

degrees of freedom is defined as 4 times the number of 

nodes. The governing equation of motion is: 

[𝑴]𝒙̈ + ([𝑪] + 𝛺[𝑮])𝒙̇ + [𝑲]𝒙 = 𝑾 + 𝑭(𝑡) 

where [𝑴], [𝑪], [𝐆], and [𝐊] are the global mass, damping, 

gyroscopic, and stiffness matrices, respectively. 

 

Figure 2. 3D finite element model of rotor system 

To numerically analyze the rotor-bearing system using 

the finite element method (FEM), all structural 

components must be represented in the model. The system 

is composed of the following elements: 

- One rotating shaft; 

- One elastic coupling; 

- Two rigid disk masses mounted along the shaft; 

- Two supporting bearings. 

The shaft is discretized into beam elements. Each 

element connects two nodes and includes both translational 

and rotational degrees of freedom. The finite element 

formulation is defined as follows: 

- Number of elements: Nel; 

- Number of nodes: Nnode = Nel+1; 

- Degrees of freedom per element: 8 (4 DOFs per node 

× 2 nodes); 

- Total number of degrees of freedom: Ndof = 4 × Nnode. 

The nodal displacement vector of a generic element j is 

expressed as: 
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Where: 

- u and w represent translational displacements in the X 

and Z directions, respectively. 

- 𝜃𝑥𝑗
 and 𝜓𝑧𝑗

 denote the rotations around the X and Z 

axes, respectively. 

This formulation allows for the accurate representation 

of shaft bending in both vertical and horizontal planes and 

is suitable for modeling the coupled dynamic behavior of 

rotor-bearing systems 

4. Results and discussion 

4.1. Modal analysis and mode shapes 

Modal analysis is a fundamental step in understanding 

the dynamic characteristics of a rotor-bearing system. By 

solving the eigenvalue problem derived from the finite 

element formulation, the system's natural frequencies and 

corresponding mode shapes are obtained. These mode 

shapes describe how the shaft deforms at each frequency, 

providing insight into potential resonance conditions and 

dynamic behavior under excitation. 

The first six mode shapes of the system are extracted 

and visualized in 3D (see in Figure 3), revealing a range 

of bending patterns in both the horizontal (X) and vertical 

(Z) planes. The computed natural frequencies are as 

follows: 

- Mode #1: 28.8 Hz – predominantly vertical bending; 

- Mode #2: 28.8 Hz – predominantly horizontal bending; 

- Mode #3: 125.4 Hz – vertical bending with additional 

inflection points; 

- Mode #4: 125.8 Hz – horizontal bending with similar 

dynamic behavior; 

- Mode #5: 347.1 Hz – higher-order vertical bending; 

- Mode #6: 357.5 Hz – higher-order horizontal bending. 

It is noteworthy that each pair of modes (1 & 2, 3 & 4, 

5 & 6) exhibit very close natural frequencies. This is 

typical for rotor systems with symmetric properties in the 

X and Z directions, where modal shapes manifest as 

coupled pairs of orthogonal bending vibrations. 

From the mode shapes: 

- Modes 1 and 2 indicate the fundamental flexural 

behavior of the shaft, where maximum displacement 

occurs near the mid-span. These modes are the most 

critical, as they are often associated with low-speed 

resonances. 

- Modes 3 and 4 show increased curvature, signifying 
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higher stiffness regions due to disk influence and shaft 

dynamics. These modes are sensitive to unbalance-induced 

excitations in the mid-frequency range. 

- Modes 5 and 6 display complex deformations with 

multiple inflection points, highlighting the shaft’s response 

at high frequencies. They typically relate to structural 

resonances that could occur at high rotational speeds. 

Understanding these modal patterns is essential for 

predicting the behavior of the rotor under operating 

conditions. Matching the mode shapes with physical 

insights - such as disk locations, bearing positions, and 

coupling stiffness - allows for accurate diagnostic 

interpretation and the design of appropriate vibration 

control strategies. 

 

Figure 3. First six mode shapes of the rotor in 3D (X–Z planes) 

4.2. Campbell diagram 

The Campbell diagram is a powerful tool used to 

visualize the evolution of a rotor system’s natural 

frequencies with respect to shaft rotational speed. It is 

constructed by plotting the computed natural frequencies 

(modal frequencies) on the vertical axis against the shaft 

speed on the horizontal axis. Superimposed on this diagram 

are excitation lines, typically at 1× and 2× the rotational 

frequency (shown as red dashed lines), which represent the 

frequencies at which unbalance or other periodic forces act 

on the rotor. 

It can be seen in Figure 4, the Campbell diagram reveals 

multiple natural frequency branches, with both forward 

and backward whirl components evident in the higher 

modes. The slopes of these frequency curves reflect the 

gyroscopic effects introduced by the rotating disks. As 

shaft speed increases: 

- Some branches (particularly the backward whirl 

modes) slightly decrease in frequency. 

- Others increase linearly, showing typical forward 

whirl behavior. 

The critical speeds correspond to the intersection points 

of the natural frequency curves with the 1X and 2X 

excitation lines: 

- The first intersection with the 1X line (near ~1700 

RPM) corresponds to the fundamental critical speed. 

- Higher-order intersections represent additional 

resonance conditions and should be considered carefully in 

rotor design and operational planning. 

These intersections indicate regions where the system 

may experience resonance, potentially leading to excessive 

vibration amplitudes, increased dynamic loading on 

bearings, and structural fatigue. Therefore, they must be 

avoided during continuous machine operation. 

The identification of critical speeds offers direct 

insights into potential resonance zones. These critical 

speeds can serve as reference thresholds in real-time 

condition monitoring systems. By tracking the operational 

speed in relation to these thresholds, engineers can 

schedule preventive maintenance or perform rotor 

balancing procedures to proactively avoid resonance and 

extend machinery lifespan. 

The Campbell diagram also provides valuable insight 

into the system’s dynamic stiffness and stability margins, 

aiding in: 

- Identifying safe operating speed ranges; 

- Evaluating the influence of gyroscopic effects; 

- Supporting decisions related to design modifications 

or the inclusion of damping mechanisms. 

Overall, this diagram serves as an essential reference 

for ensuring safe and reliable operation of the rotor-bearing 

system under variable-speed conditions. 



ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 23, NO. 10B, 2025 55 

 

 

Figure 4. Campbell diagram of the system 

4.3. Static deflection 

To evaluate the structural deformation under steady-

state conditions, a static deflection analysis was performed 

by applying gravitational loading on the rotor-bearing 

system. The results are presented in terms of displacement 

amplitudes along both the vertical and horizontal directions 

over the shaft span. 

As illustrated in the Figure 5, the shaft undergoes 

significant deflection in the vertical direction (blue curve), 

while the displacement in the horizontal direction (orange 

curve) remains negligible throughout the entire length. 

This is consistent with expectations, as gravity acts 

vertically and induces bending in the Z-direction. The 

static deflection curve follows a parabolic shape, with 

maximum deflection occurring near the mid-span between 

the two disks. This behavior is in agreement with classical 

Euler–Bernoulli beam theory, where the deflection of a 

simply supported beam under uniform distributed load is 

greatest at the center. 

 

Figure 5. Static deflection of rotor 

4.4. Forced displacement response 

In rotating machinery, unbalance is one of the most 

common and critical sources of excitation, leading to 

significant dynamic responses. To simulate this condition, 

an unbalanced mass is introduced on the rotor, creating a 

centrifugal force that acts radially outward during rotation. 

4.4.1. Modeling Unbalance Force 

As illustrated in the Figure 6, the unbalance is modeled 

as a small mass 𝑚 = 0.4 𝑔 placed at an eccentricity 

𝑂𝐺 = 30 𝑚𝑚 from the rotor’s geometric center. This 

results in a harmonic excitation force acting at the rotation 

frequency Ω defined as: 

𝐹 = 𝑚 × 𝑂𝐺 × Ω2 

This force induces lateral vibrations that are 

proportional to the square of the rotational speed and vary 

in both the horizontal (X) and vertical (Y) directions. 

 

Figure 6. Schematic of a rotating disk with unbalance mass 

4.4.2. Excitation setup and observation nodes 

To investigate the rotor's forced response, the 

unbalance is applied at a specific location along the shaft, 

and the system response is monitored at four key nodes (see 

Figure 7): 

- Node #5: near the coupling; 

- Node #15: near the first disk; 

- Node #20: between two disks; 

- Node #30: near the free end. 

These positions allow for observing the spatial 

distribution of vibration amplitudes and how proximity to 

the unbalanced mass affects the response 

 

Figure 7. Finite element mesh with boundary conditions,  

disk positions, and unbalance location 

4.4.3. Response Analysis 

 

Figure 8. Frequency response functions (FRFs) at key nodes 

under unbalance excitation, for both X and Z directions 

The frequency response functions (FRFs) at these 

nodes are illustrated in the displacement versus frequency 

plots shown in Figure 8, covering both vertical and 

horizontal directions. Key observations can be concluded: 

- Prominent resonance peaks appear at the natural 

frequencies identified in modal analysis, indicating that the 

system is highly sensitive to excitation near those speeds. 

- The first critical speed occurs around 28.8 Hz, 

matching the first mode. This peak is dominant in all 

nodes, with particularly high amplitudes observed at 

Node #30. 
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- A second peak appears around 125 Hz, correlating 

with the second mode shape. 

- Higher amplitude responses are recorded at nodes 

closer to the unbalance location, due to the direct 

transmission of centrifugal force. 

The maximum displacement recorded at Node #30 

exceeds 3000 µm, indicating that high-speed operation in 

the resonance region can lead to dangerous shaft 

excursions and potential mechanical failure. These 

findings underscore the importance of rotor balancing and 

provide quantitative guidelines for identifying safe speed 

ranges in real-world applications. 

5. Conclusion 

This research delivers an in-depth investigation into the 

dynamic behavior of a rotor-bearing assembly through the 

application of the finite element method (FEM). By 

systematically modeling critical components—including 

the shaft, disk masses, elastic coupling, and journal 

bearings—the developed numerical model effectively 

characterizes both static deformations and dynamic 

responses of the system. 

The modal analysis yields essential insights into the 

system’s vibrational behavior by extracting both 

fundamental and higher-order natural frequencies along 

with their respective mode shapes. These findings are 

corroborated through the construction of a Campbell 

diagram, which not only confirms the computed 

eigenfrequencies but also pinpoints critical rotational 

speeds and potential resonance regions influenced by 

gyroscopic forces and harmonic excitations. 

Under gravitational loading, the static deflection 

analysis reveals the shaft’s bending profile and offers a 

basis for understanding preload conditions at the bearings. 

Additionally, a forced response analysis under unbalanced 

excitation highlights localized amplification of vibration 

amplitudes, particularly at nodes situated near the 

disturbance. Resonant peaks aligned with the system’s 

natural frequencies underscore the need for precise speed 

management and rotor mass balancing. 

The simulation results presented in this work provide a 

practical foundation for: 

- Engineering rotor systems with enhanced stability and 

durability, 

- Avoiding resonance-prone speed ranges during 

operation, 

- Facilitating condition-based maintenance through 

targeted vibration diagnostics. 

Furthermore, the developed FEM model can be 

integrated into existing industrial simulation environments 

such as ANSYS or MATLAB/Simulink by exporting 

stiffness and damping matrices. These allow real-time 

monitoring algorithms or predictive maintenance modules 

to be deployed effectively, enabling continuous assessment 

of critical vibration indicators during operation. 

Ultimately, the proposed modeling strategy and 

analytical outcomes set the stage for future explorations 

involving nonlinear dynamics, bearing clearance 

modeling, thermal effects, and experimental validation 

using a rotor test bench. 
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