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Abstract - The variability of renewables requires a higher degree of 
flexibility in power system operation. At present, there are a variety 
of solutions which are being utilized, particularly demand response 
and transmission switching. This paper presents a model for co-
optimization of transmission topology and generation dispatch based 
on a two-stage stochastic optimization. Demand response and 
renewable energy uncertainty are integrated into the proposed 
model. The uncertainty pertaining to renewable energy sources is 
presented through a set of scenarios. The model is a mixed-integer 
linear programming (MILP) problem and can be applied for the day-
ahead market clearing. The results implemented using a 5-bus 
system demonstrate the effectiveness of the proposed model. 

Key words - Transmission switching; day-ahead market clearing; 
demand response; renewables; mixed-integer linear programming 

(MILP). 

1. Introduction 

Nowadays, the issue of climate change has required the 

pressing need for limiting industrial emissions of greenhouse 

gases. In addition to the tragic consequences of climate 

change, there is an energy crisis in many countries in the 

world due to the depletion of fossil fuels. Therefore, 

renewable energy has been prominent in most industrialized 

countries with the aim of decarbonizing in the electricity 

sector as well as meeting the rising demand for energy and 

safeguarding the security of energy supply. Solar energy, 

wind, geothermal, biomass, waves and hydrogen energy are 

major renewables. Wind power generation is the most 

widely used source of renewable energy around the world, 

while solar energy is catching up at a rapid pace. Power 

producers have strong incentives to develop renewable 

energy such as policies which help them to sidestep most of 

the drawbacks and risks implied by the participation in the 

market. Additionally, the per-unit cost of renewable energy 

has constantly reduced, which gives renewables advantages 

to compete in the marketplace with conventional energy 

production means. Indeed, most of generation technologies 

based on renewable sources are non-dispatchable and their 

production is stochastic. The exploitation of these 

renewables whose generation cost is generally low requires 

the availability of flexible production capacity as a backup 

as reserve [1]. The flexibility can be attained from either the 

supply side such as combined cycle gas turbine (CCGT) 

units or the demand side, for example demand response [2]-

[3]. Furthermore, transmission switching also provides a 

means of enhancing the transmission network flexibility and 

improving the effectiveness of market operation [4], [5]. 

Traditional formulations of the optimal power flow 

(OPF) problem are described in [6]. In this paper, authors 

applied an iterative DCOPF-based algorithm with fictitious 

nodal demand (FND) model to calculate locational marginal 

price (LMP). However, in this model, demand is assumed to 

be inelastic and the problem is not time coupled. A tool for 

unit commitment schedule in day-ahead based electricity 

markets is developed in [7] in which time coupled 

constraints are integrated such as constraints on ramp-rate, 

minimum up-time and minimum down-time. Authors in [8] 

incorporated transmission losses and Thyristor Controlled 

Series Compensators (TCSC) into a multi-period linearized 

OPF. Nonetheless, only conventional power producers are 

considered and authors assumed demand to be fixed. 

To take account of the variable and partly-predictable 

nature of renewables, the extended OPF problem is 

presented in [9], [1] and [10] in which the uncertainty of the 

wind generation is addressed by means of scenarios and 

fixed demand is also considered. Moreover, these OPF 

problems are one-stage stochastic optimization. A demand 

response (DR) model is introduced in [11], [12] in which 

authors proposed an optimization framework for the DR 

aggregation in wholesale electricity markets and day-ahead 

markets. Taking into account of joint wind power sources 

and demand-side participation in electricity market 

operation is considered in [13] and [14] in which a two-stage 

optimization approach pertaining to the scenarios is 

employed. Nevertheless, transmission lines are presumed to 

be uncontrollable in the aforementioned papers. The 

formulation of the problem of finding an optimal generation 

dispatch and transmission topology to meet a specific 

inflexible load is a mixed integer program [4], [15]. The 

optimal transmission switching problem can be deployed as 

a congestion management tool [16], thereby promoting 

electricity market efficiency. The optimal transmission 

switching for power systems with large-scale renewables in 

day-ahead markets is a stochastic unit commitment [17]. 

Much of the work in this area is irrelevant to co-

optimizing transmission topology and generation dispatch 

considering demand response in combination with 

renewable energy uncertainty. 

The main contributions of this paper are threefold: 

- A multi-period linearized OPF formulation based two-

stage stochastic optimization for co-optimization transmission 

switching and generation dispatch with jointly integrated 

demand response and renewable energy uncertainty; 

- A rigorous mathematical model of demand response; 

- The effect of demand shift and transmission switching 

on both locational marginal prices and cost of generation is 

analyzed in detail. 

The paper is organized as follows: section 2 presents the 

general mathematical formulation of the two-stage stochastic 

problem. Section 3 describes the linearization method based 
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big-M to convert the nonlinear problem to the mixed-integer 

linear formulation. Numerical results are given in Section 4 

and the conclusions are presented in Section 5. 

2. General mathematical formulation 

In this section, a two-stage stochastic model which 

describes the interdependent between the two stages is 

presented. The dispatch of conventional generators is 

determined in the first stage. The second stage realizes the 

generating scenarios of renewable energy sources. The 

demand response and slight adjustments of operating 

points of the conventional units mitigate supply-generation 

imbalance. It is assumed that distribution companies which 

generally manage demand response programs can bid both 

demand and the flexibility for each time in a given time 

horizon. The independent system operator (ISO) can either 

meet the demand or use the flexibility to facilitate the 

uncertainty from renewables. 

2.1. Objective function 

The objective function of the multi-period optimal 

power flow problem based two-stage stochastic model for 

market clearing is minimization of the so-called expected 

system operation costs, which is composed of both the cost 

associated with the day-ahead energy dispatch of 

conventional generators and the expected cost of 

anticipated balancing to be taken during the real-time 

operation of the power system. 

The objective function over the given time horizon T 

can be described explicitly as follows: 
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This objective is subject to two different sets of 

constraints, namely, the constraints involving energy 

variables in the day-ahead dispatch; the equations 

constraining the utilization of balancing resources. 

2.2. Day-ahead stage constraints 

The constraints for the first stage, i.e., day-ahead 

operation, is described as follows: 
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Where J denotes the maximum number of open 

transmission lines. 

The constraints (2) enforce the power balance at every 

node and every hour. Equations (3) and (4) define the 

power flows through non-dispatchable and dispatchable 

transmission lines, respectively, which are limited by the 

corresponding capacity limits by constraints (8). 

Constraints (5) define binary variables zl,t that indicate 

whether a dispatchable line is in service (zl,t = 1) or out of 

service (zl,t = 0). Constraints (6) and (9) impose bounds for 

the power produced by conventional generating units and 

renewables, respectively. Constraints (7) is the ramp-up 

and ramp-down constraints. Constraints (10) are 

introduced to limit the number of integer variables which 

severely impact on the computational performance. This 

constraint is used to gain understanding about the effects 

of changing the network topology. Finally, the voltage 

angle of the reference node is fixed to zero. The network is 

represented using a DC model without losses. 

2.3. Balancing stage constraints 

The real-time operation for each scenario s is 

constrained by equations (12)-(26). 
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The constraints (12) define the generation-demand 

balance at every node, every hour and every scenario. 

Equations (13) and (14) define the power flows through 

non-dispatchable and dispatchable transmission assets, 

respectively, which are limited by constraints (25). 

Constraints (15) define binary variables zl,s,t that indicate 

whether a dispatchable line is in service (zl,s,t = 1) or out of 

service (zl,s,t = 0). Constraints (16) and (24) impose limits 

for the power produced by conventional generators and the 

power spilled by renewable energy sources, respectively. 

Constraints (26) are introduced to limit the number of 

integer variables which is in line with the day-ahead stage. 

Constraints (17), (18) and (19) define the second stage 

recourse variable 
, ,

G

g s tP  in terms of the upward and the 

downward regulation variables 
, ,

G

g s tP +  and 
, ,

G

g s tP − . 

Likewise, constraints (20), (21) and (22) model the demand 

response. Let 
, ,[ , ]d t d tF F+ −  be the flexibility interval of 

demand at bus d and at the time period t. Thus, we have 

,0 1d tF−   and 
, 1d tF +  . If the demand at bus d is not 

flexible, then 
, , 1d t d tF F+ −= =  are used. Moreover, we 

introduce two positive continuous variables 
, , , ,,d s t d s t + −

which give the increase and decrease in the amount of real 

power of demand at bus d, respectively. Equations (23) 

impose the conservation of the demand. If a demand at bus 

d is flexible in the time window [ , ]F

D s fT t t=  and it is 

required that the total consumption over a time period is 

kept constant, this situation can be modeled using (23). 

3. Mixed-Integer Linear Programming (MILP) Model 

The model provided in the previous section is nonlinear 

due to the products of binary variables z and continuous 

variables δ in constraints (4) and (14). However, it is possible 

to replace these nonlinear constraints with the following sets 

of exact equivalent mixed-integer linear constraints: 
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Where M is a large enough positive constant [4]. For 

the sake of simplicity, the expressions are only written for 

the day-ahead stage. The working of equations (27)-(29) 

for this stage is explained below. 

On the one hand, if the dispatchable line is in service, 

i.e., binary variables zl,t are equal to 1 then in such a case, 

equations (27)-(29) impose that max max
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equivalent to constraints (3) and (8). 

On the other hand, if the dispatchable line is out of service, 

i.e., binary variables zl,t are equal to 0, equations (27)-(29) 

impose that 
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First, we impose that the power flow through transmission line 

is null. Second, we consider large enough bounds on the 

difference between the voltage angles at two buses that are not 

connected through the disjunctive parameter M. 

Using the linearization procedure described above, it is 

possible to reformulate the problem of co-optimization of 

transmission topology and generation dispatch as in the 

MILP problem below: 

( )Objective : 1     (30) 

( ) ( ) ( ) ( ) ( )Constraints 2 ,  6 ,  7 ,  9 - 11   (31) 

Constraints ( (27)5), (29)−    (32) 

( ) ( ) ( ) ( )Constraints 12 , 16 24 , 26−   (33) 
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The optimization model above is solved using CPLEX 

12.2.1 [18] called from GAMS environment [19]. 

After the co-optimization problem of generation dispatch 

and transmission switching is solved, the integer variables 

are frozen, the optimal solution for the scheduling and 

dispatch problem will be reduced to a Linear Programming 

(LP) problem in which market clearing quantities and 

locational marginal prices can be determined. 

Locational marginal prices (LMP) for energy at bus b 

can be expressed as [6]: 

. .b E b E l b l

l

LMP LMP LF LMP SF −= − +   (37) 

The three terms in the above LMP equation could be 

interpreted as the three components of LMP, namely 

energy, loss and congestion, respectively. 

4. Results and discussions 

In this section, the co-optimization model of network 

topology and generation dispatch considering demand 

response in combination with the uncertainty of renewable 

energy sources, which is based on two-stage stochastic 

model in the day-ahead markets is performed on the 

modified 5-bus system [20]. 

Regarding the computational complexity of the model 

for this modified 5-bus system, the number of continuous 

variables is 6384 and the number of binary variables is 1848. 
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4.1. System description 

The test system is shown in Figure 1. There are seven 

transmission lines, three conventional generators, one wind 

farm and three demands in this system. Total peak demand 

of system in the base case is 950 MW distributed on buses 

B, C and D as 216.67, 316.67 and 416.66 MW, respectively. 

A B

E D C
WF

 

Figure 1. One-line diagram of a 5-bus system 

 

Figure 2. Daily load curve at bus D of the base case 

 

Figure 3. Initial forecast and 10 scenarios for wind power 

generation at bus E 

The daily load curve of the base case at bus D is 

depicted in Figure 2. It is assumed that the daily load curve 

of three demands is the same. Moreover, scenarios of the 

wind power generation are used as input to the stochastic 

programming approach to solve the proposed model. The 

set of these scenarios can be obtained by means of time 

series models [21], [22]. In this paper, we also assume 10 

different scenarios for the wind power generation at bus E 

as shown in Figure 3, in which each solid line represents of 

maximum power produced by the wind farm in one 

scenario and dashed line represents the mean value of 

scenarios. This mean value is equal to the initial wind 

power forecasted in the first stage within considered 95% 

confidence interval. 

The regulation cost of generating units at bus A is 

assumed to be
, ,15 $ / MWh 12 $ / MWhR R

A t A tC C+ −=  = . 

The cost of the demand response is considered to be 

, , 5 $ / MWhD D

d t d tC C+ −= = . 

4.2. Results from optimal transmission switching (OTS) 

In this subsection, four representative operating points 

(cases 1-4) at different system load levels are chosen to 

investigate the economic savings due to optimal 

transmission switching. Assuming all 7 lines are 

switchable and J is set to 3. Moreover, flexible demands 

are at buses B and D and the demand flexibility is set to 

10%. The objective costs for cases with and without 

considering transmission switching are listed in Table 1. 

Table 1. Comparison of the objective costs with and  

without considering transmission switching 

Total peak demand (MW) 
Objective ($) 

w/o OTS w/ OTS 

950 335591.6 332885.7 

1140 388199.2 380768.9 

1330 455319.3 444017.8 

1615 Infeasible 647047.9 

It can be seen from Table 1 that when the maximum 

total system demand is 1615 MW (case 4), the solution of 

problem without optimal transmission switching is 

infeasible. However, with considering transmission 

switching, the problem returns a feasible solution. 

Additionally, the total cost with OTS is lower than that of 

without OTS. Particularly, if the system peak demand is 

1330 MW, the total cost savings due to TS is 11301.5 $, 

which is approximately 2.55 % of the total cost. 

Table 2. Switched lines in 24 time periods (1 – in service, 0 – out of service) 

Line 
Periods (hours) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

A-B 1 0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 0 

A-C 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 

A-D 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

A-E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

B-C 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 

C-D 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 

D-E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Table 2 shows the switchable lines are out of service in 

the 24 time periods when the maximum demand of system 

is equal to 1330 MW. From Table 2, it can be observed that 

the number of open lines vary according to the time period. 

While there is one open line in the 7th hour, two lines are 

switched off in the first hour. 

 

Figure 4. LMP at bus A with and without OTS 

Figure 4 depicts the change of marginal prices at node 

A in the 24 time periods. A notable remark is that LMP at 

bus A with OTS is generally lower than that without OTS. 

This is because of the fact that transmission switching can 

enhance the flexibility of power networks; therefore, the 

congestion level in power systems is reduced. 

4.3. Impact of the maximum number of open lines 

In this subsection, the effects of the maximum number 

of open lines on both the simulation times are described. It 

is assumed that the system peak load is 1615 MW and three 

loads are inflexible. The results of computational times for 

various values of J using a personal computer with Intel 

core-i5 processor and 8GB of RAM are illustrated in Table 

3. By controlling the values of J below a certain value, it is 

practical to solve the problem in a reasonable time frame. 

Table 3. Solution times vary with J 

J 1 2 3 4 5 

Time (s) 51.74 986.69 997.22 992.79 985.82 

5. Conclusion 

In this paper, we presented the two-stage stochastic 

programming approach to resolve a multi-period optimal 

power flow problem, which simultaneously optimize 

network topology and power output of generators. This 

proposed model integrates flexible demands and uncertain 

renewables. The demand flexibility can come from any bus 

of the network. Numerical results show that the uncertainty 

of renewables can be optimally dealt with using flexibilities 

from both demand side and generation side. In addition, 

there are substantial improvements in system dispatch cost 

by optimizing the transmission network and switching lines 

in and out based on system conditions. It is important to note 

that optimal transmission switching may likely affect 

locational marginal prices. Further studies of the methods for 

selection of transmission line candidates with the aim of 

computing within the required time frame are desirable. 

NOMENCLATURE 

The main mathematical symbols used throughout this 

paper are classified below. 

Parameters: 

lx   Reactance of line l  

, ,
W
w s tP   Generation available under scenario by the wth 

wind power unit in hour t 

max
,

W
w tP   

Initial power generation available from wind 

power unit w in hour t  

,
D

d tP   Power consumed by the dth load in hour t 

U
gR   Ramp-up limit of the ith unit 

D
gR   Ramp-down limit of the ith unit 

max
lP   Maximum power flow capacity of line l 

G
gP +

 
Upper bound on the power output of the gth 

producer 

G
gP −

 
Lower bound on the power output of the gth 

producer 

, ,,g t g tR R+ −
  

Permissible upward and downward regulation 

of the generator g in the time period t, 

respectively 

, ,,d t d tF F+ −
  

Maximum, minimum flexibility of demand d 

in hour t 

, ,,R R
g t g tC C+ −

  
Upward and downward regulation cost for 

generator g 

, ,,D D
d t d tC C+ −   Cost related to increasing, decreasing demand 

d in the time period t 

,
W
w tC   Cost of the wth renewable generation spillage 

in hour t 

,w s   Probability of scenario s 

J Maximum number of open transmission lines 

( ),
G
g tf P  Cost function of generator g in the time period t 

N   Number of nodes 

Variables: 

,
G
g tP   

Power output corresponding to the gth unit in 

hour t 

, ,
G
g s tP   

Second stage recourse variable for power 

output of generator g in hour t 

, , , ,,G G
g s t g s tP P+ −    

Upward and downward regulation of power 

output of generator g under scenario s in hour t 

,
W
w tP   Power output corresponding to the wth 

renewable generator in hour t 

, ,
spill

w s tP   Spilled real power of the wth renewable 

generator under scenario s in hour t 

, ,
D

d s tP   Change in power consumed at bus d in hour t 

,
L

l tP  Power flow in line l in hour t in the first stage 

, ,
L

l s tP   Power flow in line l under scenario s in hour 

t in the second stage 

,b t   Voltage phase angle at bus b in hour t in first stage 

,s,b t  Voltage phase angle at bus b in hour t in 

second stage 

bLF   Loss factor at bus b 

l bSF −   Sensitivity of branch power flow l with 

respect to injected power b 

l   Shadow price of transmission constraint on line l 

zl,t Binary variables: zl,t = 1 if the l th dispatchable 

line is in service in hour t; zl,t = 0 if not 

zl,t,s Binary variables: zl,t,s = 1 if the l th 

dispatchable line is in service under scenario 

s in hour t; zl,t,s = 0 if not 
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Sets: 

G Generator, indexed by g 

L  Lines, indexed by l 

W  Renewable generators, indexed by w 

D  Demands, indexed by d 

Do Flexible demands 

S Scenarios, indexed by s 

T Discrete set of time intervals, indexed by t 

L1 Transmission lines whose "to" side is connected to bus b 

L2 Transmission lines whose "from" side is connected to bus b 
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