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Abstract - The paper has developed an adaptive algorithm using 

neural network for controlling dual-arm robotic system in stable 

holding a rectangle object and moving it to track the desired 

trajectories. Firstly, an overall dynamic of the system including the 

dual-arm robot and the object is derived based on Euler-Lagrangian 

principle. Then based on the dynamics, a controller has proposed to 

achieve the desired trajectories of the holding object. A radial basis 

neural network has been applied to compensate uncertainties of 

system parameters. The adaptive learning algorithm has been derived 

owning to Lyapunov stability principle to guarantee asymptotical 

convergence of the closed loop system. Besides, force control at 

contact point is implemented without the measurements of forces and 

moments at contact points. Finally, simulation work on Matlab has 

been carried out to confirm the accuracy and the effectiveness of the 

proposed controller. 
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1. Introduction  

Cooperative manipulators have been witnessing an 

increasing interest due to their versatility within robotic 

applications such as assembly heavy objects, transporting, 

and so on. Cooperative manipulators will replace humans to 

work in hazardous and dangerous environments better than 

single robots. However, it is much more complicated to 

design a controller of cooperative manipulation because the 

dynamics of these systems are complicated and highly 

nonlinear. Some control algorithms for multiple-robot 

systems have been announced. Yun and Kumar [1] used 

nonlinear feedback linearization for coordinated motion 

control in dual-arm configurations. Robust control algorithm 

for position and internal forces control in cooperative 

multiple manipulator systems with the uncertainty dynamics 

is presented in [2]. An adaptive control scheme based on the 

inverse dynamics controller structure for the position control 

problem of multi-arm manipulators is presented in [3]. An 

adaptive hybrid force/position control scheme of two planar 

manipulators coordinates moving an object with unknown 

parameters, but the parameters of known robot model are 

proposed [4]. [5] presented a robust adaptive control method 

to cooperative two planar robots holding an object, the 

parameters uncertainty of the system are estimated using an 

estimation law to control the system properly. 

Most of these kinds of adaptive which is presented 

above are adaptive controllers based on the dynamic model 

to build adaptive update algorithm. Then, we estimate 

parameters of the uncertainty dynamics. The algorithm is 

relatively complicated, influencing on speed calculation 

and practical applicability is limited. Recently, the neural 

network has strongly shown changes to develop 

controllers. The most useful property of neural network in 

control is their ability to approximate arbitrary linear or 

nonlinear mapping through learning. The idea of neural 

network based control, the neural network is used to 

compensate unknown nonlinear dynamics and compensate 

for structured/unstructured existing uncertainties in the 

dynamic model. A dual neural network approach is applied 

in [6] to resolve the coordination problem of two redundant 

robots. An adaptive neural network position/force control 

approaches have been developed for cooperative robots 

system with unknown dynamical models [7]. Besides, 

estimation using neural network is developed [8, 9] to 

estimate system uncertainty. Using inverse dynamics 

model to design the combination of Second-Order Sliding 

Mode Control (SOSMC) and neural networks to estimate 

dual arm robot uncertainty is presented in [10]. An adaptive 

robust neural control based on inverse dynamics model, a 

radial basis function neural network is adopted for 

dynamical uncertainty estimation is proposed in [11]. 

Although above adaptive control using the neural 

network mostly coped with the dynamic model 

uncertainties, some controllers are designed to adopt model-

based inverse dynamics algorithm and approximating of 

such inverse dynamic algorithm. Then, the controllers are 

complicated, the condition of contact between the end-

effector of robots and the object may not be guaranteed. 

Moreover, the controllers are used to track the desired 

internal forces arising in the system. Thus, the force 

measurement is required. 

In this paper, we propose an adaptive controller based on 

radial basic network (RBF) to control cooperative 

manipulator system manipulating to hold and move a rigid 

object according to a design trajectory planning. The 

controller is designed without using inverse dynamics and 

force sensor, and the neural network is used to compensate 

unknown or inaccurate parts of the real model. Using the 

proposed controller, the computation is reduced, and the 

condition of contact between the end-effector of robots and 

objects is guaranteed.  

The rest of the paper is organized as follows: section 2 

formulates the dynamics of dual-arm robot during holding 

and manipulating an object under geometric constraints. In 

section 3, a neural network adaptive hybrid force/position 

control scheme is designed without force measurement. In 

section 4, simulation results are presented to confirm the 

effectiveness of the proposed control scheme. Section 5 is 

for the conclusion. 
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2. Dynamic Model 

2.1. Description of the system 

The dual-arm robot under study has been illustrated in 

Figure 1. Each arm is a planar robot with three degrees of 

freedom. The dual-arm robot will manipulate a rectangular 

rigid object in 2D space. 
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Figure 1. Model of dual-arm robot in holding an object 

Vector  1 2 3, ,
T

i i i iq   =  is joint angle vector of the ith 

robot (i =1, 2) and vector  , ,
T

z x y =  represents the 

position and rotational angle of the object in the reference 

frame OXY.  

The end-effector of dual-arm robot impacts on the 

object, these interactional forces f1, f2 arising have the 

normal direction to the surface of the object and these force 

1 2,   has the parallel direction to the surface of the object. 

The object-robot system is confined in the vertical plane 

then gravitational force affects the system. 

2.2. Kinematic relationships 

Refering to Figure 1, we can represent the position ov 

of the mass center (x, y) of the object in the reference frame 

{OXY} as: 
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where, 0 0( , )i ix y  is a position of ith end-effector Ei in the 

reference frame {OXY}. 

And the distance Yi from Ei to the X-axis of the object 

frame can be determined as  
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Taking differential of equation (1), it is obtained that, 

. ; .i i i i i iz A q z A q A q= = + , 

where   0. cos sin .i i iA D J += ; 
1( . )T T

i i i iD D D D+ −=  is 

the pseudo-inverse matrix,  cos sini iD Y = − , 

0 0
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 is Jacobian matrix of the ith robot. 

Finally we have 

. ; .q A z q A z Bz= = +          (2)  

Where 1 2,[ ]T TTq q q= ; 
1 1

1 2[( ) ,( ) ] ,T T TA A A− −=  

1 1 1 1

1 1 1 2 2 2[( ) , ( ) ] .T T TB A A A A A A− − − −= − −  

2.3. Dynamics of the dual-arm robot – object system 

Dynamics of the system can be formulated on the basis 

of Euler-Lagrange approach. The Lagrangian function can 

be defined as:      

 L K P= −     

where K is kinematic energy and P is the potential energy 

of the robot-object system [12].  

Applying Euler-Lagrange method, dynamic equation 

system of the whole robot-object system can be 

formulated.  

The dynamic equation of the ith robot. 
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where i iH ( q ) is the inertia matrix, ( , )i i iC q q is the 

Coriolis and centrifugal matrix, can be determined from 

Hi(qi) matrix as ( ) 2 ( , )iH q C q q−  is skew-symmetric, 

Gi(qi) is the gravitational vector, J0i is Jacobian matrix of 

the ith arm-robot.  

The dynamic equation of the object can be described as. 
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Where, Hz is the inertia matrix of the object, 

[ , , ]zH diag M M J=  with M is mass of the object and  

J inertia moment of the object. 

3. Controller Law 

The control purpose is to provide the joint torques so that 

the motion trajectory of the object converges to the desired 

trajectory with the dynamic model uncertainty. In this paper, 

the adaptive controller is proposed without requiring 

measurement of the force and moment at the contact points. 

3.1. Controller design 

3.1.1. Position control 

The dynamic of the dual-arm robot represented in Eq. 

(3) can be concisely reformulated as [13] 

( ) ( , ) ( ) .T
BH q q C q q q G q J F + + + = ,     (5) 

where 1 2[ , ]T  = ;  1 1 2 2, , , ;
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F f f =  
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where  cos , sin .iJ iB J = ;  sin , cos .iT iE J = −  

1 1 2 2( ) [H ( ), ( )];H q blockdiag q H q=

1 1 1 2 2 2( , ) [C ( , ), ( , )];C q q blockdiag q q C q q=
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1 1 2 2( ) [ ( ), ( )]TG q G q G q= . 

The dynamic of the object in Eq. (4) can be rewritten as 

 ( , )z z z zH z C z z z g F+ + = .        (6)  

Force/torque on the object respectively 

   .zF E F= . 

So . zF E F+= ,            (7)  

where 
1( . )T TE E E E+ −=  is the pseudo-inverse of grasp-

matrix E. Using these relations along with Eq. (2), Eq. (5), 

Eq. (6) and Eq. (7), the combined dynamic model of the 

cooperative robot manipulator system is obtained as 

follows:  

p p pH z C z G + + = ,          (8)  

where ( ) T

p B zH H q A J E H+= + ; 

 ( ) ( , ). ( , );T

p B zC H q B C q q A J E C z z+= + +  

 ( ) T

p B zG G q J E g+= + . 

The inertia matrix Hp, the centrifugal and Coriolis matrix 

Cp and the gravity vector Gp in the dynamical model Eq. (8), 

include the physical parameters of dual-arm robot and object 

such as links lengths, links masses, moments of inertial, 

object mass and so on. It is difficult to obtain these actual 

values because the measuring errors, environment and play 

load variations. Therefore, we assume that the actual value 

Hp, Cp, Gp are represented by the nominal parts H0, C0, G0 and 

the uncertain parts 
p p pH , C , G   respectively, that is, 

0 ;p pH H H= +  

0 ;p pC C C= +  

 
0 .p pG G G= +  

Then, the robot-object dynamic model Eq. (8) can be 

represented as. 

 0 0 0 ( , )H z C z G Y z z + + + = ,       (9) 

where ( , )Y z z  contains the uncertain parts of the dynamic 

model and can be expressed as follows: 

 ( , ) p p pY z z H z C z G=  + + . 

Define the following tracking errors 

 dpe z z= − .            (10) 

Now, consider the following standard filtered 

tracking errors as. 

 .p ps e e= + ; ( ) .t A s = ,        (11) 

where   is a positive definite symmetric design parameter 

matrix. When 0s →  implies that d az z ts→ → . 

Using Eq. (9) – (11) the robot dynamic can be written 

in terms of filtered tracking error as  

 
0( ) ( ) .p pH s f x f x C s = + − − ,      (12) 

where
0 0 0 0( ) (z . ) .(z . )d p d pf x H e C e G= + + + +  is the 

nominal nonlinear part, and  

( ) (z . ) .(z . )p pp d p d pf x H e C e G =  + + + +  (13) 

is the uncertain nonlinear part. 

Assume that when the optimal design trajectory runs 

time for the object: The physical parameters of dynamic 

model is exactly known, now the dynamic equation of the 

system has only parts H0, C0, G0, the model of the system 

is considered as the ideal model. 

The following controller is proposed  

0 ( ) Ksf x = +            (14) 

with sK  is a positive definite gain matrix. 

According to the Lyapunov stability principle, the 

theoretical analysis may lead to the conclusion that 
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So, ideal model is controlled stable. But in fact, the 

dynamic equation of the system always exists uncertainly 

parts as Eq. (9). The system Eq. (9) using the control law 

Eq. (14), the system will be unstable. Therefore, the 

authors propose using the RBF network to compensate 

uncertainly parts, the errors position/direction of the object 

is minimum. The controller algorithm using the RBF 

network to compensate unknowingly parts has been 

illustrated in Figure 2. 

Controller 

algorithm 

     (14)
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of the system is 

estimated by using  

neural network

+
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Figure 2. The controller diagram using RBF network 
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Controller algorithm is designed for the real model of 

the system based on Eq. (14), NN has been add to 

compensate the uncertainly parts. The following controller 

of position is proposed  

 0
ˆ( ) ( ) Ksf y f y = + + ,        (15) 

3.1.2. Desired force applied to the object 

Let us define a reference velocity of the object by 

 ( )r d pz z e= +  

where   is a positive definite gain matrix. The desired 

force is generated by an estimated reference model of the 

object as follows [15]: 

 
0 0

ˆˆ ˆ( , )

ˆ( , , ) ,

d

z z r z r r z

r r

F H z C z z z g

Y z z z 

= + +

=
       (16) 

where 0̂  is a parameter estimate of 0 and ˆˆ ,z zH C and  

ˆ
zg  are estimates of Mz, Cz and gz. 

An adaptive law of the dynamic parameter of the object 

is given by. 

 0 0 0
ˆ ( , , )T

r rY z z z s = − ,         (17) 

where 0 is a positive definite gain matrix and s0 is a 

residual error given by. 

  
0 r p ps z z e e= − = − −  

The desired force applied to the object is updated based 

on the estimates of the dynamic parameters of the object. 

The desired force at contact points should satisfy the 

relation given in Eq. (7). Thus, the desired force at a contact 

point is given by. 

 d d

zF E F+=             

 (18) 

3.1.3. Hybrid force/position control 

Now, position control and force control without the 

measurement of force at contact points is proposed, 

 0
ˆ( ) ( ) T d

B sf y f y J F K = + + + .      (19) 

3.2. Radial Basis Function Neural Network 

As a typical neural network, it has been proved that the 

radial basis function neural network (RBFNN) can 

approximate any nonlinear function. The RBFNN with 

multiple input and single output can be described as in 

figure 3 to compensate the uncertainly parts ( )f x  of the 

real model as [14]. 
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Figure 3. RBF network 

The structure of a typical three-layer RBF neural 

network is shown as Figure 3. In RBF neural network has 

n inputs 1 2[ , x ,...,x ]T

nx x= , m is the number of nodes in the 

hidden layer, the Gaussian function is usually chosen as the 

hidden layer output function hj(x)  

2

2
( ) exp 1,2....,

2

j

j

j

x c
h x j m

b

 −
 = − =
 
 

,    (20) 

where, cj represents the coordinate value of center point of 

the Gaussian function, bj represents the width value of 

Gaussian function for neural net j. The output of the RBF 

network is the linear superposition of the hidden layer. 

  
1

W ( )
m

j j
j

y h x
=

= ,  

Wj is the weight vector of the neural network. By selecting 

the appropriate weight vector, RBF network can 

approximate a continuous function with arbitrary precision. 

 ( ) W ( )Tf x h x  = + ,         (21)  

W is the optimal weight vector,   is approximation error. 

In fact, for any choice of a positive number N , one can 

find a NN such that N  . For a specified value of  

N the ideal approximating NN weight exist. Then, an 

estimate of ( )f x  can be given by. 

 ˆ ˆ( ) WTf x h = ,           (22) 

Ŵ  is estimate of the ideal NN weight that is provided 

by on-line weight tuning algorithm. 

The weight estimation error is as 

  ˆW WW = − . 

Then, the functional estimation error is ( )f x , which 

is determined.  

 ˆ ˆW Wh=WTf f f h h  =  − = + − +     (23) 

From Eq. (13) may choose inputs of RBF [ ]T

p px e e=

From Eq. (12), with the control in Eq. (19) and using Eq. 

(18), eq. (23) the closed dynamics becomes  

 

ˆ( ) ( ) . .

( ) . .

. .W .

d

p p s B
d

p s B
T d

p s B z

H s f x f x C s K A s J F

f x C s K A s J F

C s K A s J Eh F+

=  − − − −

=  − − −

= − − −

   (24) 

3.3. Adaptive Law Design 

Let an estimate error vector of the object’s dynamic 

parameters be defined as 0 0 0ˆ   = − ; The following is 

then obtained: 

 
0 0 0 0

0 0 0 0 0

ˆ( , , ) ( , , )

( , , )

r r

z r r

Y z z z Y z z z

H s C s Y z z z

 



−

= + − 
      (25) 

The system is considered stable according to the 

Lyapunov stability principle, the candidate of Lyapunov 

function can be selected as 

1 1

0 0 0 0 0

1 1 1 1
. . ( . )

22 2 2

T T T T

zL s H s tr W W s H s  − −= +  + +     (26) 
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where 
T

pH A H= . 

The following lemmas as [7]:  

Lemma 1: 
T T

BA J E=  and
T T

BA J E I+ = , where I is the 

identity matrix. 

Lemma 2: Let ,T T

p pH A H N A C= =  then 2H N−  is 

skew symmetrix. 

The time derivative L of the Lyapunov function 

becomes. 

1

1

0 0 0 0 0 0 0

1
. . . . ( . )

2

1
.

2

T T T

T T T

z z

L s H s s H s tr W W

s H s s H s  

−

−

= + + 

+ + +   

 

Using lemma 2 then 2 T

pH A C−  is skew symmetric, so

( 2 )s 0T T

ps H A C− = .  

Then, using Eq. (17), (24) and Eq. (25) the derivative L becomes  

0

1( . ) sA W

( )

T TT T

T T T d T d

B z

T

z z

T

sL s K As tr W W A h

s A J E F s F F+

−

− +

= − +  +

−
 

Due to properties of matrices . ( . )T T Ts A A s=  and 

using lemma 1, we have. 

1( . ) ( . ) ( .(A.s) W

( )

)T T

T d T d

z o z z

T T

sL K A s tr W W h

s F s F

A

F

s−

− +

= −  +

−

+
 

To stabilize the system then 0L    

 

1

1

1

W 0( . ) ( . )

( .( ) ( . ) )

( . ) 0.

0

T T

T T

T

Ttr W W A s

tr W W h A s

W h A s

h−

−

−

 +

 +

  +

 =

=

=

 

The adaptive NN weight update law is as 

 ˆ ( . )TW h A s=  .     (27) 

Control law Eq. (19) with the integrated adaptation law Eq. 

(17) and Eq. (27). According to the Lyapunov stability 

principle, the system is stable. 

4. Simulation Work 

In order to verify the above conclusion of stable 

controlling the object by means of dual-arm robot, 

simulation of the closed dynamics of the whole system has 

been carried out in Matlab/Simulink. The effectiveness of 

the proposed controller will be surveyed. The parameters 

of the dual-arm robot and the object are the same as in [12]. 

Trajectory planning is designed by fifth-order 

polynomial trajectories for the position and rotational angle 

of an object, which are given by the equation 

3 4 5

3 4 5

3 4 5

0,54 0,7561 0,5508 0,107 ;

1,4 0,5728 0,4173 0,0811 ;

0,3999 0,2913 0,0566 .

x t t t

y t t t

t t t

= + − +

= + − +

= − +

 

•  The parameter of controller 

 Ks = diag (15,15,15,15,15,15) 

 (350,350,350)diag = . 

 (0.3,5,0.5)diag =  

 0 (10,10)diag =  

•  The structures and parameter of neural network 

NN RBF is composed of 6 input units, 6 output units 

and 50 hidden layer nodes. The initial values of the 

adjustable weight are selected as W0 = 6. 

The center cj= [-2, 2]50. 

The width bj =10;  

The learning parameter as 2 = . 

❖ Simulation results with the model deviation 

0 0 030% ; 30% ; 30%p p pH H C C G G =  =  = . 

The simulation results for hybrid force/position control 

of the object according to the planed trajectory and desired 

force with the 30% deviation of the model are shown in 

Figure 4 – Figure 7.  

From the results in Figure 4 to Figure 7, we can see that 

the adaptive hybrid position/force control scheme can work 

effectively. The tracking performances of the position 

(Figure 4 – Figure 6) of the object can be achieved in x, y 

and rotational angle direction. In the contact space, the total 

force and torque tracking is shown in Figure 7. It is obvious 

that the adaptive hybrid force/position control scheme can 

achieve the good convergence speed with small steady-

state errors.  

a) 

 

b) 

 

Figure 4. The object motion trajectory along x-axis,  

a) Object position, b) Position error 
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a) 

 

b) 

 

Figure 5. The object motion trajectory along y-axis; 

 a) Object position; b) Position error 

a) 

 

b) 

 
Figure 6. The object motion trajectory rotational angle, 

a) Rotational angle of object; b) Rotational angle error 

 

Figure 7. Total force and torque at the center of mass  

of the object 

The simulation results show that the controller is 

working well and stably, the RBF network has 

compensated completely uncertainly parts of the real 

model. The position and rotational angle of the object 

converge to the desired trajectory, the degree of adjustment 

is zero and the static deviation is zero. As shown in Figure 

4 – Figure 6, the maximum error between desired positions 

and real positions along x axis, y axis and rotational angle 

direction are only 5 [mm], 0.6 [mm] and 0.015 [rad]. As 

shown in Figure 7, the equilibrium position, the total force 

and torque applied to the object are zero, it means that the 

object stays at the fixed desired position. The object is held 

assuredly and stably at contact points. The adaptation in 

control is working successfully and effectively. 

5. Conclusion 

In this paper, an adaptive controller based on online 

radial basis neural network has been proposed for 

coordinated control of dual-arm robots manipulating a 

single rigid object. The dynamic model of the 

manipulators and the object has been derived based on 

Euler-Lagrangian principle. Based on this model, the 

controller is proposed to achieve the desired trajectory of 

the object. The RBF network is used to compensate 

uncertainties of system parameters as well as track the 

desired forces in the system impact on the object by 

estimated reference model of the object. The neural 

network is learned online without requirement of 

preliminary offline learning. The NN weights may be 

simply initialized to zero or randomized and errors may 

be kept arbitrarily small. The proposed control method 

does not require measurement of forces at contact points. 

Forces and moments at the contact points impact on the 

object, so it has been ensured that the object is stably held. 

The stability of the system is proved using Lyapunov 

function, through which adaptive learning law is built. 

The simulation results show that the RBF neural network 

with online update law can effectively compensate the 

uncertain dynamic components of the system. 
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