
ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 19, NO. 6.1, 2021 17 

 

SMALL-SIGNAL STABILITY MODELING OF THE MICROGRID WITH 

NETWORK TRANSIENTS TAKEN INTO CONSIDERATION 

Hung Nguyen-Van1,2*, Huy Nguyen-Duc1 
1Hanoi University of Sience and Technology 

2Hanoi University of Industry 

*Corresponding author: vanhung312@gmail.com 

(Received: December 23, 2020; Accepted: April 23, 2021) 

Abstract - The development of a small signal model that 

accurately reflects dynamic processes plays an essential role in 

the stability analysis and control of power systems. The main 

components in a microgrid power system are synchronous 

generators, the electrical network, electrical loads, and inverters. 

A method to derive the microgrid state-space model is proposed 

in the article. This method is based on linearized models of 

synchronous generators, electronic power inverters, networks, 

and loads. This model can be further developed to account for 

microgrid control schemes such as frequency control and voltage 

regulation. A small-signal analysis of the Microgrid model is also 

carried out in this work. 
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1. Introduction 

The increasing penetration of distributed energy 

resources such as wind and solar is a trend that has been 

observed in many electric power systems [1]. However, the 

control and operation of distributed generation sources 

(DG), especially those of inverter-based generators, have 

many differences compared to the operation and control of 

conventional power systems. A microgrid (MG) can be 

established by connecting DG and local loads, which 

operate both in grid-connected and islanded modes. This 

can help increase the flexibility in the operation of DG and 

the reliability of the whole system [2], [3]. The typical 

structure of a MG is shown in Figure 1. 

 

Figure 1. Typical structure of microgrid 

Some of the distinctive features of the MG operation 

and control can be described as follows: i) The rotating 

inertia of the MG system is usually small, compared to that 

of a large synchronously connected grid, because the 

inverter-based sources have inherently zero inertia;  

ii) The MG usually consists of low/medium voltage 

networks which have low X/R ratios. On the other hand, 

conventional transmission systems have high X/R ratios, 

which makes the active power transfer primarily dependent 

on angle difference; iii) The primary generation sources in 

microgrid are variable sources (e.g., wind and solar) which 

are stochastic and uncertain. The uncertain nature of these 

sources has a significant impact on the control and 

operation of MGs [4], [5]. 

In the grid-connected mode, the voltage and the 

frequency stability depend on the dynamics of the grid. On 

the other hand, in the islanded mode, the voltage and the 

frequency stability are heavily influenced by the internal 

dynamics of MG [6]. The control of the power distribution 

between DG and of bus voltages is carried out by the 

control system of DG [7]. Depending on the specific 

control scheme [7], a DG can operate like a current source 

inverter (CSI) or a voltage source inverter (VSI). In the 

islanded mode, the VSI/CSI control scheme plays a vital 

role in small signal stability. 

In the small signal stability analysis of traditional 

electric systems, the time constants of electromechanical 

oscillation are much higher than time constants of network 

transients. Therefore, the network transients can be omitted 

[8]. Because of the reduced inertia in MG, ignoring 

network transients is no longer suitable. Some MG small-

signal models are proposed in [9], [10]. In [9], the MG 

small-signal model with the central element being VSI is 

proposed. However, this model does not account for DGs, 

which are based on synchronous generators. The proposed 

model in [10] is based on synchronizing individual models 

in rotating reference frame dq. The connection of each 

individual model is based on an equation of bus voltage 

vectors at the nodes in the grid, so it is difficult when the 

number of nodes in the grid is high. 

This article proposes a method to formulate a MG state-

space model, with the following features: 

- Including a variety of DGs, which are synchronous 

generators, voltage source inverters; 

- Considering the network transients, including 

transmission lines and RLC loads; 

- DG models are modified so that the input and output 

vectors match the input and output vectors of the grid; 

- The models are synchronized following only one 

rotating reference frame. 
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2. The state space model of microgrid 

For the sake of convenience in developing the state-

space models of different elements, the dq rotating reference 

frame is employed. First, each element is modeled in a 

separate local rotating reference frame (dqn). The exchange 

of the quantities on the abc axes to rotating reference frame 

dq is based on the Park transformation formula [8]. 

When combining the elements, it is necessary to 

transfer the local rotating reference frames dqn into the 

global rotating reference frames dqg [11]. The relationship 

between the frames is:  
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 are respectively the 

quantities in the local rotating reference frame (dqn) and the 

global rotating reference frames (dqg); 𝛿𝑛 is the angle 

difference between two axes dqn and dqg. The subindex “0” 

denotes steady-state operating values. 

2.1. Synchronous generator model 

The small-signal model of a two-pole, three-phase 

synchronous machine is presented in [12]. The differential 

equations that describe the voltage equations between the 

elements in a synchronous generator and are introduced in 

the matrix form:  
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vectors of voltages and currents of the stator windings (q,d), 

damper windings (kq1, kq2, kd) and field winding (fd). 

The swing equations: 
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where 𝜔 is rotor angular speed; 𝐻 is the inertia constant of 

rotor and load; �̅�𝑚, �̅�𝑒 are the mechanical and airgap torques: 

1 2( ) ( )e md d fd kd mq q kq kqT X i i i X i i i= − + + − − + +  (6) 

Linearizing the above ddifferential equations yields:  
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The vector of the states variables is as follows:  
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The vector of input parameters is:  
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Combining (2), (3), and (7) and transposing the matrix, 

we get the state-space model: 

v s u s
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•

 =  +  +   (8) 

In formula (8), the input variables can be broken down into:  

;
T Ts s

q d fd mv v v u v T    =    =     

 Thus, the synchronous generator model has the vector 

of input variables being voltages, and the vector of output 

variables being the electric currents.  

2.2. VSI inverter model 

The overall control diagram of a grid-connected DG 

through the VSI is shown in Figure 2 [10]. The VSI model 

consists of two main elements: i) the power circuit 

connecting VSI and the grid; ii) the VSI controlling system. 

 

Figure 2. The overall control diagram of VSI 

The main control system consists of two inner current 

control loops following the two axes of dq, and two outer 

power control loops, which send the reference value to the 

two inner current control loops. The secondary control loops 

determine the set point values (active and reactive power).  

2.2.1. The VSI coupling circuit 

 

Figure 3. The circuit diagram of VSI 

The coupling circuit is described by means of the 

following differential equations: 

, ,f abc f abc t abc DG abc

d
R i L i v v
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+ = −  (9) 

Through the Park transformation, (9) is converted into 

the rotating reference frames dqn: 
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By changing variables to decouple the quantities on two 

dq axes, we can obtain:  
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Combining (10) (11) and re-writing in the matrix form: 
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Linearizing (12), combining with (2), and changing the 

frames of dqn into dqg, one obtains: 
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With: ;
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The power circuit model is shown in Figure 4. 

 

Figure 4. The VSI power circuit model 

2.2.2. The VSI controlling system model 

a. Phase-locked loop (PLL) 

The determination of the rotational frequency of the 

local rotating reference frames dqn and the phase difference 

angle θn plays an important role in connecting VSIs to the 

electricity grid, and this process is done by the PLL [13].  

The linearized dynamic model of PLL:  
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b. Power controller 

A power controller consists of two loops, which are 

responsible for controlling the active power P, and the 

reactive power Q, as shown in Figure 5. Pref, Qref are the 

respective reference values provided by the secondary 

control [5]. Pout, Qout are determined by the electric currents 

and voltages in the dq frame, as follows: 
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The dynamic model of the power controller is: 
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Combining (15)-(16) and linearizing, we have: 
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Figure 5. The power controller 

From that, it is possible to identify Δiqref, Δidref 
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c. Current controller 

The low-pass filter in the current controller consists of 

two PI compensators shown in Figure 6 [14], [15]. The 

symbol "f" denotes the filtered quantities.  

 

Figure 6. Current controller 

The differential equations of the linearized current 

controller are: 
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The vectors of voltages at the connection point of a DG 

[𝑣𝑡,𝑑  𝑣𝑡,𝑞] can be represented by the following state 

variables: 
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From (14), (17), (19), (20), one can obtain a controller 

state-space model: 
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The full mathematical model of DG is represented in 

the system of equations (13), (21). In this model, the 

current vector is the input, and the voltage vector is the 

output. 

2.3. The network model 

 

Figure 7. General inductive branch diagram 

2.3.1. Inductive branch model 

The general diagram of the branch connecting node j to 

node k is shown in Figure 7. The branch equations can be 

written as follows: 
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Converting (22) to the dq coordinate system yields: 
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Extending (23) for n branches in the grid, linearizing 

and writing in matrix form yield: 
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2.3.2. Load model 

In this work, we consider the RL load. The differential 

equation for this type of load is as follows: 

,

loadj

j j loadj j abc

di
L R i v

dt
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Writing (25) for m loads connecting to m nodes and 

linearizing, one obtains the following: 
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Writing (23) for n branches in the grid, linearizing, and 

writing in matrix form yield the following equation: 
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Combining (24) and (27) lead to the grid state-space model: 

N NET N NET Nx A x B v
•

 =  +   (28) 

where: 
T

N Br loadx x x =      

; ;
T

NET Br load NET Br loadA diag A A B B B= =        

The vector of the state variables includes the current 

across the inductive components, the voltage across the 

capacitive components with inductive networks 

vN=[vd,vq]T; y
N

=[id,iq]T. The voltage vector is the input 

variable, and the current vector is the output variable.  

2.4. Microgrid general model 

The diagram describing elements interconnection is 

shown in Figure 8. All elements need to have currents as 

input and voltages as output to interface with the grid 

model [16]. Therefore, it is necessary to modify the source 

model of the DG by adding a parallel connection with a 

capacitor of sufficiently small value. With the DG model 

being modified to take currents as input, the small-signal 

model of MG is shown in Figure 8. 

The MG model shown in Figure 8 is the result of the 

combination of (8), (13), (21), (28): 
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Figure 8. Microgrid general model 

3. Case study 

3.1. System parameters 

The proposed state modeling method is applied to a three-

node MG, shown in Figure 9. Parameters of the elements in 

the schematic are given in Table 1, 2. The proposed modeling 

approach is implemented in Matlab/ Simulink.  

 

Figure 9. Microgrid in case study 

Table 1. Branch and load parameters 

Sb = 10 MVA; Vb= 13.8 kV Load 1 1.65 + j 2.02 MVA 

Line 1 0.2087 + j 0.3692 pu Load 2  2.3 + j 1.47 MVA 

Line 2 0.3468 + j0.5329 pu Load 3  1.8 + j 0.6 MVA 

Table 2. Source parameters 

DG2 – Synchronous Gen 

Sb = 5 MVA; Vb= 13.8 kV 

DG3, Sn = 3 MVA 

Power electronic interface 

ra 0.0052 pu Lf 0.1 mH 

Xd 2.86 pu Rf 2.4 mΩ 

Xq 2.0 pu kpll 1 

Xlkd 0.0208 pu kpw 313 

Xlfd 0.6157 pu kiw 10000 

Xkd 2.68 pu kpd 0.06 

Xfd 3.2757 pu kpq 0.028 

Xls 0.2 pu kpi 0.205 

rkd 0.1381 pu kii 1.6 

rfd 0.0026 pu kpr 0.205 

H 2.9 pu kir 1.6 

3.2. Eigenvalue analysis 

Table 3 shows the eigenvalues of the MG model in 

Figure 9 in the grid-connected mode. All 28 eigenvalues 

have negative real parts. Eigenvalues from 1 to 18 are 9 

pairs of complex conjugates, representing 9 modes of 

oscillation in the system.  

The eigenvalues 1 to 14 characterize the electrical 

oscillation between the DGs and the grid. The eigenvalues 

15 to 18 characterize the mechanical oscillation between 

the DG2 rotor and the system. 

Table 3. Eigenvalues of MG  

Eigen 

values 
Real (1/s) Im (rad/s) 

Eigen 

values 

Real 

(1/s) 

Im 

(rad/s) 

1,2 -91.13 ± 5628.5 19,20 -333.33 0 

3,4 -97.84 ± 4870.9 21 -276.88 0 

5,6 -158.29 ± 3653.6 22 -257.73 0 

7,8 -145.69 ± 3709.7 23 -92.65 0 

9,10 -222.40 ± 377.0 24 -36.12 0 

11,12 -6.01 ± 375.7 25 -8.26 0 

13,14 -71.24 ± 363.8 26 -8.26 0 

15,16 -0.80 ± 13.7 27 -1.15 0 

17,18 -55.15 ± 1.6 28 -0.42 0 

3.3. Sensitivity analysis 

To determine the optimal control parameters in the grid 

separated mode, we examine the parameters in the PI 

controller within the power control, which are kpd and kpq. 

Figure 10a shows the trajectories of the eigenvalue pair 

(7,8) when kpd varies from 0.01 to 0.9. Notice that when the 

kpd value increases, the eigenvalue pair tends to move 

towards the increasing damping coefficient and vice versa. 

Similarly, Figure 10b shows the trajectories of the 

eigenvalue pair (5,6) when kpq varies from -0.9 to -0.01. It 

can be observed that when the kpq is increased, the 

eigenvalue pair tends to move towards the decreasing 

damping coefficient and vice versa. 

 

 

Figure 10. The orbits of the eigenvalue pair (7,8) and (5,6) 

when kpd and kpq change 

0.01 

0.9 

- 0.9 

(7,8) 

(5,6) 

- 0.01 
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3.4. Step response and frequency response 

The small-signal model in (29) is used to analyze 

responses in the time domain and frequency domain. We 

apply a step change in power (Pref3) and observe the 

changes in voltage variables (Pref3). 

 

 

Figure 11. Response voltage Vdq3 from Pref3 

 

 

Figure 12. Response of voltage Vdq3 from Qref3 

Figure 11, 12 shows the time response of the voltage 

parameter Vdq3 when step changes of Pref3 and Qref3 are 

applied. The response time and output voltage responses 

can be easily observed.  

 

Figure 13. Vdq3 / Pref3 bode diagram 

 

Figure 14. Vdq3 / Qref3 bode diagram 

Figure 13, 14 shows the bode diagrams of transfer 

functions between Vdq3 / Pref3, and between Vdq3 / Qref3. The 

Bode plot shows that the bandwidth of input/output is 

approximately 100Hz. This information can be utilized to 

provide a balanced solution between the bandwidth of 

input/output transfer functions while maintaining the 

small-signal tability of the system.  

4. Conclusion 

The development of a small signal model of microgrids 

plays a vital role in their stability analysis and in 

determining their optimal control parameters. The MGs 

have many different characteristics from the traditional 

grid in terms of small-signal stability. The fundamental 

difference comes from DGs dynamics being influenced by 

the electronic-based power converters with zero inertia. 

Besides, in studying MG stability, it is necessary to 

consider the electromagnetic transients on the RLC circuits 

of the transmission lines. 

The article proposes a method to derive a small-signal 

model of DGs consisting of synchronous generators, 

inverters and RLC network circuits. The article also 

proposes an approach to connect different element models, 

thereby building a full microgrid model including typical 

components of DG, taking into account the network 

transients. The eigenvalue, sensitivities, time, and 

frequency responses of the built model have been analyzed. 

In future works, the proposed small-signal model can 

be augmented with the secondary control loop to study 

different MG control strategies and their robust stability 

characteristics. 
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APPENDIX 

The state-space matrices of the power circuit and control system of 
VSI are described in (13), (21). 

Power circuit of VSI from (12) 
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The differential equation of (31) 
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In (33),  can be deduced as a function of voltage angle  in the 

local dqn reference frame.  
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The state-space equation in (13) is obtained by substituted for 

from (34) to (33):  
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Control system of VSI from (14), (17), (19), (20) 
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The state-space model in (21) is obtained through expressing 

DGnx  and DGnv  in the global rotating reference frame dqg.  
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