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Abstract - In this paper, we present some ideas and methods to 

create new problems of proving inequalities, problems of 

finding maximum and minimum values. Based on the maximum 

and minimum properties and tangent inequalities of convex and 

concave functions, we propose some ideas and methods to 

create new problems. We make all ideas and methods to be real 

via many specific functions. Especially, we combine the ideas 

and methods with equivalent transforms, Cauchy-Schwarz 

inequality, and inequality of arithmetic and geometric means to 

create new hard problems. New proposed examples, they have 

showed that our ideas and methods are important and efficient to 

lecturers at high schools and universities in giving questions in 

examinations, especially in examinations of selecting good 

students at levels, in Olympic examinations for high school and 

university students. 

Key words - Creating new problems; convex functions; 
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1. Introduction 

Convex calculus is a branch of mathematics devoted to 

the study of properties of convex sets, convex functions 

and related problems, which has many applications in 

optimization theory, control theory, partial differential 

equation theory,... and especially in proving important, 

fundamental inequalities. The theory of convex analysis 

has been studied and published in many different scientific 

works, typical of which can be mentioned the research 

works of [1, 4, 7, 8]. In high school math programs, the 

theory of convex and concave functions is also used quite 

commonly in proving problems about inequalities, to find 

the maximum and minimum values [3, 5, 6]. For example, 

the Cauchy - Schwarz inequalities, the Hölder inequality,.. 

are simply proved by applying the inequality necessary and 

sufficient conditions of the convex function [2]. However, 

the use of the theory of convex and concave functions to 

create new problems of proving inequalities, finding the 

maximum or minimum values of an expression is rarely 

mentioned. To our knowledge, this is a new direction, 

which has not been exploited and studied much. 

In this paper, we introduce and propose some 

innovative methods to create new problems based on the 

basic properties of convex and concave functions. The 

basic idea of the proposed methods is a combination of 

the following three factors: 

1. Using the properties of the extremes and the tangent 

inequalities of convex and concave functions; 

2. Considering specific cases of convex and concave 

functions corresponding to different domains; 

3. Combining methods of generalization, 

specialisation, equivalent transformations and common 

inequalities such as the Cauchy-Schwarz inequality, the 

AM-GM inequality, etc. 

We will present some new problem creation ideas in 

detail based on the combination of the above three factors 

in the next part of this paper. 

2. Creating new problems based on the extreme 

properties of convex and concave functions 

In this section, we present ideas and methods to create 

new problems based on the extreme properties of convex 

and concave functions. Specifically, we rely on the 

following property: 

Lemma 2.1 Let 𝑓(𝑥) be a function defined on [𝑥1; 𝑥2]. 

a) If 𝑓(𝑥) is a convex function on [𝑥1; 𝑥2] then 

 𝑓(𝑥) ≤ 𝑚𝑎𝑥{𝑓(𝑥1), 𝑓(𝑥2)}, ∀𝑥 ∈ [𝑥1; 𝑥2]. 

b) If 𝑓(𝑥) is a concave function on [𝑥1; 𝑥2] then 

 𝑓(𝑥) ≥ 𝑚𝑖𝑛{𝑓(𝑥1), 𝑓(𝑥2)}, ∀𝑥 ∈ [𝑥1; 𝑥2]. 

Proof. We will prove proposition a). Proposition b) 

will be proven similarly. With 1 2[ ; ],x x x  there exists 

[0,1]   such that 1 2(1 ) .x x x = + −  Since f  is a 

convex function, we have 

1 2

1 2

1 2
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f x f x

f x f x

 

 

= + −

 + −



 

Thus, proposition a) is proven. 

From this property we see that if we choose a specific 

convex function (concave function) f(x), a particular 

domain [𝑥1; 𝑥2], we will get the value of 

max{𝑓(𝑥1), 𝑓(𝑥2)} (min{𝑓(𝑥1), 𝑓(𝑥2)}). Then, we can 

create a problem of proving the inequality or problem of 

finding the maximum value (the problem of finding the 

minimum value). This is the main idea for creating 

inequalities based on this property. Note that, to create 

more difficult and diverse problems, we should combine 

with generalization or specializing methods, methods of 

changing variables. We will illustrate these ideas through 

two basic classes of functions: first-order functions and 

quadratic functions. 
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2.1. Creating new problems based on first order functions 

First of all, we consider 𝑓(𝑥) = 𝑏𝑥 + 𝑐 on [0, 𝑎]. 
Since function 𝑓(𝑥) is both convex and concave, ∀x ∈
[0; 𝑎] we have 

min{𝑓(0), 𝑓(𝑎)} ≤ 𝑓(𝑥) ≤ max{𝑓(0), 𝑓(𝑎))}. 

Furthermore, if we choose 𝑎, 𝑏, 𝑐 such that 

max{𝑓(0), 𝑓(𝑎))} ≤ 0, then we can create the following 

iniquality: Prove that 

𝑏𝑥 + 𝑐 ≤ 0, ∀𝑥 ∈ [0, 𝑎]. 

To increase the difficulty of the problem, we can add 

some parameters so that the values 𝑓(0) and 𝑓(𝑎) 

depending on the parameters. For example, if we choose 

 𝑓(𝑎) = −𝑦𝑧 ≤ 0, 

 𝑓(0) = −(𝑎 − 𝑦)(𝑎 − 𝑧) ≤ 0, ∀𝑦, 𝑧 ∈ [0; 𝑎], 

then we have 

 𝑓(𝑥) ≤ max{𝑓(0), 𝑓(𝑎)} ≤ 0. 

Using the conditions on 𝑓(0) and 𝑓(𝑎) we get 𝑏, 𝑐 and 

function 𝑓(𝑥) = (𝑎 − 𝑦 − 𝑧)𝑥 + 𝑎(𝑦 + 𝑧) − 𝑦𝑧 − 𝑎2 on 

[0, 𝑎]. Then, the iniquality 𝑓(𝑥) ≤ 0 for all 𝑥 ∈ [0, 𝑎] is 

equivelent to 𝑎(𝑥 + 𝑦 + 𝑧) − (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ≤
𝑎2, ∀𝑥, 𝑦, 𝑧 ∈ [0; 𝑎]. Thus, we have the following problem: 

Problem 2.2 Let 𝑎 be a fixed positive real number and 

𝑥, 𝑦, 𝑧 in [0; 𝑎]. Prove that 

𝑎(𝑥 + 𝑦 + 𝑧) − (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ≤ 𝑎2.   (2.1) 

From inequality (2.1), we can create a number of 

different inequality problems for each parameter value. For 

example, we have the following new problems by giving 

different values for the parameter 𝑎. For example, we have 

the following problems by letting 𝑎 = 3 and 𝑎 = 2020. 

Exercise 2.3 Let 𝑥, 𝑦, 𝑧 ∈ [0; 3]. Prove that 

  3(𝑥 + 𝑦 + 𝑧) − (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) ≤ 9. 

Exercise 2.4 Let 𝑥, 𝑦, 𝑧 ∈ [0; 2020]. Find the 

maximum value of the expression 

 𝑃 = 2020(𝑥 + 𝑦 + 𝑧) − (𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥). 

To create new problems with increasing difficulty, we 

can choose 𝑓(0) and 𝑓(𝑎) depending on some parameters 

so that the value of max{𝑓(0), 𝑓(𝑎)} depends on those 

parameters. Furthermore, we can use methods of 

changing variables and add additional conditions on 

variables to obtain new problems of proving inequalites or 

problems of finding the maximum and minimum values 

for a multivariable expression in which the variables 

change depending on each other through some constraint 

conditions. 

To illustrate the above idea, we consider the following 

specific examples. We still start from the first order 

function 𝑓(𝑡) = 𝑏𝑡 + 𝑐 with 𝑡 ≥ 0 and 𝑓(0) = 𝑥(1 −
𝑥), 𝑥 ∈ [0,1]. Then, 𝑓(𝑡) = 𝑏𝑡 + 𝑥(1 − 𝑥). To create a 

symmetric three-variable inequality, we can choose 

𝑏 = 1 − 𝑎𝑥, let 𝑡 = 𝑦𝑧 with the condition 𝑦, 𝑧 ≥ 0 and 

𝑥 + 𝑦 + 𝑧 = 1. Substituting these values into the 

expression 𝑓(𝑡) we get 

 𝑃 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 𝑎𝑥𝑦𝑧 

    = 𝑓(𝑦𝑧) = (1 − 𝑎𝑥)𝑦𝑧 + 𝑥(1 − 𝑥). 

From the conditions 𝑦, 𝑧 ≥ 0 and 𝑥 + 𝑦 + 𝑧 = 1 we 

obtain 

0 ≤ 𝑦𝑧 ≤ (
𝑦+𝑧

2
)

2

= (
1−𝑥

2
)

2

. 

Thu, we get the function 

𝑓(𝑦𝑧) = (1 − 𝑎𝑥)𝑦𝑧 + 𝑥(1 − 𝑥), 𝑦𝑧 ∈ [0; (
1 − 𝑥

2
)

2

] 

and   𝑃 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 𝑎𝑥𝑦𝑧 

       = 𝑓(𝑦𝑧) ≤ max {𝑓(0), 𝑓 ((
1−𝑥

2
)

2

)} , 𝑥 ∈ [0; 1]. 

From the above results, we have the following new 

problem: 

Problem 2.5 Let 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 + 𝑦 + 𝑧 = 1. For each 

𝑎 ≠ 0, find the maximum value of the expression 

𝑃 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 𝑎𝑥𝑦𝑧. 

Similar to the previous example, if we choose specific 

values for 𝑎, we have new problems of finding the 

maximum value of 𝑇 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 𝑎𝑥𝑦𝑧. For 

example, we can state some new problems: 

Exercise 2.6 Let 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 + 𝑦 + 𝑧 = 1. Find the 

maximum value of the expression 𝑇 = 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 −
3𝑥𝑦𝑧. 

Exercise 2.7 Let 𝑥, 𝑦, 𝑧 ≥ 0, 𝑥 + 𝑦 + 𝑧 = 1. Find the 

maximum value of the expression 𝑇 = 2(𝑥𝑦 + 𝑦𝑧 +
𝑧𝑥) − 𝑥𝑦𝑧. 

Exercise 2.8 Let 𝑥, 𝑦, 𝑧 be nonnegative real numers 

such that 𝑥 + 𝑦 + 𝑧 = 1. Prove that 

0 ⩽ 𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥 − 2𝑥𝑦𝑧 ⩽
7

27
. 

2.2. Creating new problems based on quadratic 

functions 

Now, let us move on to creating new problems 

through quadratic functions 𝑓(𝑥) = ax2 + 𝑏𝑥 + 𝑐 on 
[𝑥1; 𝑥2]. We know that if 𝑎 > 0 then 𝑓(𝑥) is convex on 

[𝑥1; 𝑥2]. Otherwise, if 𝑎 < 0 then 𝑓(𝑥) is concave on 

[𝑥1; 𝑥2]. Thus, if we choose a particular convex (concave) 

quadratic function and a particular interval [𝑥1; 𝑥2], then 

we obtain a particular problem of proving the inequality 

or a particular problem of finding the maximum value 

(finding the minimum value), respectively. These 

problems, although new, but are quite simple. To create 

new and more difficult problems, we can use the same 

ideas as presented for the first-order functions. Here, we 

will present another method to create new problems in the 

case 𝑓 is a quadratic function. 

The basic idea of this direction is based on the 

following result: if function 𝑃(𝑥, 𝑦) satisfies "for each 

fixed 𝑥, 𝑃(𝑥,⋅) is a convex quadratic function with respect 

to 𝑦 and for each fixed 𝑦 𝑃(⋅, 𝑦) is a convex quadratic 

function with respect to 𝑥" then 

 𝑃(𝑥, 𝑦) ≤ max{𝑃(𝑎, 𝑦), 𝑃(𝑏, 𝑦)} 

              ≤ max{𝑃(𝑎, 𝑎), 𝑃(𝑎, 𝑏), 𝑃(𝑏, 𝑎), 𝑃(𝑏, 𝑏)}. 

Thus, we can create problems of proving inequalities 

or problems of finding the maximum values with respect 

to each choice of function 𝑃 and each interval [𝑎, 𝑏]. 
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Similarly, if the function 𝑃(𝑥, 𝑦) satisfies: "for each 

fixed 𝑥, 𝑃(𝑥,⋅) is a concave quadratic function with 

respect to 𝑦 and for each fixed 𝑦 𝑃(⋅, 𝑦) is a concave 

quadratic function with respect to 𝑥." We can create 

problems of proving inequalities or problems of finding 

the minimum value for each choice of function 𝑃 and 

interval [𝑎, 𝑏]. We will illustrate this idea through the 

following specific examples. 

Consider the function 

𝑓(𝑥) = (𝑥 + 𝑦 + 𝑧)(𝑦𝑧 + 2𝑥𝑧 + 3𝑥𝑦) −
80

3
𝑥𝑦𝑧. 

This is a quadratic function with coefficient 𝑎 = 2𝑧 +
3𝑦 > 0 (we assume that 𝑥, 𝑦, 𝑧 in [1; 3]). 𝑓(𝑥) is convex 

[1; 3]. Therefore, 𝑓(𝑥) ≤ max{𝑓(1), 𝑓(3)}. Note that 

 • 𝑓(1) = (1 + 𝑦 + 𝑧)(𝑦𝑧 + 2𝑧 + 3𝑦) −
80

3
𝑦𝑧 = 𝑔1(𝑦), 

 𝑔1(1) =
1

3
(9𝑧2 − 53𝑧 + 18), 𝑔1(3) = 5𝑧2 − 51𝑧 + 36. 

 • 𝑓(3) = (3 + 𝑦 + 𝑧)(𝑦𝑧 + 6𝑧 + 9𝑦) − 80𝑦𝑧 = 𝑔3(𝑦), 

 𝑔3(1) = 7𝑧2 − 43𝑧 + 36, 𝑔3(3) = 9𝑧2 − 159𝑧 + 162. 

Since 𝑔1(𝑦), 𝑔3(𝑦) are also convex on [1; 3], for any 

𝑦 ∈ [1; 3] we have 

 𝑔1(𝑦) ≤ max𝑧∈[1,3]{𝑔1(1), 𝑔1(3)} = −
26

3
, 

 𝑔3(𝑦) ≤ max𝑧∈[1,3]{𝑔3(1), 𝑔3(3)} = 0. 

Therefore, ∀𝑥, 𝑦, 𝑧 ∈ [1,3] we have 

(𝑥 + 𝑦 + 𝑧)(𝑦𝑧 + 2𝑥𝑧 + 3𝑥𝑦) −
80

3
𝑥𝑦𝑧 ≤ 0. 

To make the problem more difficult, we can divide 

both sides by 𝑥𝑦𝑧, then reduce and shift some terms from 

the left side to the right side. For example, we can state 

the problem as follows: 

Problem 2.9 Let 𝑥, 𝑦, 𝑧 ∈ [1; 3]. Prove that 

(𝑥 + 𝑦 + 𝑧) (
1

𝑥
+

2

𝑦
+

3

𝑧
) ≤

80

3
. 

Similar to the above, we can create the following new 

problems: 

Exercise 2.10 Let 𝑥, 𝑦, 𝑧 ∈ [1; 2]. For each given set 

of three positive numbers 𝑎, 𝑏, 𝑐, find the maximum value 

of the following expression in terms of 𝑎, 𝑏, 𝑐: 

𝑃 = (𝑥 + 𝑦 + 𝑧) (
𝑎

𝑥
+

𝑏

𝑦
+

𝑐

𝑧
). 

Exercise 2.11 Let 𝑥, 𝑦, 𝑧 ∈ [1; 3]. For each given set 

of three positive numbers 𝑎, 𝑏, 𝑐, find the maximum value 

of the following expression in terms of 𝑎, 𝑏, 𝑐: 

𝑄 = (𝑥 + 𝑦 + 𝑧) (
𝑎

𝑥
+

𝑏

𝑦
+

𝑐

𝑧
). 

Exercise 2.12 Let 𝑥, 𝑦, 𝑧 ∈ [1; 3]. Prove that 

(𝑥 + 𝑦 + 𝑧) (
2020

𝑥
+

21

𝑦
+

12

𝑧
) ≤ 14217. 

3. Creating new problems based on tangent 

inequalities of convex and concave functions 

In this section, we present ideas and methods for 

creating new problems based on the continuation 

inequality of convex and concave functions. Specifically, 

we rely on the following properties of convex and 

concave functions: 

Lemma 3.1 [2,p.176] Let 𝑓(𝑥) be a differentiable 

function on [𝑥1; 𝑥2]. 

• If 𝑓(𝑥) is convex on [𝑥1; 𝑥2] then for each 

𝑥0 ∈ [𝑥1; 𝑥2] we have 

𝑓(𝑥) ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0), ∀𝑥 ∈ [𝑥1; 𝑥2]. 

• If 𝑓(𝑥) is concave on [𝑥1; 𝑥2] then for each 

𝑥0 ∈ [𝑥1; 𝑥2] we have 

𝑓(𝑥) ≤ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0), ∀𝑥 ∈ [𝑥1; 𝑥2]. 

The point 𝑥0 ∈ [𝑥1; 𝑥2] in the above property is called 

the "falling point" and the two inequalities in Lemma 3.1 

are called the tangent inequalities for convex and concave 

functions, respectively. Thus, if 𝑓(𝑥) is a differentiable 

convex function on [𝑥1; 𝑥2] and 𝑥0 a falling point, then 

for all real numbers 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ [𝑥1; 𝑥2] we have 

 𝑓(𝑎1) ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑎1 − 𝑥0), 

 𝑓(𝑎2) ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑎2 − 𝑥0), 

⋯ 

 𝑓(𝑎𝑛) ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑎𝑛 − 𝑥0). 

Adding 𝑛 inequalities on both sides we get 

∑𝑛
𝑖=0 𝑓(𝑎𝑖) ≥ 𝑛𝑓(𝑥0) + 𝑓′(𝑥0)(∑𝑛

𝑖=0 𝑎𝑖 −  𝑛𝑥0). (3.1) 

If 𝑓(𝑥) is strictly convex, then the equal sign in the 

above inequality occurs if and only if 𝑎𝑖 = 𝑥0 for all 

𝑖 = 1, … , 𝑛. From (3.1), we see that if we choose a 

particular convex function 𝑓, a particular falling point and 

a set of numbers 𝑎1, 𝑎2, … , 𝑎𝑛 ∈ [𝑥1; 𝑥2], then we can get 

a problem of proving the inequality. Furthermore, if we 

set the condition ∑𝑛
𝑖=0 𝑎𝑖 = 𝑆 (constant), we can get a 

problem of finding the minimum value of the expression 

on the left side. In the case of a differentiable and concave 

function 𝑓(𝑥) on [𝑥1; 𝑥2], repeating the above process, we 

also get problems of proving inequalities or the problems 

of finding the maximum value of the expression on the 

left side. We will illustrate how to create such new 

problems through the following specific examples. 

Considering the function 𝑓(𝑥) =
𝑥

𝑥2+1
 on [0; 1], we have 

𝑓′′(𝑥) =
2𝑥(𝑥2−3)

(𝑥2+1)2 ≤ 0, ∀𝑥 ∈ [0; 1]. 

Function 𝑓(𝑥) is concave on [0; 1]. With falling point 

𝑥0 =
1

3
 and for any 𝑎, 𝑏, 𝑐 ∈ [0; 1] we have 

𝑓(𝑎) ≤ 𝑓′ (
1

3
) (𝑎 −

1

3
) + 𝑓 (

1

3
), 

𝑓(𝑏) ≤ 𝑓′ (
1

3
) (𝑏 −

1

3
) + 𝑓 (

1

3
), 

𝑓(𝑐) ≤ 𝑓′ (
1

3
) (𝑐 −

1

3
) + 𝑓 (

1

3
). 

Adding up the above inequality, we get 

 𝑃 = 𝑓(𝑎) + 𝑓(𝑏) + 𝑓(𝑐) 

     ≤ 𝑓′ (
1

3
) (𝑎 + 𝑏 + 𝑐 − 1) + 3𝑓 (

1

3
). 

If we set the condition 𝑎 + 𝑏 + 𝑐 = 1, then 𝑃 reaches 

the maximum value if and only if 𝑎 = 𝑏 = 𝑐 =
1

3
. So we 

have the following problem: 

Problem 3.2 Let 𝑎, 𝑏, 𝑐 be nonnegative real numbers 

such that 𝑎 + 𝑏 + 𝑐 = 1. Find the maximum value of the 
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expression 

 𝑃 =
𝑎

𝑎2+1
+

𝑏

𝑏2+1
+

𝑐

𝑐2+1
. 

Similar to the above, we can also come up with a new 

problem of proving the inequality: 

Problem 3.3 Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  be nonnegative real 

numbers such that 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 = 𝑛𝑎 with 𝑎 > 0. 

Prove that 
𝑥1

𝑥1
2+1

+
𝑥2

𝑥2
2+1

+ ⋯ +
𝑥𝑛

𝑥𝑛
2+1

≤
𝑛𝑎

𝑎2+1
. 

The equality occurs if and only if 𝑥1 = 𝑥2 = ⋯ =
𝑥𝑛 = 𝑎. 

Similarly, if we choose the concave function 

𝑓(𝑥) =
𝑥

√𝑥2+12
, we can create many problems of finding 

maximum value or problems of proving inequalities as 

follows: 

Problem 3.4 Let 𝑎, 𝑏, 𝑐 be positive real numbers such 

that 𝑎 + 𝑏 + 𝑐 = 6. Find the minimum value of the 

expression 

𝑃 =
𝑎

√𝑎2+12
+

𝑏

√𝑏2+12
+

𝑐

√𝑐2+12
 

Exercise 3.5 Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 be positive real 

numbers such that 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 = 𝑛𝑎 with 𝑎 > 0. 

Find the maximum value of the expression 

 𝑃 =
𝑥1

√𝑥1
2+1

+
𝑥2

√𝑥2
2+1

+ ⋯ +
𝑥𝑛

√𝑥𝑛
2+1

. 

To make problems more difficult, we can combine 

inequality (3.1) with some other inequalities such as the 

Cauchy-Schwarz inequality. We illustrate this through the 

following specific example: 

Consider the function 𝑓(𝑥) =
1

√2020+3𝑥
 with 0 < 𝑥 ≤

√3. We have 

𝑓′(𝑥) = −
3

2√(2020+3𝑥)3
, 

𝑓′′(𝑥) =
27

4√(2020−3𝑥)5
> 0, ∀𝑥 ∈ (0; √3). 

Then, 𝑓(𝑥) is convex on (0; √3). Let 𝑥0 = 1 be a 

falling point. Using the tangent inequality, for any 

𝑎, 𝑏, 𝑐 ∈ (0; √3) we have 

 𝑓(𝑎) ≥ 𝑓′(1)(𝑎 − 1) + 𝑓(1), 

 𝑓(𝑏) ≥ 𝑓′(1)(𝑏 − 1) + 𝑓(1), 

 𝑓(𝑐) ≥ 𝑓′(1)(𝑐 − 1) + 𝑓(1). 

Now if we add the condition 𝑎2 + 𝑏2 + 𝑐2 = 3 and 

use Cauchy-Schwarz inequality, then we have 

(𝑎 + 𝑏 + 𝑐)2 ≤ 3(𝑎2 + 𝑏2 + 𝑐2) = 9. 

It is implied that 𝑎 + 𝑏 + 𝑐 − 3 ≤ 0. 

Adding the above tangent inequalities, we get 

 
1

√2020+3𝑎
+

1

√2020+3𝑏
+

1

√2020+3𝑐
 

   ≥ 𝑓′(1)(𝑎 + 𝑏 + 𝑐 − 3) + 3𝑓(1) 

   ≥ 3𝑓(1) =
3

√2021
, 

Since 𝑓′(1) = −
4

27
< 0. 

Thus, we can pose the following problem: 

Problem 3.6 Let 𝑎, 𝑏, 𝑐 be positive real numbers such 

that 𝑎2 + 𝑏2 + 𝑐2 = 3. Find the minimum value of the 

expression 

𝑃 =
1

√2020+3𝑎
+

1

√2020+3𝑏
+

1

√2020+3𝑐
. 

To make the problem more difficult to identify and 

select the function, we should combine the tangent 

inequality with the equivalence transformations or use it 

in combination with other inequalities such as the 

Cauchy-Schwarz inequality, inequality of arithmetic and 

geometric means (AM-GM inequality). The following 

two examples illustrate and further clarify this 

combination. The first example is the combination of the 

triangle inequality and the equivalence transformation. 

The second example illustrates a combination of the 

equivalence transformation, Cauchy-Schwarz inequality, 

AM-GM inequality, and the tangent inequality. 

Consider the function 𝑓(𝑡) = ln𝑡. We have 𝑓′′(𝑡) =

−
1

𝑡2 < 0, ∀𝑡 > 0. Choosing the falling point 𝑡 =
1

3
 and 

using the tengent inequality we have for any 𝑥 > 0 

ln𝑥 ≤ 𝑓′ (
1

3
) (𝑥 −

1

3
) + 𝑓 (

1

3
) = 3𝑥 − 1 − ln3. 

Multiplying both sides of the above inequality with 

𝑦 > 0 we have 

𝑦ln𝑥 ≤ 3𝑥𝑦 − 𝑦 − 𝑦ln3. 

Similarly, we also have the following inequalities: for 

all 𝑥, 𝑦, 𝑧 > 0, 

 𝑧ln𝑦 ≤ 3𝑦𝑧 − 𝑧 − 𝑧ln3, 

 𝑥ln𝑧 ≤ 3𝑧𝑥 − 𝑥 − 𝑥ln3. 

Adding the last three inequalities on both sides and 

applying the Cauchy-Schwars’s inequality, we get: 

 ln𝐴 = 𝑦ln𝑥 + 𝑧ln𝑦 + 𝑥ln𝑧 

   ≤ 3(𝑥𝑦 + 𝑦𝑧 + 𝑧𝑥) − 1 − ln3 

   ≤ (𝑥 + 𝑦 + 𝑧)2 − 1 − ln3. 

If we add the condition 𝑥 + 𝑦 + 𝑧 = 1 then we have 

ln𝐴 ≤ −ln3 or 𝐴 = 𝑥𝑦𝑦𝑧𝑧𝑥 ≤
1

3
. On the other hand, 

using AM-GM inequality, we have 

 𝑃 =
1

𝑥𝑦 +
1

𝑦𝑧 +
1

𝑧𝑥 ≥
3

√𝑥𝑦𝑦𝑧𝑧𝑥3 ≥ 3 √3
3

. 

Thus, 𝑃 reaches the minimum value that is 3 √3
3

 as 

𝑥 = 𝑦 = 𝑧 =
1

3
. Based on this analysis, we can create two 

problems with different difficulty as follows: 

Exercise 3.7 Let 𝑥, 𝑦, 𝑧 > 0 such that 𝑥 + 𝑦 + 𝑧 = 1. 
Find the maximum value of the expression 

 𝑃 = 𝑥𝑦𝑦𝑧𝑧𝑥 . 

Exercise 3.8 Let 𝑥, 𝑦, 𝑧 > 0 such that 𝑥 + 𝑦 + 𝑧 = 1. 
Find the minimum value of the expression 

𝑃 =
1

𝑥𝑦 +
1

𝑦𝑧 +
1

𝑧𝑥. 

Consider the function 𝑓(𝑥) = 𝑥2021 with 𝑥 > 0. We have 

𝑓′(𝑥) = 2021𝑥2020, 𝑓′′(𝑥) > 0, ∀𝑥 > 0. 

Select the falling point 𝑥0 =
1

1011
. Then, for any 𝑥𝑖 >
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0, 𝑖 = 1,2, ⋯ ,2021, using the tangent inequality we have 

𝑓(𝑥𝑖) ≥ 𝑓′ (
1

1011
) (𝑥𝑖 −

1

1011
) + 𝑓 (

1

1011
) 

=
2021

10112020 𝑥𝑖 −
2020

10112021 . 

This inequality is equivelent to (multiplying both sides 

with 𝑖 > 0) 

𝑖𝑥𝑖
2021 ≥

2021

10112020
𝑖𝑥𝑖 −

2020𝑖

10112021
, ∀𝑖 = 1,2, … ,2021. 

Adding all these inequalities on both sides, we get 

∑

2021

𝑘=1

𝑘𝑥𝑘
2021 ≥

2021

10112020
⋅ (𝑥1 + 2𝑥2 + ⋯ + 2021𝑥2021) 

−
2020

10112021 ⋅ (1 + 2 + ⋯ + 2021) 

≥
2021

10112020
⋅ 2021 −

2020

10112020
=

4282500

10112020
. 

The equality occurs if and only if 𝑥1 = 𝑥2 = ⋯ =

𝑥𝑛 =
1

1011
. Thus, we can have a new problem as follows: 

Exercise 3.9 Let 𝑥1, 𝑥2, ⋯ , 𝑥2021 be positive real 

numbers such that ∑2021
𝑘=1 𝑘𝑥𝑘 = 2021. Find the minimum 

value of the expression 

𝑃 = ∑2021
𝑘=1 𝑘𝑥𝑘

2021. 

To conclude the presentation of ideas and methods for 

creating problems based on tangent inequalities, we 

consider the choice of functions (convex or concave) 

depending on one or more parameters. The problems 

created in this case are quite complex and often difficult 

to solve. As an illustrative example, we consider a 

function 𝑓(𝑎) = 𝑎3 + (6𝑏 + 9)𝑎2 with 𝑎 > −1, 𝑏 is a 

parameter and 𝑏 > −1. We have 

𝑓′(𝑎) = 3𝑎2 + 2(6𝑏 + 9)𝑎, 

𝑓′′(𝑎) = 6(𝑎 + 2𝑏 + 3) > 0, ∀𝑎, 𝑏 > −1. 

Let us select the falling point 𝑥0 = 1. Then, for any 

𝑎 ∈ (−1; +∞), 

 𝑓(𝑎) ≥ 𝑓′(1)(𝑎 − 1) + 𝑓(1), 

⇔ 𝑎3 + (6𝑏 + 9)𝑎2 ≥ (12𝑏 + 21)(𝑎 − 1) + (6𝑏 + 10). 

Similarly, we get for any 𝑏, 𝑐 ∈ (−1; +∞), 

 𝑏3 + (6𝑐 + 9)𝑏2 ≥ (12𝑐 + 21)(𝑏 − 1) + (6𝑐 + 10), 

 𝑐3 + (6𝑎 + 9)𝑐2 ≥ (12𝑎 + 21)(𝑐 − 1) + (6𝑎 + 10). 

Adding the last three iniequalities, we have 

𝑎3 + 𝑏3 + 𝑐3 + 6(𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎) + 9(𝑎2 + 𝑏2 + 𝑐2)
 ≥ 12(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 15(𝑎 + 𝑏 + 𝑐) − 33. 

Thus, if we add the condition such that the right hand side is 

constant number then we can creare a new problem as follows: 

Problem 3.10 Let 𝑎, 𝑏, 𝑐 > −1 and 4(𝑎𝑏 + 𝑏𝑐 +
𝑐𝑎) + 5(𝑎 + 𝑏 + 𝑐) ≥ 27. Find the minimum value of the 

expression 

 𝑃 = 𝑎3 + 𝑏3 + 𝑐3 + 6(𝑎2𝑏 + 𝑏2𝑐 + 𝑐2𝑎) 

   +9(𝑎2 + 𝑏2 + 𝑐2). 

We see that the condition in the above problem is 

quite complex, we can replace it with a simpler condition 

by using the Cauchy-Schwarz inequality. For example we 

can replace the condition 4(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 5(𝑎 + 𝑏 +
𝑐) ≥ 27 by 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 3. Then, applying the 

Cauchy-Schwarz inequality, we have 

 𝑎 + 𝑏 + 𝑐 ≥ √3(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) = 3. 

From this inequality and the newly introduced 

condition, we get the condition: 

 4(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) + 5(𝑎 + 𝑏 + 𝑐) ≥ 27. 

Using the above approach, that is, combining the 

tangent inequality and the Cauchy-Schwarz inequality, for 

the function 𝑓(𝑎) = 3𝑎10 + 5𝑏𝑎3 where 𝑎 > 0, 𝑏 is a 

parameter, 𝑏 > 0 and the falling point is 𝑥0 = 1, we have 

the following new problem: 

Problem 3.11 let 𝑎, 𝑏, 𝑐 be positive real numbers 

such that 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 3. Find the minimum value of 

the expression 

𝑃 = 3(𝑎10 + 𝑏10 + 𝑐10) + 5(𝑎3𝑏 + 𝑏3𝑐 + 𝑐3𝑎). 

From the above examples, readers can predict and 

choose suitable functions to create the following new 

exercises. 

Exercise 3.12 Let 𝑎, 𝑏, 𝑐 ∈ [1; √6] and 𝑎𝑏 + 𝑏𝑐 +

𝑐𝑎 + 24 = 6(𝑎 + 𝑏 + 𝑐). Find the maximum value of the 

expression 

𝑃 =
𝑏

𝑎
+

𝑎

𝑐
+

𝑐

𝑏
− 2 (

1

𝑎2 +
1

𝑏2 +
1

𝑐2). 

Exercise 3.13 Let 𝑎, 𝑏, 𝑐 ∈ [0; 3] such that 𝑎𝑏 + 𝑏𝑐 +
𝑐𝑎 ≥ 3. Find the maximum value of the expression 

𝑏√3𝑎 + 1 + 𝑐√3𝑏 + 1 + 𝑎√3𝑐 + 1 − (𝑎2 + 𝑏2 + 𝑐2) 

4. Conclusion 

The main result of this paper is to present methods of 

creating new problems of proving inequalities and finding 

the maximum (or minimum) values of convex (or 

concave) functions. We illustrate the methods via some 

specific choice of functions. Through these examples, we 

see that the methods are very easy to use, and we can 

create many new problems with different difficulties. 

Therefore, the methods are very useful for teachers and 

lecturers to create new exercises and problems for exams. 
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