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Abstract - In [1], Nesterov has introduced an optimal algorithm 

with constant step-size, ℎ𝑘 =
1

𝐿
 with 𝐿 is the Lipschitz constant of 

objective function. The algorithm is proved to converge with 

optimal rate 𝑂(1/𝑘2). In this paper, we propose a new algorithm, 

which is allowed nonconstant step-sizes ℎ𝑘. We prove the 

convergence and convergence rate of the new algorithm. It is 

proved to have the convergence rate 𝑂(1/𝑘2) as the original one. 

The advance of our algorithm is that it is allowed nonconstant 

step-sizes and give us more free choices of step-sizes, which 

convergence rate is still optimal. This is a generalization of 

Nesterov's algorithm. We have applied the new algorithm to solve 

the problem of finding an approximate solution to the integral 

equation. 

Key words - Convex minimization problem; Modifed Nesterov’s 

algorithm; Optimal convergence rate; Nonconstant step-size. 

1. Introduction 

In this paper, we consider an unconstrained 

minimization problem 

min
𝑥∈ℝ𝑛

𝑓(𝑥),           (1) 

where 𝑓: ℝ𝑛 → ℝ is a convex and differentiable function 

with the derivative 𝑓′ being Lipschitz continuous. We 

denote 𝐿 as the Lipschitz constant of 𝑓′ and ℱ𝐿
1,1(ℝ𝑛) is the 

set of all such functions. We also denote 𝑥∗ and 𝑓∗ as a 

solution and the minimum of problem (1), respectively. 

There are several methods to solve problem (1) such as 

the gradient method, conjugate gradient method, Newton 

and Quasi-Newton one, but these approaches are far from 

being optimal for class of convex minimization problems. 

The optimal methods for minimizing smooth convex and 

strongly convex functions have been proposed in [1] (see 

page 76, algorithm (2.2.6)). The ideas of Nesterov have 

been applied to nonsmooth optimization problems in [2, 3]. 

Although, the methods introduced by Nesterov in [1] have 

optimal convergent rate, he only introduce a rule for 

choosing constant step-size. Other possible choices of step-

sizes are still missing. In this paper, we propose a new 

approach, which are based on the optimal method 

introduced in [1], but the values of step-sizes are possibly 

to change in each iteration. We will prove that new process 

converges with the convergence rate 𝑂(1/𝑘2). 

2. Notations and preliminary results 

In this section, we recall some notations and properties 

of differentiable convex functions, differentiable functions 

that the gradient vectors are Lipschitz contiuous. These 

notations and properties are used in the proofs of main 

results in this paper. For more information, we refer to the 

references [1, 3, 4, 5, 6]. Here, the notation 𝑓′ denoted for 

the gradient vector ∇𝑓 of function f . 

A continuously differentiable function 𝑓 is convex in ℝ𝑛 

if and only if 𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩, ∀𝑥, 𝑦 ∈ ℝ𝑛. 

A function 𝑓 is Lipschitz continuously differentiable if 

and only if there exists a real number 𝐿 > 0 such that 

 ‖∇𝑓(𝑥)−∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ ℝ𝑛. 

If it is the case, 𝐿 is called a Lipschitz constant. 

Theorem 2.1 ([Theorem 2.1.5, 1]) If 𝑓 ∈ 𝐹𝐿
1,1(ℝ𝑛), 

then ∀𝑥, 𝑦 ∈ ℝ𝑛, 

0 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩ ≤
𝐿

2
‖𝑥 − 𝑦‖2     (2) 

𝑓(𝑥) + ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩ +
1

2𝐿
‖𝑓′(𝑥) − 𝑓′(𝑦)‖2 ≤ 𝑓(𝑦) (3) 

The schemes and efficiency bounds of optimal methods 

are based on the notion of estimate sequence. 

Definition 2.1 A pair of sequences {𝜙𝑘(𝑥)}𝑘=0
∞  and 

{𝜆𝑘}𝑘=0
∞ , 𝜆𝑘 ≥ 0 is called an estimate sequence of function 

𝑓(𝑥) if 𝜆𝑘 → 0 and for any 𝑥 ∈ ℝ𝑛 and all 𝑘 ≥ 0 we have 

𝜙𝑘(𝑥) ≤ (1 − 𝜆𝑘)𝑓(𝑥) + 𝜆𝑘𝜙0(𝑥).    (4) 

The next statement explains why these objects could be 

useful. 

Lemma 2.1 ([Lemma 2.2.1, 1]) If for some sequence 
{𝑥𝑘}, we have 

𝑓(𝑥𝑘) ≤ 𝜙𝑘
∗ ≡ 𝑚𝑖𝑛

𝑥∈ℝ𝑛
𝜙𝑘(𝑥),       (5) 

then 𝑓(𝑥𝑘) − 𝑓∗ ≤ 𝜆𝑘[𝜙0(𝑥∗) − 𝑓∗]. 

Thus, for any sequence {𝑥𝑘} satisfying (5) we can 

derive its rate of convergence directly from the rate of 

convergence of sequence {𝜆𝑘}. The next lemma gives us 

one choice of estimate sequences. 

Lemma 2.2 ([Lemma 2.2.2, 1]) Assume that 

1. 𝑓 ∈ ℱ𝐿
1,1(ℝ𝑛), 

2. 𝜙0(𝑥) is an arbitrary function on ℝ𝑛 , 

3. {𝑦𝑘}𝑘=0
∞  is an arbitrary sequence in ℝ𝑛, 

4. {𝛼𝑘}𝑘=0
∞ : 𝛼𝑘 ∈ (0,1), ∑∞

𝑘=0 𝛼𝑘 = ∞, 

5. 𝜆0 = 1. 

Then, the pair of sequences {𝜙𝑘(𝑥)}𝑘=0
∞ , {𝜆𝑘}𝑘=0

∞  

recursively defined by: 

𝜆𝑘+1 = (1 − 𝛼𝑘)𝜆𝑘,                (6) 

 𝜙𝑘+1(𝑥) = (1 − 𝛼𝑘)𝜙𝑘(𝑥) + 𝛼𝑘[𝑓(𝑦𝑘) 

+〈𝑓′(𝑦𝑘), 𝑥 − 𝑦𝑘〉]     (7) 

is an estimate sequence. 
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3. Optimal algorithm with nonconstant step-sizes 

Lemma 2.2 provides us with some rules for updating 

the estimate sequence. Now we have two control 

sequences, which can help to ensure inequality (5). Note 

that we are also free in the choice of initial function 𝜙0(𝑥). 

In [1], Nesterov has used the quadratic function for 𝜙0(𝑥) 

and the sequence {𝛼𝑘} is chosen corresponding to the 

constant step-size ℎ𝑘 =
1

𝐿
. In this section, we propose a new 

optimal method. We still choose 𝜙0(𝑥) as in [1], but the 

sequence {𝛼𝑘} is chosen corresponding to general step-size 

ℎ𝑘 . Thus, our method is a generalization of Nesterov’s 

algorithm, the algorithm (2.2.6) in [1] and is presented in 

the following theorem. 

Theorem 3.1 Let 𝑥0 = 𝑣0 ∈ ℝ𝑛 , 𝛾0 > 0 and 

𝜙0(𝑥) = 𝑓(𝑥0) +
𝛾0

2
∥ 𝑥 − 𝑣0 ∥2. 

Assume that the sequence {𝜙𝑘(𝑥)} is defined by (7), 

where the sequences {𝛼𝑘}, {𝑦𝑘} are defined as follows: 

𝛼𝑘 ∈ (0,1) 𝑎𝑛𝑑 𝛽𝑘𝐿𝛼𝑘
2 = (1 − 𝛼𝑘)𝛾𝑘.    (8) 

𝛾𝑘+1 = 𝛽𝑘𝐿𝛼𝑘
2,          (9) 

𝑦𝑘 = 𝛼𝑘𝑣𝑘 + (1 − 𝛼𝑘)𝑥𝑘 ,       (10) 

𝑣𝑘+1 = 𝑣𝑘 −
𝛼𝑘

𝛾𝑘+1
𝑓′(𝑦𝑘),       (11) 

ℎ𝑘 =
1

𝐿
(1 + √1 −

1

𝛽𝑘
)        (12) 

𝑥𝑘+1 = 𝑦𝑘 − ℎ𝑘𝑓′(𝑦𝑘),        (13) 

where {𝛽𝑘} with 𝛽𝑘 ≥ 1, ∀𝑘 is an arbitrary sequence in ℝ. 

Then, the function 𝜙𝑘 has the form 

𝜙𝑘(𝑥) = 𝜙𝑘
∗ +

𝛾𝑘

2
∥ 𝑥 − 𝑣𝑘 ∥2,      (14) 

Where 

𝜙𝑘+1
∗ = (1 − 𝛼𝑘)𝜙𝑘

∗ + 𝛼𝑘𝑓(𝑦𝑘) 

−
𝛼𝑘

2

2𝛾𝑘+1

∥ 𝑓′(𝑦𝑘) ∥2 + 𝛼𝑘〈𝑓′(𝑦𝑘), 𝑣𝑘 − 𝑦𝑘〉 

and the sequence {𝑥𝑘} satisfies 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) for all 𝑘 ∈ ℕ. 

Proof. Note that 𝜙′′0(𝑥) = 𝛾0𝐼𝑛. Let us prove that 

𝜙𝑘′′(𝑥) = 𝛾𝑘𝐼𝑛 for all 𝑘 ≥ 0. Indeed, if that is true for 

some 𝑘, then 

𝜙𝑘+1′′(𝑥) = (1 − 𝛼𝑘)𝜙𝑘′′(𝑥) = (1 − 𝛼𝑘)𝛾𝑘𝐼𝑛 ≡ 𝛾𝑘+1𝐼𝑛 . 

This justifies the canonical form (14) of functions 

𝜙𝑘(𝑥). Further, 

𝜙𝑘+1(𝑥)  =  (1 − 𝛼𝑘) (𝜙𝑘
∗ +

𝛾𝑘

2
∥ 𝑥 − 𝑣𝑘 ∥2) 

+𝛼𝑘[𝑓(𝑦𝑘) + 〈𝑓′(𝑦𝑘), 𝑥 − 𝑦𝑘〉]. 

Therefore the equation 𝜙𝑘+1′(𝑥) = 0, which is the first-order 

optimality condition for function 𝜙𝑘+1(𝑥), looks as follows: 

 (1 − 𝛼𝑘)𝛾𝑘(𝑥 − 𝑣𝑘) + 𝛼𝑘𝑓′(𝑦𝑘) = 0. 

From this, we get the equation for the point 𝑣𝑘+1, which is 

the minimum of the function 𝜙𝑘+1(𝑥). 

Finally, let us compute 𝜙𝑘+1
∗ . In view of the recursion 

rule for the sequence {𝜙𝑘(𝑥)}, we have 

𝜙𝑘+1
∗ +

𝛾𝑘+1

2
∥ 𝑦𝑘 − 𝑣𝑘+1 ∥2= 𝜙𝑘+1(𝑦𝑘) 

= (1 − 𝛼𝑘)(𝜙𝑘
∗ +

𝛾𝑘

2
∥ 𝑦𝑘 − 𝑣𝑘 ∥2) + 𝛼𝑘𝑓(𝑦𝑘). (15) 

Note that in view of the relation for 𝑣𝑘+1, 

𝑣𝑘+1 − 𝑦𝑘 = (𝑣𝑘 − 𝑦𝑘) −
𝛼𝑘

𝛾𝑘+1
𝑓′(𝑦𝑘). 

Therefore 
𝛾𝑘+1

2
∥ 𝑣𝑘+1 − 𝑦𝑘 ∥2=  

𝛾𝑘+1

2
∥ 𝑣𝑘 − 𝑦𝑘 ∥2 

   −𝛼𝑘〈𝑓′(𝑦𝑘), 𝑣𝑘 − 𝑦𝑘〉 +
𝛼𝑘

2

𝛾𝑘+1
∥ 𝑓′(𝑦𝑘) ∥2. 

It remains to substitute this relation into (15). We now 

prove 𝜙𝑛
∗ ≥ 𝑓(𝑥𝑛) for all 𝑛 ∈ ℕ by induction method. At 

𝑘 = 0, we have 𝜙0(𝑥) = 𝑓(𝑥0) +
𝛾0

2
‖𝑥 − 𝑣0‖2. So, 

𝑓(𝑥0) = 𝜙0
∗. Suppose that 𝜙𝑛

∗ ≥ 𝑓(𝑥𝑛) is true at 𝑛 = 𝑘, we 

need to prove that the inequality is still true at 𝑛 = 𝑘 + 1. 

𝜙𝑘+1
∗ ≥ (1 − 𝛼𝑘)𝑓(𝑥𝑘) + 𝛼𝑘𝑓(𝑦𝑘) −

𝛼𝑘
2

2𝛾𝑘+1

‖𝑓′(𝑦𝑘)‖2

+
𝛼𝑘(1 − 𝛼𝑘)𝛾𝑘

𝛾𝑘+1

⟨𝑓′(𝑦𝑘), 𝑣𝑘 − 𝑦𝑘⟩ 

≥ (1 − 𝛼𝑘)[𝑓(𝑦𝑘) + ⟨𝑓′(𝑦𝑘), 𝑥𝑘 − 𝑦𝑘⟩] + 𝛼𝑘𝑓(𝑦𝑘) 

−
𝛼𝑘

2

2𝛾𝑘+1

‖𝑓′(𝑦𝑘)‖2 + 𝛼𝑘⟨𝑓′(𝑦𝑘), 𝑣𝑘 − 𝑦𝑘⟩ 

= 𝑓(𝑦𝑘) −
𝛼𝑘

2

2𝛾𝑘+1

‖𝑓′(𝑦𝑘)‖2 

+(1 − 𝛼𝑘) ⟨𝑓′(𝑦𝑘),
𝛼𝑘𝛾𝑘

𝛾𝑘+1

(𝑣𝑘 − 𝑦𝑘) + 𝑥𝑘 − 𝑦𝑘⟩. 

By (10), we have 
𝛼𝑘𝛾𝑘

𝛾𝑘+1
(𝑣𝑘 − 𝑦𝑘) + 𝑥𝑘 − 𝑦𝑘 = 0 and thus 

(1 − 𝛼𝑘) ⟨𝑓′(𝑦𝑘),
𝛼𝑘𝛾𝑘

𝛾𝑘+1
(𝑣𝑘 − 𝑦𝑘) + 𝑥𝑘 − 𝑦𝑘⟩ = 0. 

Therefore, we have 𝜙𝑘+1
∗ ≥ 𝑓(𝑦𝑘) −

𝛼𝑘
2

2𝛾𝑘+1
‖𝑓′(𝑦𝑘)‖2. 

To finish the proof, we need to point out that 𝑓(𝑦𝑘) −
𝛼𝑘

2

2𝛾𝑘+1
‖𝑓′(𝑦𝑘)‖2 ≥ 𝑓(𝑥𝑘+1). Indeed, from Theorem 2.1, we 

have: 0 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩ ≤
𝐿

2
‖𝑥 − 𝑦‖2. 

Replacing 𝑥 by 𝑦𝑘 , 𝑦 by 𝑥𝑘+1, we obtain 𝑓(𝑥𝑘+1) ≤
𝐿

2
‖𝑦𝑘 − 𝑥𝑘+1‖2 + 𝑓(𝑦𝑘) + ⟨𝑓′(𝑦𝑘), 𝑥𝑘+1 − 𝑦𝑘⟩. Inserting 

𝑥𝑘+1 − 𝑦𝑘 = −ℎ𝑘𝑓′(𝑦𝑘) into above inequality, we have 

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑦𝑘) +
𝐿

2
‖ℎ𝑘𝑓′(𝑦𝑘)‖2

+ ⟨𝑓′(𝑦𝑘), −ℎ𝑘𝑓′(𝑦𝑘)⟩ 

⇔ 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑦𝑘) +
𝐿

2
‖ℎ𝑘𝑓′(𝑦𝑘)‖2 − ℎ𝑘‖𝑓′(𝑦𝑘)‖2 

⇔ 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑦𝑘) − (ℎ𝑘 −
𝐿

2
ℎ𝑘

2) ‖𝑓′(𝑦𝑘)‖2. 

By (12), we have 
𝛼𝑘

2

2𝛾𝑘+1
= ℎ𝑘 −

𝐿

2
ℎ𝑘

2 . 

Based on Theorem 3.1, we can present the optimal method 

with nonconstant step-sizes as the following algorithm. 

Algorithm 3.1. 

(3) Initial guess: Choose 𝑥0 ∈ ℝ𝑛 and 𝛾0 > 0. 

Set 𝑣0 = 𝑥0. 

(2) For 𝑘 = 0,1,2, … 

1. Compute 𝛼𝑘 ∈ (0,1) from equation 

𝛽𝑘𝐿𝛼𝑘
2 = (1 − 𝛼𝑘)𝛾𝑘. 
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2. Compute 𝛾𝑘+1 = 𝛽𝑘𝐿𝛼𝑘
2. 

3. Compute 𝑦𝑘 = 𝛼𝑘𝑣𝑘 + (1 − 𝛼𝑘)𝑥𝑘 . 

4. Compute 𝑓(𝑦𝑘) and 𝑓′(𝑦𝑘). 

5. Compute 𝑥𝑘+1 = 𝑦𝑘 − ℎ𝑘𝑓′(𝑦𝑘) with 

ℎ𝑘 =
1

𝐿
(1 + √1 −

1

𝛽𝑘

). 

6. Compute 𝑣𝑘+1 = 𝑣𝑘 −
𝛼𝑘

𝛾𝑘+1
𝑓′(𝑦𝑘). 

(3) Output: {𝑥𝑘}. 

Theorem 3.2 Algorithm 3.1 generates the sequence 

{𝑥𝑘}𝑘=0
∞  that satisfies 

𝑓(𝑥𝑘) − 𝑓(𝑥∗) ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓(𝑥∗) +
𝛾0

2
‖𝑥0 − 𝑥∗‖2] 

với 𝜆0 = 1 và 𝜆𝑘 = ∏𝑘−1
𝑖=0 (1 − 𝛼𝑖). 

Proof. Choose 𝜙0(𝑥) = 𝑓(𝑥0) +
𝛾0

2
‖𝑥 − 𝑣0‖2 and 

 𝜙0(𝑥) = 𝜙0
∗ +

𝛾0

2
‖𝑥 − 𝑣0‖2. 

Therefore, 𝑓(𝑥0) = 𝜙0
∗. Since 𝑓(𝑥𝑘) ≤ 𝜙𝑘

∗ , ∀𝑘 > 0 

(see the proof of Lemma 2.1), we have 

𝑓(𝑥𝑘) − 𝑓∗ ≤ 𝜆𝑘[𝜙0(𝑥∗) − 𝑓∗] = 𝜆𝑘[𝑓(𝑥0) − 𝑓∗] 

≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓∗ +
𝛾0

2
‖𝑥0 − 𝑥∗‖2] 

Therefore, the theorem is proved. 

To estimate the convergnce rate of Algorithm 3.1, we 

need the following result. 

Lemma 3.1 With the estimate sequence is generated by 

Algorithm 3.1, we have 

𝜆𝑘 ≤
4𝛽𝑘𝐿

(2√𝐿 + 𝑘√
𝛾0

𝛽𝑘
)

2 

if the sequence {𝛽𝑘} is increasing or 

𝜆𝑘 ≤
4β̅𝐿

(2√𝐿 + 𝑘√
𝛾0

β̅
)

2 

if the sequence {𝛽𝑘} is bounded from above by β̅. 

Proof. We have 𝛾𝑘 ≥ 0 for all 𝑘. We will prove that 

𝛾𝑘 ≥ 𝛾0𝜆𝑘 by induction method. At 𝑘 = 0, we have  

𝛾0 = 𝛾0𝜆0. Thus, the iniquality is true with 𝑘 = 0. Assume 

that the inequality is true with 𝑘 = 𝑚, i.e., 𝛾𝑚 ≥ 𝛾0𝜆𝑚. Then, 

 𝛾𝑚+1 = (1 − 𝛼𝑚)𝛾𝑚 ≥ (1 − 𝛼𝑚)𝛾0𝜆𝑚 = 𝛾0𝜆𝑚+1. 

Therefore, we obtain 𝛽𝑘𝐿𝛼𝑘
2 = 𝛾𝑘+1 ≥ 𝛾0𝜆𝑘+1 for all 

𝑘 ∈ ℕ. Let 𝑎𝑘 =
1

√𝜆𝑘
. Since {𝜆𝑘} is a decreasing sequence, 

we have 

 𝑎𝑘+1 − 𝑎𝑘 =
1

√𝜆𝑘+1
−

1

√𝜆𝑘
=

√𝜆𝑘−√𝜆𝑘+1

√𝜆𝑘√𝜆𝑘+1
 

=
𝜆𝑘 − 𝜆𝑘+1

√𝜆𝑘√𝜆𝑘+1(√𝜆𝑘 + √𝜆𝑘+1)
 

    ≥
𝜆𝑘−𝜆𝑘+1

2𝜆𝑘√𝜆𝑘+1
=

𝛼𝑘𝜆𝑘

2𝜆𝑘√𝜆𝑘+1
=

𝛼𝑘

2√𝜆𝑘+1
. 

Using 𝛽𝑘𝐿𝛼𝑘
2 = 𝛾𝑘+1 ≥ 𝛾0𝜆𝑘+1, we have 

 𝑎𝑘+1 − 𝑎𝑘 ≥
𝛼𝑘

2√𝜆𝑘+1
≥

√
𝛾0𝜆𝑘+1

𝛽𝑘𝐿

2√𝜆𝑘+1
=

1

2
√

𝛾0

𝛽𝑘𝐿
. 

Thus 𝑎𝑘 ≥ 1 +
𝑘

2
√

𝛾0

𝛽𝑘𝐿
 if the sequence {𝛽𝑘} is 

increasing or 𝑎𝑘 ≥ 1 +
𝑘

2
√

𝛾0

β̅𝐿
 if the sequence {𝛽𝑘} is 

bounded from above by β̅. Thus, the lemma is proved. 

Theorem 3.3 If 𝛾0 > 0 and the sequence {𝛽𝑘} with 

𝛽𝑘 ≥ 1 for all 𝑘 is bounded from above by 𝛽̅, then 

Algorithm 3.1 generates the sequence {𝑥𝑘}𝑘=0
∞  that satisfies 

𝑓(𝑥𝑘) − 𝑓∗ ≤
2(𝐿 + 𝛾0)𝛽̅𝐿

(2√𝐿 + 𝑘√
𝛾0

𝛽̅
)

2
‖𝑥0 − 𝑥∗‖2. 

Proof. By Theorem 2.1, Theorem 3.1 and noting that 

𝑓′(𝑥∗) = 0, we have 

𝑓(𝑥𝑘) − 𝑓∗ ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓∗ +
𝛾0

2
‖𝑥0 − 𝑥∗‖2] 

   = 𝜆𝑘 [
𝑓(𝑥0) − 𝑓(𝑥∗) − 〈𝑓′(𝑥∗), 𝑥0 − 𝑥∗〉

+
𝛾0

2
‖𝑥0 − 𝑥∗‖2 ] 

   ≤ 𝜆𝑘 [
𝐿

2
‖𝑥0 − 𝑥∗‖2 +

𝛾0

2
‖𝑥0 − 𝑥∗‖2] 

=
𝐿 + 𝛾0

2
𝜆𝑘‖𝑥0 − 𝑥∗‖2 

From Lemma 3.1, the theorem is proved. 

Remark 3.1 If 𝛽𝑘 = 1 for all 𝑘, then Algorithm 3.1 

returns to the algorithm (2.2.6), page 76, with 𝜇 = 0 in [1]. 

The advantage in Algorithm 3.1 is that we are free to choose 

the sequence {𝛽𝑘} with 𝛽𝑘 ≥ 1. As a result, the step-size ℎ𝑘 

in Step 6 has larger value than algorithm (2.2.6) in [1] 

(ℎ𝑘 =
1

𝐿
 for all 𝑘 in [1]). However, by Lemma 3.1 the 

convergence rate of Algorithm 3.1 is reduced if the sequence 

{𝛽𝑘} has too large value. For examle, if 𝛽𝑘 = 𝑘 for all 𝑘, 

then 𝜆𝑘 = 𝑂 (
1

𝑘
), which losses the o ptimal convergence rate 

of Algorithm 3.1. Lemma 3.1 and Theorem 3.3 show that the 

best convergence rate for Algorithm 3.1 is obtained when the 

sequence 𝛽𝑘 = 1 for all 𝑘. 

4. Numerical solution 

In this section we will illustrate the algorithm in this 

paper and the algorithm (2.2.6) with 𝜇 = 0 in [1]. Here, we 

apply the algorithm to find a numerical approximation to 

the solution of the integral equation: 

∫
1

0
𝑒𝑡𝑠𝑥(𝑠)𝑑𝑠 = 𝑦(𝑡), 𝑡 ∈ [0,1],    (16) 

with 𝑦(𝑡) = (exp(𝑡 + 1) − 1)/(𝑡 + 1). Note the exact 

solution of this equation is 𝑥(𝑡) = exp(𝑡). 

Approximating the integral in the right hand side by 

trapezoidal rule, we have 

∫
1

0

𝑒𝑡𝑠𝑥(𝑠)𝑑𝑠 ≈ ℎ (
1

2
𝑥(0) + ∑

𝑛−1

𝑗=1

𝑒𝑗ℎ𝑡𝑥(𝑗ℎ) +
1

2
𝑒𝑡𝑥(1)) 

with ℎ: = 1/𝑛. For 𝑡 = 𝑖ℎ, we have the following linear 

system 
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ℎ (
1

2
𝑥0 + ∑𝑛−1

𝑗=1 𝑒𝑖𝑗ℎ2
𝑥𝑗 +

1

2
𝑒𝑖ℎ𝑥𝑛) = 𝑦(𝑖ℎ),   (17) 

for 𝑖 = 0, … , 𝑛. Here, 𝑥𝑖 = 𝑥(𝑖ℎ) and 𝑦𝑖 = 𝑦(𝑖ℎ). The last 

linear system can be rewrite as 

𝐴𝑥 = 𝑏.            (18) 

Since the problem of solving integral equation is ill-

posed, the linear system is ill-conditioned [8, 9]. Using 

Tikhonov regularization, the regularized approximate 

solution to (18) is the solution of the minimization problem: 

Min
𝑥∈ℝ𝑛+1

𝑓(𝑥) =
1

2
∥ 𝐴𝑥 − 𝑏 ∥2+ 𝛼 ∥ 𝑥 ∥2   (19) 

where 𝐴 ∈ ℝ(𝑛+1)×(𝑛+1), 𝑥, 𝑏 ∈ ℝ𝑛+1 and 𝛼 > 0. 

It is clear that problem (19) is convex and Lipschitz 

differentiable. Thus, all conditions for the convergence of 

the algorithms are satisfied. The Lipschitz constant in this 

example is 𝐿 = λmax(𝐴𝑇𝐴) + 2𝛼. 

 

Figure 1. The Objective function 𝑓(𝑥𝑘) in Algorithm 3.1 with 

three cases of the constant sequence {𝛽𝑘} 

 

Figure 2. The exact solution and approximate ones obtained by 

Algorithm 3.1 with three cases of the constant sequence {𝛽𝑘} 

To illustrate the performance of Algorithm 3.1, we set 

𝑛 = 400, 𝛼 = 10−6. Algorithm 3.1 is applied with three 

cases: 𝛽𝑘 = 1 for all 𝑘, 𝛽𝑘 = 2 for all 𝑘 and 𝛽𝑘 = 4 for all 

𝑘. Figure 1 illustrates the behavior of objective function 

𝑓(𝑥𝑘) in three cases of Algorithm 3.1. We see that 

Algorithm 3.1 works in three cases. The algorithm 

converges fastest when 𝛽𝑘 = 1 for all 𝑘. However, it is 

hard to know when we should stop the algorithm such that 

the value of objective funcion is smallest since its values 

have violation frequently. The case of 𝛽𝑘 = 2 for all 𝑘 is a 

better choice in this case. 

Figure 2 illustrates the approximate solutions and the 

exact one. In all three cases, Algorithm 3.1 gives good 

approximation to the exact solution, except two end points, 

which is normally seen by Tikhonov regularization. 

5. Conclusion 

In this paper, we have proposed the new algorithm, 

Algorithm 3.1, for the general convex minimization 

problem and prove the optimal convergent rate of the 

algorithm. Our algorithm is a generalization of Nesterov’s 

algorithm in [1], which is allowed nonconstant step-sizes. 

Lemma 3.1 and Theorem 3.3 also show that the new 

algorithm obtain the fastest convergent rate when {𝛽𝑘} is 

the constant sequence and equal to one. Thus, it raises an 

new question that are there other updates for parameters in 

Algorithm 3.1 such that it converges faster than Nesterov’s 

algorithm? It is still an open question and motivates us to 

study in the future. 
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