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Abstract - We theoretically investigate in this work the interplay 

between the intrinsic spin-orbit coupling (SOC) and electron-

electron interaction on the magnetism in the graphene honeycomb 

lattice. Particularly, a phase diagram is here explored and studied 

by Kane-Mele-Hubbard (KMH) model combined with mean-

field theory and self-consistent algorithm. Results show that the 

graphene undergoes a phase transition from the gapless semi-

metal to topological band insulator (TBI) at a finite SOC and 

weak Coulomb energy U, and another transition from the TBI to 

antiferromagnetic ordered insulator at stronger Coulomb energy 

U observed as well. Moreover, our calculations also point out the 

prior developing orientation of magnetic moments in the in-plane 

direction driven by the SOC rather than that in the out-of-plane 

direction without the SOC. 

Key words - Graphene; Kane-Mele-Hubbard (KMH) model; 

mean-field theory; phase diagram; magnetism. 

1. Introduction 

Together with the progress in fabricating technology, 

two-dimensional graphene and its derivatives have 

opened a new era by the presence in many domains from 

industry to human living on account of its intriguing 

properties. Graphene is constructed by sp2 hybridized 

carbon atoms arranged in the honeycomb lattice. The 

graphene possesses a unique electronic band structure, 

and can be thus described by the Dirac equation for the 

massless fermions at low energy [1]. Its impressive 

properties should be listed such as the absence of 

backscattering originated from the conservation of 

pseudospin, high thermal conductivity and mobility, large 

surface area, good biocompatibility, non-toxicity... [1 - 

3]. Despite the absence of d and f electrons, a magnetic 

state in the graphene can be triggered by introducing 

vacancies, dopants, edge structures or hydrogenation, 

therefore the graphene is one of excellent candidates in 

spintronics and spin caloritronics [4, 5]. Unlike the non-

magnetic graphene bulk, graphene nanostructures 

manifest an exotic magnetism with the ground-state 

antiferromagnetic order [6 - 8]. Theoretically, the 

magnetic state can be found in the graphene bulk as 

introducing a strong Coulomb energy using the Hubbard 

model [9]. Both the theory and experiment have 

confirmed the spin polarization localized at the zigzag 

edge of graphene nanoribbons, and a transition from the 

antiferromagnetism at ground-state to the ferromagnetism 

at excited states have been also observed [4, 10]. These 

results are due to the electronic states localized at the 

zigzag edges which do not exist in the armchair edges [4].

As a consequence, no spin polarization is expected for the 

armchair edges. Most interestingly, it can be tuned not 

only the electronic band structure but also magnetization 

of graphene by size and geometry [6, 11]. In addition, 

strain, doping and defects such as vacancies also are 

factors resulting in the modification of magnetic 

properties in graphene nanostructure [12 - 14]. 

Noticeably, spin-orbit interaction giving rise to a 

nontrivial topological band insulator has recently attracted 

much attention. A topological insulator is characterized by 

opening a bulk gap, the edge helical states and the time 

reversal symmetry [15]. Kane-Mele model [16] was 

proposed in order to account for the SOC for the 

honeycomb lattice based on earlier work of Haldane [17]. 

In the presence of electron-electron interaction, KMH 

model has been studied using Quantum Monte Carlo 

(QMC), Mean-field theory (MFT), Variational cluster 

approach [15, 18 - 20]. Investigations have indicated the 

unstableness of topological insulating phase to the 

electron-electron interaction. The SOC also contributes to 

suppress the edge magnetism in the zigzag graphene 

nanoribbon [21]. Leong et al., [22] revealed the 

enhancement of localized spin moments near a single 

vacancy under affecting the SOC. The change of 

topological edge states and spontaneous magnetic moment 

properties of zigzag graphene nanoribbons were reported 

recently [23]. Furthermore, so far, the graphene 

honeycomb lattice has become a fundamental research 

subject in condensed matter physics to exploit novel 

features in the 2D materials and hence enhance the further 

possibility of application in nano-devices. 

In this work, we investigate and numerically calculate 

the interplay between the SOC and electron-electron 

interactions on the magnetic properties of the graphene 

honeycomb lattice using the KMH model within the 

Hartree - Fock approximation. The purposes of this paper 

are the description of the Hartree -Fock approximation for 

the KMH model and the discussion of the phase diagram 

when invoking both Hartree and Fock terms which have 

yet to report. 

2. Methodology 

Given problem in this study is addressed by the KMH 

model combined with the Hartree - Fock approximation. 

The KMH Hamiltonian is constructed by three terms as 

follows; 
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 𝐻 = −𝑡 ∑ (𝑎𝑖𝜎
+ 𝑏𝑗𝜎 + 𝑏𝑗𝜎

+ 𝑎𝑖𝜎)〈𝑖,𝑗〉  

+𝑖𝜆 ∑ ∑ 𝜈𝑖𝑗𝜎𝜎𝜎′
𝑧 (𝑎𝑖𝜎

+ 𝑎𝑗𝜎′ + 𝑏𝑖𝜎
+ 𝑏𝑗𝜎′)

𝜎𝜎′〈〈𝑖,𝑗〉〉

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓.

𝑖

 

(1) 

Where 𝑎𝑖𝜎
+  and 𝑏𝑖𝜎 are creation and annihilation operators 

of the A and B sublattices for spin at site i, respectively, 

because the graphene has bipartite lattice structure. Each 

unit cell consists of two carbon atoms belonging to two 

different sublattices A and B. The first term describes the 

nearest hoping tight-binding with the nearest-neighbor 

hopping amplitude t (set up = 1 in our calculation). The 

second term represents the spin-orbit interaction in which 

𝜆 and 𝜎𝜎𝜎′
𝑧  are SOC amplitude and Pauli matrix, 

respectively, and 𝜈𝑖𝑗 is related to the orientation of sites 

(giving “+” for clockwise and “-” for anticlockwise). The 

final term, well-known as Hubbard one (HU), introduces 

the electron-electron interaction with Coulomb energy U 

and spin-resolved density operators at site i for spin 𝜎, 

𝑛𝑖𝜎 = 𝑎𝑖𝜎
+ 𝑎𝑖𝜎  (𝑛𝑖𝜎 = 𝑏𝑖𝜎

+ 𝑏𝑖𝜎). 

The MFT was next applied to treat the electron-electron 

interaction in the KMH Hamiltonian. In particular, the 

spin-resolved density operators can be expressed as 

follows: 

   𝑛𝑖↑ = 〈𝑛𝑖↑〉 + (𝑛𝑖↑ − 〈𝑛𝑖↑〉), 

  𝑛𝑖↓ = 〈𝑛𝑖↓〉 + (𝑛𝑖↓ − 〈𝑛𝑖↓〉).         (2) 

After several mathematical calculations and 

concurrently ignoring a very small deviation, one gets 

𝑛𝑖↑𝑛𝑖↓ = 〈𝑛𝑖↓〉𝑛𝑖↑ + 〈𝑛𝑖↑〉𝑛𝑖↓ − 〈𝑛𝑖↓〉〈𝑛𝑖↑〉.    (3) 

Equation (3) shows that the spin-up electrons at site i 

interact with the average density of spin-down electrons 

and the spin-down electrons at site i interact with the 

average density of spin-up electrons. As a consequence, the 

initial many-body problem was reduced to the single -

particle problem. However, with such mean-field 

approximation, there is only Hartree term invoked, 

therefore only the out-of-plane magnetic moments are 

calculated. In the current work, we take consideration both 

the in-plane and out-of-plane spin components. In this 

regard, the Fock term should be thus included along with 

the Hartree term, then Eq. (3) is rewritten as follows; 

 𝑛𝑖↑𝑛𝑖↓ = 〈𝑛𝑖↓〉𝑛𝑖↑ + 〈𝑛𝑖↑〉𝑛𝑖↓ − 〈𝑛𝑖↓〉〈𝑛𝑖↑〉 

     −〈𝑆𝑖
−〉𝑆𝑖

+ − 〈𝑆𝑖
+〉𝑆𝑖

− + 〈𝑆𝑖
+〉〈𝑆𝑖

−〉,       (4) 

with 𝑆𝑖
+ =  𝑎𝑖↑

+ 𝑎𝑖↓ (𝑆𝑖
+ =  𝑏𝑖↑

+𝑏𝑖↓) and 𝑆𝑖
− =  𝑎𝑖↓

+ 𝑎𝑖↑  

(𝑆𝑖
− =  𝑏𝑖↓

+𝑏𝑖↑). 

By using the Fourier transformations, Eq. (1) is 

rewritten in the k-space; 

 𝐻𝐻𝐹(𝑘) =  ∑ (𝑎𝑘𝜎
+ 𝑏𝑘𝜎(−𝑡𝛾𝑘) + 𝑏𝑘𝜎

+ 𝑎𝑘𝜎(−𝑡𝛾𝑘
∗))𝑘𝜎   

   + ∑ 𝜆𝑘(𝑎𝑘↑
+ 𝑎𝑘↑ − 𝑎𝑘↓

+ 𝑎𝑘↓ − 𝑏𝑘↑
+ 𝑏𝑘↑ + 𝑏𝑘↓

+ 𝑏𝑘↓)𝑘  

   +
𝑈

𝑁
∑ (〈𝑛𝑘↓〉𝑛𝑘↑ + 〈𝑛𝑘↑〉𝑛𝑘↓ − 〈𝑛𝑘↓〉〈𝑛𝑘↑〉𝑘  

 −〈𝑆𝑖
−〉𝑆𝑖

+ − 〈𝑆𝑖
+〉𝑆𝑖

− + 〈𝑆𝑖
+〉〈𝑆𝑖

−〉).       (5) 

Where, 

  𝜆𝑘 = 2𝜆(−sin(√3𝑎𝑘𝑦) + 2cos (
3

2
𝑎𝑘𝑥) sin (

√3

2
𝑎𝑘𝑦), 

  𝛾𝑘 = ∑ 𝑒−𝑖𝑘𝛿𝑛3
𝑛=1 , 

with 𝛿1 = (
𝑎

2
,

𝑎√3

2
) , 𝛿2 = (

𝑎

2
, −

𝑎√3

2
) and 𝛿3 = (−𝑎, 0). 

Here, a is the lattice constant of graphene and 𝛿𝑛  

(n = 1 - 3) are the nearest-neighbor vectors. N is the number 

of k-points. 

The self-consistent algorithm with the convergence 

condition of 10-8 was used to deal with Eq. (5). Typically, 

randomly initial values of the spin-resolved densities were 

plugged in the 𝐻𝐻𝐹(𝑘) matrix at the first step. The 

expectation values of the spin-resolved densities were 

computed from the eigenstates of 𝐻𝐻𝐹(𝑘) matrix. These 

densities were then used as the initial values for next step. 

This procedure was repeated until satisfying convergence 

condition. Accomplishing the self-consistent computation, 

the in-plane (Min) and out-of-plane (Mout) magnetic 

moments are calculated by the following equations; 

  𝑀𝑖𝑛 =
〈𝑆𝑘

+〉+〈𝑆𝑘
−〉

2
, 

  𝑀𝑜𝑢𝑡 =
〈𝑛𝑘↑〉+〈𝑛𝑘↓〉

2
            (6) 

The energy dispersion is obtained from the 

computation, 

 𝐸(𝑘) =  ±√−𝑡2𝛾𝑘
2 + (𝜆𝑘 − 𝑈𝑚)2 − 𝑈2𝑛2, 

with 𝑚 =  
1

2𝑁
∑ (〈𝑛𝑘↑〉 − 〈𝑛𝑘↓〉)𝑘  and 𝑛 =

1

𝑁
∑ 〈𝑆𝑘

±〉𝑘 . It can 

be seen that without Coulomb energy U and SOC 𝜆𝑘 the 

energy dispersion 𝐸(𝑘) reduces to the nearest-neighbor 

hopping tight-binding model with 𝐸(𝑘) =  ±𝑡𝛾𝑘 and then 

at the Dirac (or K) points, 𝐸(𝐾) = 𝐸(𝐾′) = 0. Results 

obtained will be discussed in detailed in next section. 

3. Results and discussion 

The single-particle energy spectra of graphene with 

different parameters of U and 𝜆, are shown in Figure 1. As 

well-known, the infinite graphene reveals a zero bandgap 

and non-magnetism. The conduction band and valence band 

touch each other at the Dirac points, see Figure 1 (a), in 

good agreement with previous publishes [2, 9]. Such 

behavior maintains until the Coulomb energy applied 

greater than a Mott-Hubbard point [9, 24], an 

antiferromagnetic state is triggered with a finite bandgap, as 

shown Figure 1(b). By contrary, as the SOC is considered, 

a finite gap is always observed, as shown in Figure 2. 

Conspicuously, neglecting the U and considering at the 

Dirac points, 𝐸(𝐾) = 𝐸(𝐾′)~𝜆 therefore an infinitesimal 𝜆 

can be a nonzero gap. Our numerical calculations also 

indicated that the bandgap increases linearly with the 

increase of the 𝜆 in the range from 0 to 1/3√3𝑡 and then it 

remains a constant, these results are in consistence with 

previous work [19]. However, it can be seen in Figure 2 the 

gap position shifts from the K point to the M point. 

Moreover, a bigger gap is observed as both U and 𝜆 are 

involved, typically U = 2.5t and 𝜆 = 0.1t, see Figure 1c. The 

findings also were reported by the QMC calculations [18, 

20]. The density of functional theory calculations indicated 

a small gap (~10−3 𝑚𝑒𝑉) in the graphene under the spin-

orbit coupling [25]. Remarkably, the mirror symmetry of 

the energy spectrum is still preserved under the effect of the 

interaction considered here. 
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(c) 

Figure 1. Single-particle energy of the graphene honeycomb 

lattice with different parameters; (a) U = 0t, 𝜆 = 0t;  

(b) U = 2.5t, 𝜆 = 0t; (c) U = 2.5t, 𝜆 = 0.1t 

 

Figure 2. Single-particle energy spectra (left) and density of state 

- DOS (right) for the graphene honeycomb lattice with different 𝜆 

 

Figure 3. Phase diagram of graphene honeycomb lattice using 

the KMH model within the mean-field theory 

(a)  

(b)  

Figure 4. Staggered magnetism and single-particle gap (inset) 

of graphene honeycomb lattice without (a) and with  

(b) spin-orbit coupling at 𝜆 = 0.5t 

The SOC-dependent magnetism is rendered in Figure 3. 

Within the mean-field Hartree - Fock approximation, three 

phases are observed including the gapless semi-metal (SM), 

topological band insulator (TBI) and antiferromagnetic 

insulator (AFI). More detailed, the SM state is characterized 

by zero bandgap and non-magnetization, and exists at zero 

SOC and weak Coulomb energy 𝑈. When 𝜆 = 0, a transition 

from the SM to AFI state occurs at 𝑈 ≈ 2.23𝑡, revealed 

within the MFT level, which was reported in previous 

works [9]. The evolution of staggered magnetism (Ms) and 

single-particle gap (∆𝑠𝑝) as a function of 𝑈/𝑡 in the 

graphene honeycomb lattice were calculated and plotted in 

Figure 4 (a). Both Ms and ∆𝑠𝑝 significantly increase with 

increasing 𝑈/𝑡 in the AFI phase. Another transition from 

the SM to TBI phases appears with a finite SOC 𝜆. This 

phase is characterized by the non-zero gap, as shown in the 

inset of Figure 4 (b) and Figure 3. Moreover, resembling in 

the SM phase, the spin moments in this phase do not 

polarized even though a weak Coulomb energy U is 

accounted. To achieve the antiferromagnetic state, a 

sufficiently large parameter U needs to be included, at least 

U ≈ 3t is required to turn on the spin polarization with  

𝜆 = 0.5t, as an example (Figure 4(b)). 

According to the phase diagram, the rise of the 𝜆 

magnitude results in getting larger 𝑈 in which occurs a 

transition to the AFI state. These values 𝑈 in the case 

including the SOC is obviously larger than that in the case 

without the SOC. Therefore, this result may cause by the 

presence of the nonzero bandgap. Most importantly, our 

calculation shows that the spin-orbit interaction suppresses 

the parallel orientation of magnetic moments to the z axis, 

Mout = 0 and it is prior to the development of xy-plane 

magnetic moments, Min ≠ 0. For more clearly, one can see 

in Figure 4(b), the Mout (red squares) is completely 
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quenched, while the Min (green circles) is triggered at U≈ 

3t and gets bigger as shifting to the higher Coulomb energy 

𝑈. Similarly, the single-particle gap is a linear function of 

𝑈/𝑡. Noticeably, this result has not still represented in any 

articles yet. 

 

Figure 5. Phase diagram using KMH model within  

the mean-field theory with different quantization axis choices 

Furthermore, we make a comparison between the phase 

diagram in Ref. [19] and our calculation, the results in Ref. 

[19] reproduced and plotted in Figure 5. Although both 

curves point out the increase of 𝑈/𝑡 when the 𝜆/𝑡 rises, 

there is a big gap between two values 𝑈/𝑡 at the same value 

of 𝜆/𝑡. This deviation stems from the choice of the 

quantization axis, typically, z-axis (out-of-plane direction) 

and x-axis (in-plane direction). For 𝜆 = 0, the critical point, 

Uc ≈ 2.23𝑡, does not depend on the quantization direction 

due to the conserve of the SU(2) symmetry. For 𝜆 ≠ 0, the 

fact that the developing orientation of spin moments prefer 

the in-plane direction as mentioned above and according to 

other calculations like Quantum Monte Carlo simulations 

[20, 21], a stronger electron-electron interaction is thus 

required to onset the antiferromagnetic state in the out-of-

plane direction. Therefore, the value of Uc in the  

z-direction (blue squares) was overestimated, while that in 

the remaining direction (red circles) is underestimated. 

From above points, it can be deduced that our calculations 

shown here are more accurate than those published in Ref. 

[19] within Hartree-Fock approximation. 

4. Conclusion 

This study pointed out the influence of the intrinsic 

spin-orbit coupling on the spin polarization in the graphene 

honeycomb lattice. Within the KMH model combined to 

the Hartree-Fock approximation, a phase transition from 

topological insulator phase to antiferromagnetic insulator 

phase was observed rather than that from semi-metallic to 

antiferromagnetic phase without including the SOC. The 

computation results also elucidated the prior to the in-plane 

magnetic moment orientation in the presence of the SOC 

at the mean-field approximation. Furthermore away, the 

findings in this work contribute to further fundamental 

understanding in the 2D researching domain. 
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