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On The Optimization of Weighted Sum Rate
for Mimo Broascast Channels

Vien Nguyen-Duy-Nhat∗, Mai T. P. Le, Hung Nguyen-Le

Abstract—In this paper, we propose a novel algorithm to optimize the weighted total system rate (WSR) for a broadcast
communication system using multiple input-multiple output (MIMO) antenna technology based on the Harris Hawking
Optimization (HHO) algorithm, called Algorithm 1, using the Minimum Mean Square Error (MMSE) filter at the mobile stations
(MS). In addition, we also developed Algorithm 2 from Algorithm 1 to overcome the disadvantages of applying the traditional
HHO algorithm to the MIMO system. Numerical results have been used to demonstrate the outperformance of the proposed
algorithm, comparing with existing methods such as Block Diagonalization (BD) combined with Waterfilling (WF) and the
Particle Swarm Optimization (PSO) method for any signal-to-noise ratio (SNR) value.

Index Terms—Harris Hawking Optimization (HHO); weighted sum rate (WSR); Broadcast MIMO; Particle Swarm Optimization
(PSO); Minimum Mean Square Error (MMSE).
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1. Introduction

IN addition to the ability to support extremely
high data rates and capacity, broadcasting

communications (BC) systems are anticipated to
be heavily exploited for emerging communication
models such as vehicle transport (V2X) owing to the
system scalability with low latency [1]. Moreover, with
the advantage of providing high reliability, low latency,
BC system is becoming more and more important in
the applications relying on Ultra- reliable and low-
latency communication (URLLC), tactile Internet and
Internet of Things (IoT), for e.g. in automated traffic,
industrial control, and virtual reality [2], [3]. To meet
these requirements, an indispensable technology is
the multiple input multiple output antenna (MIMO)
technology with the potential to significantly improve
the spectrum efficiency and energy efficiency [4], [5]. In
particular, MIMO techniques have been widely adopted
in next-generation broadcast standards, including
digital video broadcasting. next generation handset
(DVB-NGH) [6] and Advanced Television System
Association (ATSC) 3.0 [7]. Therefore, recent research
works have been investigated aiming to improve
spectrum efficiency (SE) as well as weighted sum
rate (WSR) for a multi-user MIMO broadcast network
(BC-MIMO).

In this paper, we study an important scenario
of a downlink BC system, in which a base station
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(BS) equipped with multiple antennas sends different
information streams to multiple mobile stations (MS),
assuming that each MS is equipped with multiple
antennas. Compared with classical point-to-point
MIMO systems, the greatest challenge of a multi-user
downlink BC system is how to eliminate co-channel
interference at the MS.

In order to solve the problem of reducing co-channel
interference and improving data transmission rate in
the downlink multi-user BC-MIMO wireless network,
a number of linear pre-coding algorithms have been
proposed in recent studies such as: Dirty Paper Coding
(DPC) [8-9], Block Diagonalization ( BD) [10] or Particle
Swarm Optimization (PSO) [11]. Although DPC has
been proven to be the optimal method for multi-user
BC-MIMO systems, this algorithm is very complex to
implement in practice. On the other hand, the BD
scheme combined with the classical Waterfilling (WF)
algorithm [12] has been shown by the authors in [10]
to be able to achieve suboptimal performance with
lower complexity. Basically, BD is developed based on
the Zero Forcing (ZF) precoding method, where the
precoding vectors are designed to eliminate interference
between users. Therefore, BD allows to increase the per
MS rate and total rate by combining the advantages
of space multiplexing and multi-user MIMO gain.
However, for effective noise suppression, a constraint
of the BD scheme is that the number of transmit
antennas at the BS must be greater than the total number
of receive antennas of all MSs [13]. This makes BD
inapplicable to systems with many MSs or with BSs
having a finite number of antennas. To maximize the
sum rate of a BC-MIMO system, authors in [11] have
applied the swarm optimization algorithm (PSO) for
the optimization sum rate problem using the weighted
sum rate (WSR). In particular, the PSO algorithm is
used to find the precoding matrix at the BS while using
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the linear minimum mean error (MMSE) method to
find the decoding matrix at the MS. Compared to the
BD approach, the PSO method is more favorable in
practice since it removes the constraint on the number
BS antennas while improving the system performance.

Unlike the previous approaches, in this paper,
we propose a new algorithm for solving the sum
rate optimization problem of BC-MIMO system based
on the advanced Harris Hawks Optimization (HHO)
algorithm [14]. Since it first introduced by Heidari et
al. [13], HHO has garnered a lot of attention from
researchers due to its flexible structure and significant
improved performance. The title of the HHO method
originates from the algorithmic nature, where the idea
of the algorithm is similar to the Harris hawk’s chasing
style in the wild with "surprise pounces" [14]. To
evaluate the effectiveness of the proposed algorithm, we
compare the performance of the BC MIMO system with
the benchmark algorithms such as the WF algorithm
combined with the BD method, called WF+BD, in [13]
and the PSO algorithm in [11] via means of simulation.
In the end, numerical results are used to demonstrate
the superior performance of the proposed HHO-based
algorithm over the existing approaches.

The rest of this paper is organized as follows.
In Section II, we introduce the multi-user downlink
BC-MIMO system model. Section III presents the
WSR maximization approaches for BC-MIMO system.
The proposed HHO-based algorithm is introduced in
Section IV. In Section V, we apply the HHO algorithm to
maximize the WSR for the proposed system. Numerical
results are given via means of simulation in Section VI.
Finally, Section VII concludes the paper.

Notations: We use the upper-case boldface letters
for matrices and lower-case boldface letters for vectors.
CN×M represents the space of N×M complex matrices
and IM indicates an M ×M identity matrix. XH , |X|,
and tr (X) stand for conjugate transpose, determinant
and trace of a matrix A, respectively. E[x] denotes the
expectation of vector x. A complex Gaussian random
vector variable z with mean µ and variance σ2 is
represented as z ∼ CN (µ, σ2).

2. System model

Consider a multi-user BC-MIMO system model as
depicted in Figure 1, where the BS is equipped with
Nt transmitting antennas and serves K MS, each is
equipped with Nr antennas. Let xk∈ Cd×1 the signal
transmitted by the BS to the k-th MS, where d is the
number of transmitted data streams and E

{
xkx

H
k

}
=

Id. Prior to the transmission, the pre-coding process is
carried out by multiplying the transmitted signal with
the precoding matrix Fk ∈ CNt×d. The BS transmit
power is then determined as:

P = E

{
‖
K∑
k=1

Fkxk‖2
}

=
K∑
k=1

tr(FkF
H
k ) ≤ Pmax, (1)

where Pmax is the maximum BS transmit power.

Fig. 1: Model of broadcast MIMO system.

Assume that the MIMO channels are flat fading,
where the channel from the BS to the k-th MS is
represented as Hk∈ CNr×Nt . Since the BS transmits all
signals to the MSs, each MS not only receives its desired
signal, but also receives interference signals from other
MSs. The received signal yk ∈ CNr×1 at the k-th MS can
be expressed as follows:

yk =
∑K
l=1 HkFlxl + nk

= HkFkxk +
∑K
l=1, l 6=kHkFlxl + nk

, (2)

where the first component (HkFkxk) is the desired
signal of the k-th MS, while the second component
(
∑K
l=1, l 6=kHkFlxl) is the inter-user interference (ISI),

and nk ∼ CN(0, σ2
kINr ) is the additive Gaussian

white noise vector with zero expectation and variance
σ2
k. In this paper, we adopt the block-fading channel

model, where the channel response is divided into
multiple coherence blocks, in which the channel
response is considered stationary in a block and vary
independently among blocks.

To recover the desired signal, the decoding operation
is performed at the k-th MS by multiplying the received
signal yk by the matrix Wk ∈ CNr×d. The recovery
signal is expressed as:

x̂k = WH
k yk

= WH
k HkFkxk +

∑K
l=1, l 6=kW

H
k HkFlxl + WH

k nk
,

(3)
where the first component in the right-hand side
(WH

k HkFkxk) is the desired signal after recovery, the
second component (

∑K
l=1, l 6=kW

H
k HkFlxl) is the ISI

after recovery, and the third component (WH
k nk) is the

noise after recovery. The achievable rate of the k-th MS
can be calculated as [8]:

Rk=log2

∣∣∣I+WH
k HkFkF

H
k H

H

k WkR
−1
zk

∣∣∣ , (4)



46 UD - JOURNAL OF SCIENCE AND TECHNOLOGY: ISSUE ON INFORMATION AND COMMUNICATIONS TECHNOLOGY, VOL. 20, NO. 6.2, 2022

where Rzk = WH
k

(∑K
l=1, l 6=kHkFlF

H
l HH

k + σ2
kI
)
Wk

is the correlation matrix of interference and noise in
formula (3). Thus, the total WSR is computed as:

R =
K∑
k=1

ωkRk, (5)

where ωk is the weighting factor, representing the power
transmission priority for the k-th MS. The important
task is how to design the pre- and post-coding matrices
to get the maximum WSR.

3. WSR maximization approaches for BC-MIMO
system

3.1. Eliminate Inter-User Interference Using Block
Diagonalization

An effective method to suppress ISI in a downlink
MIMO system is Block Diagonalization (BD) [10]. The
idea of this technique is to find the pre- and post-
coding matrices which suppress the downlink ISI and
thus maximize the channel capacity. More particular, the
pre-coding matrix is designed to locate in the null-space
of the equivalent channel matrix of the interference
channels, that is:

HkFl = 0, ∀k, ∀l 6= k. (6)

Let the equivalent channel matrix of the channels that
interfere with the k-th MS be:

Hk = [HT
1 , . . . , H

T
k−1,H

T
k+1, . . .H

T
K , ], (7)

with Hk ∈ C(K−1)Nr×Nt . Now, (6) becomes:

HkFk = 0, ∀k. (8)

This is equivalent to having the precoding matrix Fk in
the space of Hk. Let L̃k = rank (Hk) ≤ (K − 1)Nr.
Using the Singular Value Decomposition (SVD) analysis
on Hk, we obtain

Hk = UkΣkV
H
k , (9)

where Σk is a diagonal matrix whose components
on the diagonal are eigenvalues of Hk, Uk and
Vk are unitary matrices. Let Bk ∈ CNt×d be the
matrix consisting of d last columns in the matrix Vk,
then Bk is in the nullspace of Hk. This means if
Fk contains Bk, the ISI will be eliminated. Let Lk =
rank (HkBk) , the following condition is satisfied:
Lk + L̃k −Nt ≤ Lk ≤ min

{
Lk, L̃k

}
[10] , with Lk =

rank (Hk) . Since then, the condition for existence of
Fk is Nt > (K − 1)Nr. Continuing to apply SVD to
the matrix HkBk, we achieve:

HkBk = ŨkΛkṼ
H
k , (10)

where Λkis a diagonal matrix containing the
eigenvalues of HkBk. Let Dk ∈ Cd×d be the matrix
containing d first columns Ṽk. At this point, the
precoding matrix is designed as such:

Fk = BkDkP
1/2
k , (11)

where Pk = diag(pk,1, pk,2 , . . . , pk,Nr ) is the power
allocation diagonal matrix.

The post-encoding matrix Wk is designed by
selecting the first d columns of Ũk. Due to the
orthogonal nature of the matrix, the achievable rate of
the k-th MS from (4) is computed as:

Rk, BD =
d∑
i=1

log2

(
1 +

Λ2
k (i, i)

σ2
k

pk,i

)
, (12)

where Λk(i, i) is the i-th component on the diagonal of
the matrix Λk in (12).

3.2. Maximize WSR using Waterfilling technique:

To maximize the WSR, it is necessary to find the
power factors in the power distribution matrix Pk by
solving the following optimization problem:

P1 : max
pk,i

∑K
k=1

∑d
i=1 ωklog2

(
1 +

Λ2
k(i,i)

σ2
k

pk,i
)

s.t.
∑K
k=1

∑d
i=1 pk,i ≤ Pmax

.

(13)
We formulate Lagrangian function for P1 as:

L (pk,i, λ ) = −
K∑
k=1

d∑
i=1

ωklog2

(
1 +

Λ2
k (i, i)

σ2
k

pk,i

)

+ λ

(
K∑
k=1

d∑
i=1

pk,i − Pmax

)
, (14)

where λ is the Lagrangian multiplier associated with
the maximum transmit power constraint at the BS.
The optimal solutions in (14) must satisfy the set of
conditions KKT (Karush–Kuhn–Tucker) as follows:

−
ωk

Λ2
k(i,i)

σ2
k(

1+
Λ2
k

(i,i)

σ2
k

pk,i

)
ln(2)

+ λ = 0∑K
k=1

∑d
i=1 pk,i = Pmax
λ ≥ 0

. (15)

Solving the above conditions, we get the optimal power
for each MS as:

pk,i = max

(
0,

ωk
λln2

− σ2
k

Λ2
k (i, i)

)
. (16)

Finally, the optimal value λ can be found using the
classical Waterfilling algorithm.

4. Harris Hawks Optimization (HHO) Algorithm

HHO is known as a gradient-free, swarm-based
optimization algorithm with several active and time-
varying phases of exploration and mining. HHO
recently has increasingly attracted the interest of
researchers thanks to its flexible structure, high
performance and high quality results. The main idea of
the designed HHO method is based on the cooperative
behavior and chasing style of Harris hawks in the
wild known as the "surprise pounce" [14]. The HHO
algorithm can be briefly presented as follows:
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4.1. Exploration phase

In this phase, the Harris hawk randomly perches
on several locations and waits for prey (rabbit) to be
detected based on two strategies. If we consider equal
opportunities q for each strategy, we have:

X (t+ 1) =

{
X1, q ≥ 0.5
X2, q < 0.5,

(17)

where X1 = Xrand(t)− r1|Xrand(t) − 2r2X(t)|,
X2 = Xrabbit (t) − Xm (t) − r3 (LB + r4 (UB − LB)),
X (t + 1) is the position vector of the hawk in the
next iteration of t, Xrabbit (t) is the position of the
rabbit, X (t) is the vector of the current position of the
hawk, r1, r2, r3, r4 and q are random numbers in the
range (0,1) and are updated in each iteration, LB and
UB are the upper and lower bounds of the variables,
Xrand (t) is the position of the randomly selected hawk
from the current swarm and Xm is the average position
of the present hawks

Xm(t) =
1

N

N∑
i=1

Xi(t), (18)

where Xi(t) is the position of the i-th hawk in the
iteration t and N represents the total number of hawks
in the swarm.

4.2. From exploration to mining

During this phase, the energy of the prey is
computed by:

E = 2E0

(
1 − t

T

)
, (19)

where T is the maximum number of iterations and E0

is the initial energy of the prey.

4.3. Mining phase

4.3.1. Soft Enclosure

This behavior is modeled as:

X (t+ 1) = ∆ X (t)− E |JXrabbit (t)−X(t)| . (20)
∆X (t) = Xrabbit (t)−X (t) , (21)

where ∆X(t) is the difference between the position
vector of the prey and the current position in the
iteration t, J = 2 (1 − r5) with r5 being a
random number in the range (0,1) which represents
the magnitude of the random jump of the prey during
the escape. The values of J change randomly during
each iteration to simulate the nature of the rabbit’s
movements.

4.3.2. Hard Enclosure

During this period, the current position of the hawk
is updated as follows:

X(t+ 1) = Xrabbit(t)− E |∆X (t)| . (22)

4.3.3. Soft encirclement with surprise pounces :
To conduct a soft siege, hawks decide their next

move based on the following rule:

Y = Xrabbit(t)− E |JXrabbit (t)−X (t)| . (23)

Assume that the hawk pounces on a jaw-based bait LF
using the following rule

Z = Y + S × LF (D), (24)

where D is the size of the problem, S is a random vector
of size 1 × D and LF is a levy flight function:

LF (x) = 0.01× u×σ
|v|1/β , σ =

(
Γ(1+β)×sin(πβ2 )

Γ( 1+β
2 )×β×2

β−1
2

)1/β

,

(25)
where u, v are random values in the range (0,1), β is a
constant with the value of 1.5.

Therefore, the strategy to update the hawk’s position
during the soft encirclement phase can be implemented
by

X(t+ 1) =

{
Y if F (Y ) < F (X(t))
Z if F (Z) < F (X(t))

, (26)

with Y, Z obtained from (25)-(26), while F (.) is the
objective function of the prey.

4.3.4. Hard siege with surprise pounces :
The following rule is to be followed in hard

enclosure conditions:

X(t+ 1) =

{
Y if F (Y ) < F (X(t))
Z if F (Z) < F (X(t))

, (27)

with Y, Z obtained from (28) and (29).
To conduct a soft siege, hawks decide their next

move based on (25) with the following rules:

Y = Xrabbit(t)− E |JXrabbit (t)−Xm (t)| (28)
Z = Y + S × LF (D). (29)

5. Application of HHO in maximizing WSR in multi-
user downlink BC-MIMO system
For simplicity, we use a Wiener MMSE filter at each

MS to recover the signal:

Wk =

(
K∑
l=1

HkFlF
H
l HH

k + σ2
kINr

)−1

HkFk. (30)

To find Fk, we need to solve the following optimization
problem:

P2 : max{Fk}Kk=1

∑K
k=1 ωkRk

s.t.
∑K
k=1 tr

(
FkF

H
k

)
≤ Pmax

. (31)

P2 is a non-convex NP-hard optimization problem,
which is typically difficult to solve. In this section,
we will apply the HHO algorithm to find the optimal
solution for P2.

Let Xk = Fk be the precoding matrix to be found
using the HHO algorithm. This matrix can be computed
based on the cost function of P2, where the optimal
precoding matrix of the k-th MS is the position of the
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k-th rabbit Xrabbitk . We use the projection method [15]
to solve the optimization problem with constraint P2 by
defining the feasible region F as follows:

F =

{
Xk = {Fk}Kk=1:

K∑
k=1

tr
(
FkF

H
k

)
≤ Pmax

}
.

(32)
If the rabbit’s position Xk is not in the feasible area F ,
we project Xk into F follows:

X̂k = Π(Xk), (33)

with the projection Π(.) represented as:

Π ({Fk}
K
k=1 ) = arg min

{F̂k}
K

k=1∈F

K∑
k=1

∣∣∣F̂k − Fk

∣∣∣
F
, (34)

where {F̂k}
K

k=1is the position belonging F that is near
Xk. This is equivalent to the statement:

P3 : min{F̂k}
K

k=1

∑K
k=1 tr

((
F̂k − Fk

)(
F̂k − Fk

)H)
s.t.

∑K
k=1 tr

(
F̂kF̂

H
k

)
≤ Pmax

.

(35)
P3 is a convex optimization problem, so it can be solved
by Lagrange multiplier method. Here the Lagrangian
function is set up as follows:

L
(
{F̂k}

K

k=1, µ
)

=
K∑
k=1

tr

((
F̂k − Fk

)(
F̂k − Fk

)H)

+ µ

(
K∑
k=1

tr
(
F̂kF̂

H
k

)
− Pmax

)
,

(36)

wherein the Lagrangian multiplier µ associated with
the maximum transmit power constraint at the BS. The
optimal solution of P3 must satisfy the set of KKT
conditions as follows:

(1 + µ) F̂k − Fk = 0∑K
k=1 tr

(
F̂kF̂

H
k

)
= Pmax

µ ≥ 0

, k = 1, . . . , K. (37)

Solving (37), we get the optimal solution for P3 with:

F̂k =

√
Pmax∑K

k=1 tr (FkF′k)
Fk, k = 1, . . . , K. (38)

In summary, Algorithm 1 describes the application of
the HHO algorithm to find the optimal pre-post-coder
matrices WSR for the proposed multi-user BC-MIMO
system.

In Algorithm 1, there is total six phases: two
exploration phases and four mining phases. To find the
optimal solution F, Algorithm 1 executes randomly one
of six phases. The existence of random variables in the
exploration and mining phases reduces the convergence
rate of HHO and reduces the ability to find the global
optimal solution in the trials. Even if Algorithm 1
returns a successful result, the existence of random
variables in the steps of exploration and mining phases
can cause it to fall into the local optimization trap [16].

Algorithm 1 Apply HHO to optimize WSR for
multi-user BC-MIMO system

1: Input: N,T, Pmax, Hk, vk, ωk, where vk is the
precoding matrix computed based on BD+WF

2: Output: Precoding Matrix: W, F
3: Initialization: t = 0, Xk = vk

4: while (t < T ) do
5: Calculate Fitness1 = WSR of total hawks by (5)
6: Assign F = X
7: for each k-th hawk do
8: Update E0 and J
9: Update E using (19)

10: if |E| ≥ 1 then
11: Update Xk by (17) combining with (38)
12: else
13: if (r ≥ 0.5) then
14: if (|E| ≥ 0.5) then
15: Update Xk by (20) combining with

(38)
16: else
17: Update Xk by (22) combining with

(38)
18: end if
19: else
20: if (|E| ≥ 0.5) then
21: Update Xk by (26) combining with

(38)
22: else
23: Update Xk by (27) combining with

(38)
24: end if
25: end if
26: end if
27: end for
28: Calculate Fitness2 = WSR according to (5)
29: if Fitness2 ≥ Fitness1 then
30: Update F = X
31: end if
32: t = t+ 1
33: end while
34: Return Xrabit

35: F = Xrabit

36: Calculate W according to (30)

To control the random variables of HHO, we rely
on the Chaotic Harris hawks algorithm Optimization
(CHHO) which is suggested in [16]. In the CHHO
algorithm, 10 chaos maps are Chebyshev (CHHO1),
Circle (CHHO2), Gauss (CHHO3), Iterative (CHHO4),
Logistic (CHHO5), Piecewise (CHHO6), Sine (CHHO7),
Singer (CHHO8), Sinusoidal (CHHO9), and Tent
(CHHO10), which are incorporated into the HHO
algorithm to tune the probe mechanism instead of using
random variables.

In this work, we propose the following corrections
while applying the CHHO algorithm:

E = 2C1E0

(
1 − t

T

)
, (39)

X (t+ 1) =

{
CX1, q ≥ 0.5
CX2, q < 0.5

(40)

where CX1 = C2Xrand(t) − C3|Xrand(t) −
2C4X(t)|, CX2 = Xrabbit (t) − Xm (t) −
C5 (LB + C6 (UB − LB)), with Ci, (i = 1, ..., 5)
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being chaos maps according to one of the 10 maps
mentioned above.

As such, chaos map are applied in the exploration
phase to find the hawk locations. Meanwhile, the
mining phase still follows the original HHO algorithm.
In addition, the comparison of Fitness2 and Fitness1 to
update F is done in the “ For ” loop instead of outside
the “ For ” loop as in the original HHO algorithm. The
proposed CHHO algorithm is presented in Algorithm 2.

Algorithm 2 Applying CHHO to optimize WSR for
multi-user multi-antenna broadcast system

1: Input: N,T, Pmax,Hk,vk, ωk, where vk is the
precoding matrix in terms of BD+WF

2: Output: Pre- and Pos-Coding Matrix: W,F
3: Initialization: t = 0,Xk = vk

4: while (t < T ) do
5: Calculate Fitness1 = WSR of total hawks by (5)
6: Assign F = X
7: for each k-th hawk do
8: Create a chaos map Ci, i = 1, . . . , 5.
9: Update E0 and J

10: Update E using (39)
11: if (|E| ≥ 1) then
12: Update Xk by (40) combining with (38)
13: else
14: if (r ≥ 0.5) then
15: if (|E| ≥ 0.5) then
16: Update Xkby (20) combining with (38)
17: else
18: Update Xk by (22) combining with

(38)
19: end if
20: else
21: if (|E| ≥ 0.5) then
22: Update Xk by (26) combining with

(38)
23: else
24: Update Xk by (27) combining with

(38)
25: end if
26: end if
27: end if
28: Calculate Fitness2 = WSR according to (5)
29: if (Fitness2 > Fitness1) then
30: Update F = X
31: end if
32: end for
33: t = t+ 1
34: end while
35: Return Xrabit

36: F = Xrabit

37: Calculate W based on (30)

Complexity Analysis
We now evaluate the complexity of the proposed

algorithms via big-O analysis. Since Algorithm 1 has
three main phases, its complexity is computed as
follows:

O1 = O (N × (T + T ×D + 1)) . (41)

In particular,
• The complexity of the initialization phase is O(N).
• The complexity of updating the positions of all

hawks is O(T×N×D).

• The complexity of determining the best position is
O(T×N ).

Herein, T is the maximum number of iterations, N is
the size of the hawks, and D is the dimension of the
problem.

Theoretically, the computational complexity O2 of
Algorithm 2 is of the same magnitude as that of
Algorithm 1. Since only the control parameters are
added as chaos maps instead of generating random
values, this process does not add complexity to the
algorithm, i.e. O2 = O1.

6. Numerical Results
In this section, numerical simulation results are

provided to evaluate the performance of the proposed
HHO algorithm for the design of pre-post-processing
matrices in downlink multi-user BC-MIMO system. The
performance of the proposed method is compared with
the BD method combined with Waterfilling (BD+WF)
and the optimal method based on PSO in [11] in terms
of total WSR. The WSR results of the methods were
averaged over 500 iterations.

Simulation parameters of the system are described in
Table 1 with the two scenarios, in which Algorithm 2 is
executed using CHHO7 chaos map in both scenarios.
The channels from the BS to the MSs are complex
Gausian random variables with zero expectation and
unit variance, which are randomly generated in each
iteration. As shown in Table 1, the noise variance at each
normalized MS is equal to each other and equal to 1. The
Rayleigh channel coefficients are generated according to
a complex Gausian distribution CN (0, 1). As such, SNR
= Pmax.

TABLE 1: Simulation Parameters

Parameter Value

Scenario 1

K 2

Nr 2

Nt 4

σ2 first

ω = (ω1, . . . , ωK) (0.4, 0.6)

Scenario 2

K 3

Nr 2

Nt 6

σ2 1

ω = (ω1, . . . , ωK) (0.1, 0.2, 0.7)

Chaos Map Ci CHHO7

To compare the WSR of the proposed algorithm
based on HHO with that of the BD+WF algorithm, we
consider the downlink BC-MIMO system with respect
to Scenario 1 and Scenario 2. First, the efficiency of
Algorithm 1 and the BD+WF algorithm are compared
in terms of WSR as shown in Fig. 2.

In this figure, we see that the proposed approach
may significantly improve the total WSR compared to
the BD+WF method, especially when the number of
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MSs is limited, for e.g. K = 2 (Scenario 1). As the number
of MS increases (Scenario 2), the system performance
also increases. Moreover, the scheme BD+WF gradually
asymptotes with the system performance using HHO,
the WSR gap of the two methods becomes decreased in
the high SNR region. The reason is that at high SNR, the
system has less noise, so the BD+WF scheme approaches
the optimal solution because it can effectively remove
noise.

Fig. 2: WSR of the system using Algorithm 1 and BD+WF as a
function of SNR (dB).

Fig. 3: WSR of the system using the proposed algorithm with
Algorithm 1, 2 and PSO as a function of SNR (dB).

In Fig. 3, we compare the system performance using
the PSO method with empirical coefficients obtaining
from [11] and the proposed method. In this figure,
we see that the PSO algorithm has better performance
than Algorithm 1 in the high SNR domain. Since
Algorithm 1 has many phases, these phases are decided
by random variables, which makes it difficult for HHO
to converge, and performance comparisons (Fitness1
and Fitness2) are made outside “For” loop so it is
possible that the updated hawk position is outdated and
suboptimal. Algorithm 2 is proposed to overcome these
disadvantages of Algorithm 1, that is, applying chaotic
map to control the transition between phases and put

the update part in the “ For” loop to update the locations
more efficient.

Fig. 4: Convergence of Algorithms 1, 2 and PSO.

Fig. 4 shows the convergence of Algorithms 1, 2 and
PSO, considering the Scenario 2 with K = 3 UEs, each
UE is equipped with 2 antennas, while the number of BS
antennas transmitting is 6. As shown in the figure, we
see that the PSO algorithm reaches the convergence first
among the three schemes, however, since it falls into the
local optimal region, the saturate value remains constant
in 10 iterations. Meanwhile, Algorithm 1 has several
times that falls into local optimal regions (horizontal
segments) but then it exits to fall into other local
optimal regions. HHO algorithm may overcome the
local optimal regions becauses it is divided into many
phases while PSO algorithm with only one phase. On
the other hand, although the convergence speed of
Algorithm 2 is slower than that of PSO, it may reach
towards global optimization. This happens due to the
application of the chaos map, where it quickly gets out
of the local optimal regions compared to Algorithm
1. Furthermore, due to the reasonable hawk position
update, Algorithm 2, in the end, can perform more
effective than Algorithm 1.

7. Conclusion
This paper studied the problem of WSR optimization

in a multi-user BC-MIMO system, in which a HHO-
based algorithm was proposed to design pre-post-
coding matrices. In particular, Algorithm 1 is developed
based on the original HHO algorithm for the multi-
user BC-MIMO system, wherein the initial stage of
random variable causes the degradation of system
performance using HHO (Algorithm 1) lower than the
existing schemes in high SNR region. To overcome these
disadvantages, we propose another approach, called
Algorithm 2, which improves the system performance
for any SNR value. Simulation results showed
that HHO offers superior performance compared to
current popular algorithms such as BD+WF and PSO,
opening a new direction to help solve optimization
problems, particularly for the next generation wireless
communication.



VIEN NGUYEN-DUY-NHAT et al.: ON THE OPTIMIZATION OF WEIGHTED SUM RATE FOR MIMO BROASCAST CHANNELS 51

Acknowledgement
This research is funded by the Ministry of Education

and Training under Project B2021-DNA-01.

References

[1] David Cruickshank, "Implementing Full Duplexing for 5G,"
in Implementing Full Duplexing for 5G, Artech, 2020.

[2] M. Fallgren et al., “Multicast and broadcast enablers for high-
performing cellular V2X systems,” IEEE Trans. Broadcast., vol.
65, no. 2, pp. 454–463, Jun. 2019.

[3] M. Bennis, M. Debbah, and HV Poor, “Ultrareliable and low-
latency wireless communication: Tail, risk, and scale,” Proc.
IEEE, vol. 106, no. 10, pp. 1834-1853, Oct. 2018.

[4] L. Jalal, M. Anedda, V. Popescu, and M. Murroni,
“QoE assessment for IoT-based multi sensorial media
broadcasting,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 552–
560, Jun. 2018.

[5] T. Shitomi, E. Garro, K. Murayama, and D. Gomez-Barquero,
“MIMO scattered pilot performance and optimization for
ATSC 3.0,” IEEE Trans. Broadcast., vol. 64, no. 2, pp. 188–200,
Jun. 2018.

[6] E. Telatar, “Capacity of multi-antenna Gaussian channels,”
Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[7] D. Gómez-Barquero, C. Douillard, P. Moss, and V. Mignone,
“DVB-NH: The next generation of digital broadcast services
to handheld devices,” IEEE Trans. Broadcast., vol. 60, no. 2, pp.
246–257, Jun. 2014

[8] L. Fay, L. Michael, D. Gómez-Barquero, N. Ammar, and
MW Caldwell, “An overview of the ATSC 3.0 physical layer
specification,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 159–
171, Mar. 2016.

[9] Weingarten, H., Steinberg, Y., & Shamai, S, "The capacity
region of the gaussian multiple-input multiple-output
broadcast channel," IEEE Transactions on Information Theory,
52, 3936–3964, 2006.

[10] Shen, Z., Andrews, JG, Heath, R. W, Jr., & Evans, "BL Low
complexity user selection algorithms for multiuser MIMO
systems with block diagonalization," IEEE Transactions on
Signal Processing, 54, 3658–3663, 2006

[11] Spencer, Q., Swindlehurst, A., & Haardt, M, "Zero-forcing
methods for downlink spatial multiplexing in multiuser
MIMO channels," IEEE Transactions on Signal Processing, 52,
461–471, 2004.

[12] Vu, TT, Kha, HH, Duong, TQ and Vo, NS, "Particle swarm
optimization for weighted sum rate maximization in MIMO
broadcast channels. Wireless Personal Communications"
96(3), pp.3907-3921, 2017

[13] Scutari, G., Palomar, D., & Barbarossa, S, "The MIMO iterative
waterfilling algorithm," IEEE Transactions on Signal Processing,
57, 1917–1935, 2009

[14] Chen, R., Andrews, J., & Heath, R, "Efficient transmit
antenna selection for multiuser MIMO systems with block
diagonalization," In proceedings of Globecom, pp. 3499–3503,
2007

[15] Heidari, Ali Asghar, et al., "Harris Hawks Optimization:
Algorithm and applications," Future generation computer
systems, 97 (2019): 849-872.

[16] Boyd, S., & Vandenberghe, L. Convex optimization, New York,
NY: Cambridge University Press, 2004

[17] Gezici, Harun, and Haydar Livatyalı, "Chaotic Harris Hawks
Optimization algorithm," Journal of Computational Design and
Engineering, 9.1 (2022): 216-245.

[18] Ibrahim, Abdelhameed, et al, "Chaotic Harris Hawks
Optimization for unconstrained function optimization," 2020
16th International Computer Engineering Conference (ICENCO),
IEEE, 2020.

Vien Nguyen-Duy-Nhat received the
B.Eng. degree in Electronic Engineering
from the University of Danang - University
of Science and Technology, (DUT),
Vietnam, in July 1997. In September 1997,
he joined the Department of Electronics
and Telecommunications Engineering,
the University of Danang - University of
Science and Technology. He received the
M.Eng. degree in Electrical Engineering
from Ho Chi Minh City University of

Technology (HCMUT), Vietnam in 2003 and his Ph.D. degree
from The University of Danang in 2017. His areas of interests
currently include Internet of Things, signal processing, wireless
communications, and machine learning.

Mai T. P. Le received the Ph.D. degree from
Sapienza University of Rome, Rome, Italy,
in February 2019. Since 2011, she has
been with the Department of Electronics
and Telecommunications, the University
of Danang – University of Science and
Technology, Da Nang, Vietnam, where she
is currently a Lecturer. From 2015 to 2020,
she was a Ph.D. student and Postdoctoral
Researcher with the Department of
Information Engineering, Electronics and

Telecommunications, Sapienza University of Rome. In 2016,
she was a Visiting Researcher with the Singapore University
of Technology and Design, Singapore, and in 2012, with the
Arizona State University, Tempe, AZ, USA. Her main research
interests include information theory, mathematical theories, and
their application in wireless communications. Her current research
focuses on physical layer techniques for beyond 5G networks.

�

Hung Nguyen-Le received the B.Eng.
degree and the M.Eng. degree in Electrical
Engineering from Ho Chi Minh City
University of Technology, Vietnam, in 2001
and 2003, respectively. He obtained the
Ph.D. degree in Electrical Engineering
from the National University of Singapore
in 2008. From 2008 to 2010, he worked
as a Postdoctoral Research Fellow at the
Department of Electrical and Computer
Engineering, McGill University, Montreal,

Canada. Since 2010, he has been with the Department of
Electronics and Telecommunications Engineering, the University
of Danang - University of Science and Technology, Vietnam. Since
2013, he has been with the Department of Science, Technology
and Environment, the University of Danang, where he is currently
an Associate Professor. His research interests include array signal
processing, multiuser/multicell transmissions, channel estimation
and synchronization in broadband wireless communications.


