
ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 21, NO. 12.1, 2023 101

PARALLEL WINDOW PROPAGATION ON MESH SURFACES

Le Tien Hung*, Do Quoc Trinh, Nguyen Huu Tho

Military Technical Academy, Hanoi, Vietnam

*Corresponding author: letienhung.lqd@gmail.com

(Received: September 12, 2022; Revised: October 06, 2023; Accepted: November 27, 2023)

Abstract - The task of calculating the shortest distance with

minimal curvature between two points on a mesh surface is a

well-known problem in computational geometry. This paper aims

to develop a effective algorithm for computing geodesics on

large, complex models with fast processing times to facilitate

interactive applications. Our contribution is developing of the

parallel window propagation (PWP) algorithm, which divides the

sequential MMP algorithm into four phases: front node selection,

window list propagation, window list merging, and vertex update.

We use two separate buffers for incoming windows on each edge

to avoid data dependency and conflicts in each phase, allowing

for parallel processing on a CPU. As a result, our PWP algorithm

can propagate a large number of windows simultaneously and

independently, leading to significant improvements in

performance for real-world models.

Key words - Geodesics, MMP algorithm; windows propogation;

parallel computing.

1. Introduction

Geodesic is a fundamental concept in differential

geometry and has been extensively researched in recent

years. Simply speaking, a geodesic is a generalization of a

straight line from a two-dimensional or three-dimensional

space to a curved space. The correlation between these

spaces is quite easy to understand: whereas a straight line

minimizes the distance between two points on a flat surface,

a geodesic minimizes the distance between two points on

any surface with a Riemannian metric. Essentially, a

geodesic path is the shortest path between two points within

a particular region, and its length is referred to as the

geodesic distance. In different fields, there are also other

ways to define the concept of "geodesic".

The discrete geodesic problem divides itself into some

special sub-problems such as “single source, single

destination” [1]-[3], “single source, multiple destinations”

[4], [5], [7], [8] and “all-pair geodesic” [9]-[12]. These sub-

problems are also closely related to each other.

There are numerous geodesic algorithms in the

literature that can be categorized as either exact or

approximate. Exact algorithms, such as MMP [4], Chen

and Han (CH) [5], and its improved version [13], strictly

guarantee precise geodesic distances and paths. Ying et al.

[14] presented a GPU-based version of the CH algorithm

for more efficient geodesic computation on real-world

models. Approximate algorithms, such as FMM [15], heat

method [16], and SVG [17], prioritize reducing computing

speed by using local information on the input mesh, such

as gradient vector field and local shortest paths, to estimate

geodesic distances and paths. These algorithms perform

better than exact algorithms in terms of speed but sacrifice

some precision.

There is another way to classify geodesic algorithms

based on how they propagate information. The “windows

propagation” mechanism is usually used in exact geodesic

algorithms, where geodesics are computed by propagating

windows created by partitioning edges [4], [5], [13]. These

windows contain encoded geodesic information and are

propagated in wavefront order from selected sources over

vertices and edges on input surfaces. However, these

algorithms are very computationally expensive and

difficult to apply to large models. Approximate geodesic

algorithms use the PDE mechanism [15], [16] where local

geodesic information is propagated by solving the Eikonal

equation, which is non-linear and can be approximated into

simpler partial differential equations. Modern numerical

methods make it possible to solve these equations quickly,

even in linear time, giving this mechanism a time

performance advantage. However, the PDE mechanism

can suffer from numerical instability if the input models

have rich details, as the approximation techniques applied

in these details may be inaccurate.

The MMP algorithm [4] stands as an early and

practical solution for accurately calculating geodesic

distances on polyhedral surfaces. It utilizes a basic data

structure known as a "window" or "candidate interval",

essentially a portion of an edge that carries specific

information and can be forwarded in a manner akin to a

wavefront. This algorithm mirrors the fundamental

approach of Dijkstra’s algorithm for the shortest path:

initiating from a chosen source point, the "windows"

radiate outwards towards all other vertices. As vertices

receive new geodesic data, it's evaluated against existing

data, updated if necessary, and then further disseminated.

Given that each edge can possess up to 𝑂(𝑛) windows, the

aggregate count of windows may reach 𝑂(𝑛2), with

n representing the total edge count of the surface. The

algorithm includes a 𝑙𝑜𝑔 𝑛 priority queue to efficiently

manage the progression of these windows. In terms of

computational requirements, the MMP algorithm demands

𝑂(𝑛2) space and 𝑂(𝑛2 𝑙𝑜𝑔 𝑛) time. The process to trace

the shortest path from a source to a specific destination is

computed in a time frame of 𝑂(𝑘 + 𝑙𝑜𝑔 𝑛), where

k denotes the count of faces the shortest path traverses.

The CH algorithm [5] employs an alternative method

for organizing windows to accurately calculate geodesic

distances. Unlike the MMP algorithm, which uses a

priority queue, the CH algorithm utilizes a binary tree

structure to manage the sequence of window propagation.

Each propagating window can have a varying number of

children, depending on its specific type. The relationship

between parent and child windows enables the construction

102 Le Tien Hung, Do Quoc Trinh, Nguyen Huu Tho

of a sequence tree with up to n levels, with n being the total

count of faces on the polyhedral surface. This sequence tree

is efficient in terms of space, as it retains only the leaf and

branch nodes while discarding all single-child interval

windows. This approach results in a linear space

complexity of 𝑂(𝑛), streamlining the process significantly.

Figure 1. The rule “one angle, one split”: the red window is

eliminated, and the green ones will propagate forward [12]

To avoid exponential explosion of the sequence tree,

the children windows are selected/abandoned by principle

“one angle, one split”. In the Figure 1, there are two

windows w1, w2 entering into triangle △v0v1v2 from the

edge (v1, v2). Both of w1, w2 cover the vertex v0, hence four

interval windows are created on the edge (v1, v2) as

children of w1 and w2. The rule “one angle, one split”

implies that only three of the children windows can provide

shortest paths. Subsequently, only three selected interval

windows will be propagated forward through triangle

△v0v1v2. The CH algorithm determines the shortest paths

in “single source, all vertices” problem with time

complexity 𝑂(𝑛2) and it works on polyhedral surfaces

which not need to be convex.

Differing from the CH and MMP algorithms, Qin et al.

[18] introduced the VTP algorithm, which utilizes

triangles instead of windows as the primary element for

propagating windows. Each iteration of this algorithm

extends a set of windows from one edge of a triangle to the

other two edges. The VTP employs a comprehensive set of

rules to effectively eliminate unnecessary windows, thus

notably reducing both computational efforts and memory

requirements in later stages. Each propagating iteration

involves the merging of old and new windows on each

triangle edge, guided by two rules that do not depend on

the order of merging. The VTP algorithm, with a time

complexity of 𝑂(𝑛2), surpasses other exact geodesic

algorithms in terms of performance, particularly in CPU

environment.

The original MMP algorithm does not support parallel

processing due to its priority-ordered window

management, handling only one window at a time. This

paper introduces the PWP algorithm as a parallel

adaptation of the traditional window propagation technique

used in the aforementioned algorithms. This modification

aims to reduce computational demands and enhance time

efficiency. The PWP algorithm breaks down window

propagation into four stages: front node selection, window

list propagation, merging of window lists, and vertex

updating, employing two distinct buffers for incoming

windows on each list to prevent data dependency or

conflict in each phase. This approach enables the

simultaneous propagation of numerous windows in each

wavefront, with all phases being parallelizable on a multi-

threaded CPU.

2. PWP algorithm improvements

2.1. Preliminary

In the context of a triangle mesh M = (V, E, F)

representing an orientable 2-manifold, with V, E, and F

being sets of vertices, edges, and faces respectively,

Surazhsky et al. [8] utilized a structural concept named

“window” for encoding points along the shortest paths that

follow identical vertex-edge sequences. These windows

are formed by dividing each edge of the mesh into multiple

intervals. The edges v1v2 and v2v0 may already have

windows from previous propagations, as multiple

wavefronts could intersect these edges. To ensure that the

stored windows on these edges represent the minimum

geodesic distance without overlapping, it's necessary to

“intersect” existing windows with new potential ones to

consolidate their minimum distance fields. The portion of

a new potential window that is retained is the one offering

a shorter geodesic distance than the existing data points on

v0, v2 or v1, v2. The shortest paths within a window are

defined locally by a 6-tuple (xstart, xend, xs, ys, ds, τ), where

xstart, xend denote the window's endpoints, (xs, ys) indicates

the position of the pseudo source vertex s relative to the

window in a planar unfolding, ds is the shortest distance to

s, and τ is the binary direction indicating the side of the

edge where the source s is located (as illustrated in Figure

2). The propagation of these windows then proceeds across

the mesh's faces in a manner similar to Dijkstra's algorithm.

Figure 2. In window w, the geodesic distance at p(xp, 0) is

evaluated as the sum of ds and the distance d(s, p) from s to p

When a window w propagates along the edge v0v1, it

has the potential to create new windows on the opposite

edges, specifically v1v2 and v2v0. To establish these

potential windows, the pseudo-source point s is projected

onto the plane (v0, v1, v2). The process then involves

determining the intersection points where the side rays of

the “unfolded” window w intersect with edges v0, v2 and v1,

v2 (see Figure 3). Let's consider that there is an existing

window w1 on edge v0v1 and a new window w2 formed,

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 21, NO. 12.1, 2023 103

which intersects with w1 over a specific interval, referred

to as ω, where ω represents the intersection of w1 and w2.

To ascertain which of these windows, w1 or w2, provides

the minimum distance function for each point within the

interval ω, it's necessary to identify all the points p within

ω where the distance functions defined by both w1 and w2

are equal.

Figure 3. Window clipping: w1 is the old window on v0v1 and w2

is the new potential window delivered onto v0v1

2.2. Effective window pruning

During the propagation of windows in our algorithm,

numerous windows are generated but not all contribute to

the calculation of the geodesic distance at vertices. To

address this, we integrate a window intersecting approach

with the rule "one angle, one split" [5], utilizing it as a

merging guideline to remove unnecessary windows or their

redundant segments from propagation.

Figure 4. After intersecting of wincome with wi, the red part of

wincome is used as the new window for intersecting with wj

In our algorithm, windows on the same edge are sorted

into two lists: wlf and wlb. The list wlf contains windows

aligned with the forward halfedge, while wlb encompasses

those aligned with the backward halfedge. All windows

within a single list are stored sequentially without any

overlap. On an edge e within a list wl, if a window wj

follows another window wi, the endpoint of wi is always

positioned before the starting point of wj. Suppose a new

window wincome propagates onto wl and intersects with wi.

Our intersecting scheme allows for determining the

subintervals within the areas covered by both wi and wincome,

and identifying which of the two windows more effectively

covers these subintervals. If wincome better covers the final

subinterval, we retain this portion of wincome for further

intersecting steps with wj, as depicted in Figure 4. In such

cases, we set the flag of wincome’s survival as TRUE. Post-

merging, all newly formed windows derived from wincome

in wl undergo reassessment through the rule "one angle one

split". Newly created windows from wi are re-evaluated

only when the geodesic distances of two start/end vertices

of wi’s edge are updated. Experimental results demonstrate

that our algorithm is more efficient in pruning redundant

windows and requires less computation of Euclidean

distances compared to the VTP schemes.

2.3. Parallelized window propagation

A common limitation of the exact geodesic algorithms,

such as those cited in [5] and [8], is their inability to operate

in parallel due to their structural design. These algorithms

use a "window propagation" strategy to spread geodesic

data from sources to vertices. All generated windows are

placed in an associative container and processed one at a

time, in a global sequence. Absent a well-defined queuing

order, the efficiency of these wavefronts diminishes,

leading to a marked decrease in performance.

Since there are GPU-based parallel CH approaches

[14], it raises an obvious question about the existing of a

parallel version of MMP algorithm on CPU and how much

the performance could be improved from other algorithms.

However, in MMP algorithm, generated windows are

managed in a priority queue and they are pop out one by

one following a very strict order. It means the MMP

algorithm is hard to be parallelized and its performance

strongly depends on the windows management.

The existence of GPU-based parallel CH approaches

[14] poses a critical question about the feasibility of a

parallel version of the MMP algorithm on CPU, and how

much the performance could be improved. The challenge

with the MMP algorithm lies in its use of a priority queue

for managing windows, where they are handled

individually in a very specific sequence. This characteristic

makes parallelization of the MMP algorithm difficult and

its performance strongly depends on on the management of

windows.

To overcome these challenges, our study introduces a

novel parallel window propagation approach that allows

for simultaneous processing of window lists associated

with multiple vertices. The window propagation is divided

into four distinct phases: selection of the front node,

propagation of window lists, merging of window lists, and

updating of vertices. This division is designed to ensure

there are no issues with data dependence or conflicts (see

Algorithm 1).

Algorithm 1: PWP Algorithm

Input: The triangle mesh M, the source p, the size factor f.

Output: The geodesic distance vector D at vertices of M.

initiate propagation

D ← 0⃗

v_queue ← p

While v_queue ≠ ∅

T ← [f ∗ v_queue.size]

V′ ← select maximally T vertices from v_queue

parallel using omp For each vi ∈ V′

FIFO queue wl_queuei ← non-empty lists on

adjacent edges of vi in counterclockwise order

End for

parallel using omp For each vi ∈ V′

While wl_queuei ≠ ∅

wl ← wl_queuei.front()

104 Le Tien Hung, Do Quoc Trinh, Nguyen Huu Tho

check wl using “one angle one split” rule

If wl ≠ ∅

wlout left, wlout right ← propagate wl on edges

eleft, eright in counterclockwise order

If eleft is an adjacent edge of vi

merge wlout left into wlleft on eleft

Else

merge wlout right into wlright on eright

End if

If the first/last window in wlleft changed

generate update event at start/end vertex

(vstart/end, dstart/end)

End if

End if

wl ← ∅

End while

End for

parallel using omp For each vi ∈ V′

For each adjacent list wl around vi in

counterclockwise order

If wlstart/end ≠ ∅

merge wlstart/end into wl

End if

If the first/last window in wl changed

generate update event at start/end vertex

(vstart/end, dstart/end)

End if

End for

End for

parallel using omp For each vi ∈ V′

For each opposite list wl of vi

If wlstart/end ≠ ∅

merge wlstart/end into wl

End if

If the first/last window in wl changed

generate updating event at start/end vertex

(vstart/end, dstart/end)

End if

If the start/end vertex of wl is covered by income

windows

generate new front node (vstart/end.id, dstart/end)

End if

End for

End for

update distances di ∈ D from the generated updating

events

update front queue from the generated new front nodes

End while

2.3.1. Selection of Front Node

During each iteration of propagation in our algorithm,

we disseminate window lists around T vertices that are in

closest proximity to the source points. Specifically, in each

ith thread, the algorithm handles only those window lists

that are adjacent to the selected vertex from the i-th vertex

queue. This procedure is executed sequentially to ensure

that the selected vertices are consistently retrieved from the

top of the vertex queue, denoted as v queue. This sequential

approach is essential to maintain the integrity and order of

the vertex selection process.

2.3.2. Propagation of Window Lists

In our algorithm, to handle the possibility of two

separate threads directing window flows into the same

window list, we assign two temporary buffers, wlstart and

wlend, for each window list wl. These buffers are used to

store incoming windows, as depicted in Figure 5. This

approach differs from the MMP algorithm in that if a vertex

vi is chosen during the front node selection phase, then only

the adjacent lists of vi, following a counterclockwise

sequence, are added to the FIFO queue wl. As shown in

Figure 5(a), we first merge the incoming window in wlstart

with the forward list wl31 on the edge (v3, v1), and then we

add wl31 to the FIFO queue of v1. Similarly, as illustrated in

Figure 5(b), the incoming window in wlend is merged with

the forward list wl31 on the edge (v3, v1) before adding wl31

to the FIFO queue of v1. This strategy is crucial for

managing the flow of windows efficiently and avoiding

conflicts between threads.

(a) (b)

(c) (d)

Figure 5. During the propagation at v1, window list wl12 on

the edge (v1, v2) moves to the edges (v3, v1) in (a), (b) and

(v2, v3) in (c), (d)

2.3.3. Merging of Window Lists

For every chosen vertex v, we merge the forward

adjacent lists surrounding v with their respective non-

empty buffers. As an illustration, in Figure 5(a), we merge

the newly introduced window in wlend with the forward list

wl31 located on the edge (v3, v1). Similarly, in Figure 5(b),

we merge the new window found in wlstart with the forward

list wl31 on the same edge (v3, v1), prior to placing wl31 into

the FIFO (First-In, First-Out) queue of vertex v1.

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 21, NO. 12.1, 2023 105

Subsequently, it's necessary to merge the lists on the

opposite side of vertex v with their non-empty buffers.

Demonstrated in Figures 5(c) and 5(d), the newly arriving

windows stored in wlstart and wlend are merged into the

opposing list on the edge (v2, v3). This step ensures that the

windows are consistently updated and integrated across

both sides of each vertex.

2.3.4. Updating of Vertecies

In our algorithm, the geodesic distances at the start and

end vertices of the lists, which have been merged during

the previously mentioned two phases, are updated.

Specifically, if a vertex v is extracted from the w queue

during the "front node selection" phase, it is re-entered into

the v queue, but only under the condition that at least one

of its forward adjacent lists is not empty. This approach

ensures that vertices are revisited and updated as necessary,

based on the propagation and merging of window lists in

the surrounding areas.

3. Experimental Results

Our geodesic algorithm was executed on a 64-bit PC

equipped with an Intel Core i7-6700k CPU 4.0GHz

(supporting up to 8 threads) and 32GB memory. The

parallel components of the algorithm were developed to

run on the CPU, utilizing the multi-threading capabilities

of the OpenMP interface.

As Chen and Han [5] suggested, our algorithm

generates a number of windows that also scale to 𝑂(𝑛2).

in its most demanding scenarios. However, a key feature of

our algorithm is the immediate deletion of windows post-

propagation, thereby ensuring the space complexity

remains at 𝑂(𝑛2). While this space complexity is on par

with other existing exact algorithms, Table 1 in our paper

demonstrates that the actual space required by our

algorithm is considerably lower.

To experimentally estimate the optimal value of f for

the PWP algorithm, we run it on a variety of models with

different resolution. Our results shown that the PWP

algorithm archives its best time and space performances

with f is around 0.5. For the values less than 0.5, our

algorithm still performs well because we set the minimum

number of available threads on the system to take the

advantage of multi-threading CPUs. Our PWP algorithm

runs slower and requires much more memory when f

increases closer to 1. It can be explained as if we select too

many nodes in vertices queue to propagate their window

lists around then the number of unnecessary “one angle,

one split” checking/merging is called too often and of

running threads equal to the maximum number the selected

front vertices have very high change to be inserted back

into the queue. Thus, the size of the queue stays long in

almost all propagating iterations, which leads to very high

memory usage.

In order to determine the most effective value of the

factor f, we conducted tests across a range of models with

varying resolutions. Our findings indicate that the PWP

algorithm achieves peak performance in both time and

space efficiency when f is approximately 0.5. When f is set

below 0.5, the algorithm still delivers robust results due to

the implementation of a minimum thread utilization

strategy, capitalizing on the benefits of multi-threaded

CPUs. However, as f approaches 1, the PWP algorithm's

performance declines, requiring substantially more

memory. This decrease in efficiency can be attributed to

the excessive selection of nodes in the vertex queue for

window list propagation, leading to frequent and

unnecessary "one angle, one split" checks and merges. As

a result, the vertex queue often remains extensive

throughout the propagation phases, causing significant

memory consumption.

This phenomenon is illustrated in Figures 6 and 7,

where we present the outcomes of running our algorithm

on two models: Bunny (160k faces) and Kitten (1.1M

faces), using varying f values. Opting for a smaller f value

still maximizes the potential of parallel propagation, as the

minimum number of active threads is controlled.

Conversely, a larger f value results in numerous redundant

window list checks and merges, prolonging the length of

the vertex queue, thus slowing down the algorithm and

increasing memory requirements. We have identified the

optimal f value to be around 0.5, at which point the PWP

algorithm demonstrates its best execution time and

memory efficiency. Selecting the appropriate f value is

crucial for optimizing performance, underscoring the

importance of a theoretical estimation of this factor.

Figure 6. The impact of f on the model Bunny (160k faces)

Figure 7. The impact of f on the model Kitten (1.1M faces)

We also tested the PWP, MMP and VTP algorithms on

a diverse array of models, ranging from smaller ones like

the Gargoyle (40k faces), to larger models such as the

Bunny (1.6M faces). For a comprehensive evaluation, we

measured various parameters including the running time,

the maximum number of active windows, and the peak

memory usage. The data presented in Table 1 reveals that

our PWP algorithm significantly enhances time efficiency,

especially in large-scale models, while only requiring a

marginal increase in memory usage. Additionally, as

depicted in Table 2, our algorithm demonstrates competent

106 Le Tien Hung, Do Quoc Trinh, Nguyen Huu Tho

performance even on anisotropic models, highlighting its

versatility and effectiveness across different types of

geometrical configurations.

Table 1. Performance comparison of the PWP, MMP and VTP

algorithms by three factors: The running time Ts, the maximal

memory usage M and the maximal number of active windows nw

Model Comparison MMP VTP
PWP

(f = 0.5)

Gargoyle

(40k

faces)

Ts (s) 0.66 0.16 0.09

nw 668,091 6,061 6,53

M (MB) 48.58 0.39 0.42

Armadillo

(346k

faces)

Ts (s) 8.93 1.80 1.22

nw 6,724,512 20,436 20,447

M (MB) 488.32 1.31 1.31

Fertility

(800k

faces)

Ts (s) 249.38 14.12 10.62

nw 71,607,326 205,856 180,301

M (MB) 5,165,33 13.17 11.54

Kitten

(1.1M

faces)

Ts (s) 378.01 19.57 15.74

nw 112,886,256 153,886 168,508

M (MB) 8,140,97 9.85 10.78

Bunny

(1.6M

faces)

Ts (s) 496.06 25.77 18.83

nw 154,547,216 164,644 206,641

M (MB) 11,146,6 10.54 13.23

Table 2. Performance comparison of the PWP, MMP and VTP

algorithms on anisotropic models.

Model Comparison MMP VTP
PWP

 (f = 0.5)

Block

(800k

faces)

Ts (s) 90.7 8.0 6.9

nw 37,940,667 97,032 92,643

M (MB) 2741.33 6.21 5.93

Rocker

arm

(960k

faces)

Ts (s) 225.9 13.0 12.4

nw 6,724,512 20,436 20,447

M (MB) 5804.25 9.37 9.38

Impeller

(1.6M

faces)

Ts (s) 162.0 17.7 15.6

nw 72,780,334 89,928 111,279

M (MB) 5,259,38 5.76 7.12

4. Conclusion

In this paper, we introduce PWP algorithm, a novel

approach designed for discrete geodesic computation that

excels in both temporal and memory efficiency. The PWP

algorithm employs dual buffers for incoming windows on

each list, effectively handling window data. The new

structure of PWP ensures that each phase is free from data

dependencies or conflicts, allowing for parallel processing

on CPU. A key advantage of the PWP algorithm is its

capability to process numerous windows simultaneously

and autonomously, significantly enhancing its

performance, particularly when applied to real-world

models. This feature makes the PWP algorithm a highly

efficient tool in the realm of geodesic computation.

REFERENCES

[1] D. Martınez, L. Velho, and P. C. Carvalho, “Computing geodesics on
triangular meshes”, Computers & Graphics, vol. 29, no. 5, pp. 667–675,

2005. https://doi.org/10.1016/j.cag.2005.08.003

[2] K. Polthier and M. Schmies, “Straightest geodesics on polyhedral

surfaces”, in Proc. ACM SIGGRAPH 2006 Courses (SIGGRAPH

'06), pp. 30-38, 2006. DOI:10.1145/1185657.1185664

[3] S.-Q. Xin and G.-J. Wang, “Efficiently determining a locally exact

shortest path on polyhedral surfaces”, Computer-Aided Design, vol.
39, no. 12, pp. 1081–1090, 2007. DOI: 10.1016/j.cad.2007.08.001

[4] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete

geodesic problem”, SIAM Journal on Computing, vol. 16, no. 4, pp.

647–668, 1987.

[5] J. Chen and Y. Han, “Shortest paths on a polyhedron”, in

Proceedings of the 6th Annual symposium on Computational

geometry, 1990, pp. 360–369. https://doi.org/10.1145/98524.98601

[6] M. Novotni and R. Klein, “Computing geodesic distances on

triangular meshes”, in Proceedings of WSCG'2002, vol. 11, 2002,

pp. 341-347.

[7] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and H.

Hoppe, “Fast exact and approximate geodesics on meshes”, ACM

Transactions on Graphics (TOG), vol. 24, no. 3, pp. 553–560, 2005.
DOI: 10.1145/1073204.1073228

[8] K. R. Varadarajan and P. K. Agarwal, “Approximating shortest

paths on a nonconvex polyhedron”, SIAM Journal on Computing,

vol. 30, no. 4, pp. 1321–1340, 2000.

[9] S. Har-Peled, “Approximate shortest paths and geodesic diameter on

a convex polytope in three dimensions”, Discrete & Computational

Geometry, vol. 21, no. 2, pp. 217–231, 1999.

[10] S. Har-Peled, “Constructing approximate shortest path maps in three

dimensions”, in Proceedings of the 44th Annual symposium on
Computational geometry, 1998, pp. 383–391. Doi:

10.1145/276884.276927

[11] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, “An improved

approximation algorithm for computing geometric shortest paths”,

Fundamentals of Computation Theory, Springer, Vol. 2751, pp. 246–
257, 2003. DOI:10.1007/978-3-540-45077-1_23

[12] S.-Q. Xin and G.-J. Wang, “Improving Chen and Han’s algorithm

on the discrete geodesic problem”, ACM Transactions on Graphics

(TOG), vol. 28, no. 4, pp. 1-8, 2009. DOI:

10.1145/1559755.1559761.

[13] X. Ying, S. Xin, and Y. He, “Parallel Chen-Han (PCH) algorithm

for discrete geodesics”, ACM Transactions on Graphics (TOG), vol.
33, no. 1, pp. 1-11, 2014. DOI: 10.1145/1559755.1559761.

[14] J. A. Sethian, “Fast marching methods”, SIAM Review, vol. 41, no.

2, pp. 199–235, 1999. DOI: 10.1137/S0036144598347059

[15] K. Crane, C. Weischedel and M. Wardetzky, “Geodesics in heat: a

new approach to computing distance based on heat flow”, ACM

Transactions on Graphics (TOG), vol. 32, no. 5, pp. 1-11, 2013.

DOI: 10.1145/2516971.2516977.

[16] X. Ying, X. Wang, and Y. He, “Saddle vertex graph (SVG): A novel

solution to the discrete geodesic problem”, ACM Transactions on
Graphics (TOG), vol. 32, no. 6, pp. 1-12, 2013. DOI:

10.1145/2508363.2508379.

[17] Y. Qin, X. Han, H. Yu, Y. Yu, and J. Zhang, “Fast and exact discrete

geodesic computation based on triangle-oriented wavefront

propagation”, ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 35, no. 4, pp. 1-13, 2016. DOI: 10.1145/2897824.2925930.

	1. Introduction
	2. PWP algorithm improvements
	2.1. Preliminary
	2.2. Effective window pruning
	2.3. Parallelized window propagation
	2.3.1. Selection of Front Node
	2.3.2. Propagation of Window Lists
	2.3.3. Merging of Window Lists
	2.3.4. Updating of Vertecies

	3. Experimental Results
	4. Conclusion

