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Abstract - The task of calculating the shortest distance with 

minimal curvature between two points on a mesh surface is a 

well-known problem in computational geometry. This paper aims 

to develop a effective algorithm for computing geodesics on 

large, complex models with fast processing times to facilitate 

interactive applications. Our contribution is developing of the 

parallel window propagation (PWP) algorithm, which divides the 

sequential MMP algorithm into four phases: front node selection, 

window list propagation, window list merging, and vertex update. 

We use two separate buffers for incoming windows on each edge 

to avoid data dependency and conflicts in each phase, allowing 

for parallel processing on a CPU. As a result, our PWP algorithm 

can propagate a large number of windows simultaneously and 

independently, leading to significant improvements in 

performance for real-world models. 

Key words - Geodesics, MMP algorithm; windows propogation; 

parallel computing. 

1. Introduction 

Geodesic is a fundamental concept in differential 

geometry and has been extensively researched in recent 

years. Simply speaking, a geodesic is a generalization of a 

straight line from a two-dimensional or three-dimensional 

space to a curved space. The correlation between these 

spaces is quite easy to understand: whereas a straight line 

minimizes the distance between two points on a flat surface, 

a geodesic minimizes the distance between two points on 

any surface with a Riemannian metric. Essentially, a 

geodesic path is the shortest path between two points within 

a particular region, and its length is referred to as the 

geodesic distance. In different fields, there are also other 

ways to define the concept of "geodesic". 

The discrete geodesic problem divides itself into some 

special sub-problems such as “single source, single 

destination” [1]-[3], “single source, multiple destinations” 

[4], [5], [7], [8] and “all-pair geodesic” [9]-[12]. These sub-

problems are also closely related to each other. 

There are numerous geodesic algorithms in the 

literature that can be categorized as either exact or 

approximate. Exact algorithms, such as MMP [4], Chen 

and Han (CH) [5], and its improved version [13], strictly 

guarantee precise geodesic distances and paths. Ying et al. 

[14] presented a GPU-based version of the CH algorithm 

for more efficient geodesic computation on real-world 

models. Approximate algorithms, such as FMM [15], heat 

method [16], and SVG [17], prioritize reducing computing 

speed by using local information on the input mesh, such 

as gradient vector field and local shortest paths, to estimate 

geodesic distances and paths. These algorithms perform 

better than exact algorithms in terms of speed but sacrifice 

some precision.  

There is another way to classify geodesic algorithms 

based on how they propagate information. The “windows 

propagation” mechanism is usually used in exact geodesic 

algorithms, where geodesics are computed by propagating 

windows created by partitioning edges [4], [5], [13]. These 

windows contain encoded geodesic information and are 

propagated in wavefront order from selected sources over 

vertices and edges on input surfaces. However, these 

algorithms are very computationally expensive and 

difficult to apply to large models. Approximate geodesic 

algorithms use the PDE mechanism [15], [16] where local 

geodesic information is propagated by solving the Eikonal 

equation, which is non-linear and can be approximated into 

simpler partial differential equations. Modern numerical 

methods make it possible to solve these equations quickly, 

even in linear time, giving this mechanism a time 

performance advantage. However, the PDE mechanism 

can suffer from numerical instability if the input models 

have rich details, as the approximation techniques applied 

in these details may be inaccurate. 

The MMP algorithm [4] stands as an early and 

practical solution for accurately calculating geodesic 

distances on polyhedral surfaces. It utilizes a basic data 

structure known as a "window" or "candidate interval", 

essentially a portion of an edge that carries specific 

information and can be forwarded in a manner akin to a 

wavefront. This algorithm mirrors the fundamental 

approach of Dijkstra’s algorithm for the shortest path: 

initiating from a chosen source point, the "windows" 

radiate outwards towards all other vertices. As vertices 

receive new geodesic data, it's evaluated against existing 

data, updated if necessary, and then further disseminated. 

Given that each edge can possess up to 𝑂(𝑛) windows, the 

aggregate count of windows may reach 𝑂(𝑛2), with 

n representing the total edge count of the surface. The 

algorithm includes a 𝑙𝑜𝑔 𝑛 priority queue to efficiently 

manage the progression of these windows. In terms of 

computational requirements, the MMP algorithm demands 

𝑂(𝑛2) space and 𝑂(𝑛2 𝑙𝑜𝑔 𝑛) time. The process to trace 

the shortest path from a source to a specific destination is 

computed in a time frame of 𝑂(𝑘 + 𝑙𝑜𝑔 𝑛), where  

k denotes the count of faces the shortest path traverses. 

The CH algorithm [5] employs an alternative method 

for organizing windows to accurately calculate geodesic 

distances. Unlike the MMP algorithm, which uses a 

priority queue, the CH algorithm utilizes a binary tree 

structure to manage the sequence of window propagation. 

Each propagating window can have a varying number of 

children, depending on its specific type. The relationship 

between parent and child windows enables the construction 
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of a sequence tree with up to n levels, with n being the total 

count of faces on the polyhedral surface. This sequence tree 

is efficient in terms of space, as it retains only the leaf and 

branch nodes while discarding all single-child interval 

windows. This approach results in a linear space 

complexity of 𝑂(𝑛), streamlining the process significantly. 

 

Figure 1. The rule “one angle, one split”:  the red window is 

eliminated, and the green ones  will propagate forward [12] 

To avoid exponential explosion of the sequence tree, 

the children windows are selected/abandoned by principle 

“one angle, one split”. In the Figure 1, there are two 

windows w1, w2 entering into triangle △v0v1v2 from the 

edge (v1, v2). Both of w1, w2 cover the vertex v0, hence four 

interval windows are created on the edge (v1, v2) as 

children of w1 and w2. The rule “one angle, one split” 

implies that only three of the children windows can provide 

shortest paths. Subsequently, only three selected interval 

windows will be propagated forward through triangle 

△v0v1v2. The CH algorithm determines the shortest paths 

in “single source, all vertices” problem with time 

complexity 𝑂(𝑛2) and it works on polyhedral surfaces 

which not need to be convex. 

Differing from the CH and MMP algorithms, Qin et al. 

[18] introduced the VTP algorithm, which utilizes 

triangles instead of windows as the primary element for 

propagating windows. Each iteration of this algorithm 

extends a set of windows from one edge of a triangle to the 

other two edges. The VTP employs a comprehensive set of 

rules to effectively eliminate unnecessary windows, thus 

notably reducing both computational efforts and memory 

requirements in later stages. Each propagating iteration 

involves the merging of old and new windows on each 

triangle edge, guided by two rules that do not depend on 

the order of merging. The VTP algorithm, with a time 

complexity of 𝑂(𝑛2), surpasses other exact geodesic 

algorithms in terms of performance, particularly in CPU 

environment. 

The original MMP algorithm does not support parallel 

processing due to its priority-ordered window 

management, handling only one window at a time. This 

paper introduces the PWP algorithm as a parallel 

adaptation of the traditional window propagation technique 

used in the aforementioned algorithms. This modification 

aims to reduce computational demands and enhance time 

efficiency. The PWP algorithm breaks down window 

propagation into four stages: front node selection, window 

list propagation, merging of window lists, and vertex 

updating, employing two distinct buffers for incoming 

windows on each list to prevent data dependency or 

conflict in each phase. This approach enables the 

simultaneous propagation of numerous windows in each 

wavefront, with all phases being parallelizable on a multi-

threaded CPU. 

2. PWP algorithm improvements 

2.1. Preliminary 

In the context of a triangle mesh M = (V, E, F) 

representing an orientable 2-manifold, with V, E, and F 

being sets of vertices, edges, and faces respectively, 

Surazhsky et al. [8] utilized a structural concept named 

“window” for encoding points along the shortest paths that 

follow identical vertex-edge sequences. These windows 

are formed by dividing each edge of the mesh into multiple 

intervals. The edges v1v2 and v2v0 may already have 

windows from previous propagations, as multiple 

wavefronts could intersect these edges. To ensure that the 

stored windows on these edges represent the minimum 

geodesic distance without overlapping, it's necessary to 

“intersect” existing windows with new potential ones to 

consolidate their minimum distance fields. The portion of 

a new potential window that is retained is the one offering 

a shorter geodesic distance than the existing data points on 

v0, v2 or v1, v2. The shortest paths within a window are 

defined locally by a 6-tuple (xstart, xend, xs, ys, ds, τ), where 

xstart, xend denote the window's endpoints, (xs, ys) indicates 

the position of the pseudo source vertex s relative to the 

window in a planar unfolding, ds is the shortest distance to 

s, and τ is the binary direction indicating the side of the 

edge where the source s is located (as illustrated in Figure 

2). The propagation of these windows then proceeds across 

the mesh's faces in a manner similar to Dijkstra's algorithm. 

 

Figure 2. In  window w, the geodesic distance at p(xp, 0) is 

evaluated as the sum of ds and the distance d(s, p) from s to p 

When a window w propagates along the edge v0v1, it 

has the potential to create new windows on the opposite 

edges, specifically v1v2 and v2v0. To establish these 

potential windows, the pseudo-source point s is projected 

onto the plane (v0, v1, v2). The process then involves 

determining the intersection points where the side rays of 

the “unfolded” window w intersect with edges v0, v2 and v1, 

v2 (see Figure 3). Let's consider that there is an existing 

window w1 on edge v0v1 and a new window w2 formed, 
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which intersects with w1 over a specific interval, referred 

to as ω, where ω represents the intersection of w1 and w2. 

To ascertain which of these windows, w1 or w2, provides 

the minimum distance function for each point within the 

interval ω, it's necessary to identify all the points p within 

ω where the distance functions defined by both w1 and w2 

are equal. 

 

Figure 3. Window clipping: w1 is the old window on v0v1 and w2 

is the new potential window delivered onto v0v1 

2.2. Effective window pruning  

During the propagation of windows in our algorithm, 

numerous windows are generated but not all contribute to 

the calculation of the geodesic distance at vertices. To 

address this, we integrate a window intersecting approach 

with the rule "one angle, one split" [5], utilizing it as a 

merging guideline to remove unnecessary windows or their 

redundant segments from propagation. 

 

Figure 4. After intersecting of wincome with wi, the red part of 

wincome is used as the new window for intersecting with wj 

In our algorithm, windows on the same edge are sorted 

into two lists: wlf and wlb. The list wlf contains windows 

aligned with the forward halfedge, while wlb encompasses 

those aligned with the backward halfedge. All windows 

within a single list are stored sequentially without any 

overlap. On an edge e within a list wl, if a window wj 

follows another window wi, the endpoint of wi is always 

positioned before the starting point of wj. Suppose a new 

window wincome propagates onto wl and intersects with wi. 

Our intersecting scheme allows for determining the 

subintervals within the areas covered by both wi and wincome, 

and identifying which of the two windows more effectively 

covers these subintervals. If wincome better covers the final 

subinterval, we retain this portion of wincome for further 

intersecting steps with wj, as depicted in Figure 4. In such 

cases, we set the flag of wincome’s survival as TRUE. Post-

merging, all newly formed windows derived from wincome 

in wl undergo reassessment through the rule "one angle one 

split". Newly created windows from wi are re-evaluated 

only when the geodesic distances of two start/end vertices 

of wi’s edge are updated. Experimental results demonstrate 

that our algorithm is more efficient in pruning redundant 

windows and requires less computation of Euclidean 

distances compared to the VTP schemes. 

2.3. Parallelized window propagation 

A common limitation of the exact geodesic algorithms, 

such as those cited in [5] and [8], is their inability to operate 

in parallel due to their structural design. These algorithms 

use a "window propagation" strategy to spread geodesic 

data from sources to vertices. All generated windows are 

placed in an associative container and processed one at a 

time, in a global sequence. Absent a well-defined queuing 

order, the efficiency of these wavefronts diminishes, 

leading to a marked decrease in performance. 

Since there are GPU-based parallel CH approaches 

[14], it raises an obvious question about the existing of a 

parallel version of MMP algorithm on CPU and how much 

the performance could be improved from other algorithms. 

However, in MMP algorithm, generated windows are 

managed in a priority queue and they are pop out one by 

one following a very strict order. It means the MMP 

algorithm is hard to be parallelized and its performance 

strongly depends on the windows management. 

The existence of GPU-based parallel CH approaches 

[14] poses a critical question about the feasibility of a 

parallel version of the MMP algorithm on CPU, and how 

much the performance could be improved. The challenge 

with the MMP algorithm lies in its use of a priority queue 

for managing windows, where they are handled 

individually in a very specific sequence. This characteristic 

makes parallelization of the MMP algorithm difficult and 

its performance strongly depends on on the management of 

windows. 

To overcome these challenges, our study introduces a 

novel parallel window propagation approach that allows 

for simultaneous processing of window lists associated 

with multiple vertices. The window propagation is divided 

into four distinct phases: selection of the front node, 

propagation of window lists, merging of window lists, and 

updating of vertices. This division is designed to ensure 

there are no issues with data dependence or conflicts (see 

Algorithm 1). 

Algorithm 1: PWP Algorithm 

Input: The triangle mesh M, the source p, the size factor f. 

Output: The geodesic distance vector D at vertices of M. 

initiate propagation  

D ← 0⃗  

v_queue ← p 

While v_queue ≠ ∅ 

T ← [f ∗ v_queue.size] 

V′ ← select maximally T vertices from v_queue 

parallel using omp For each vi ∈ V′ 

FIFO queue wl_queuei ← non-empty lists on 

adjacent edges of vi in counterclockwise order 

End for 

parallel using omp For each vi ∈ V′ 

While wl_queuei ≠ ∅ 

wl ← wl_queuei.front()  
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check wl using “one angle one split” rule 

If wl ≠ ∅ 

wlout left, wlout right ← propagate wl on edges 

eleft, eright in counterclockwise order 

If eleft is an adjacent edge of vi 

merge wlout left into wlleft on eleft 

Else 

merge wlout right into wlright on eright 

End if 

If the first/last window in wlleft changed 

generate update event at start/end vertex 

(vstart/end, dstart/end) 

End if 

End if 

wl ← ∅ 

End while 

End for 

parallel using omp For each vi ∈ V′ 

For each adjacent list wl around vi in 

counterclockwise order 

If wlstart/end ≠ ∅ 

merge wlstart/end into wl 

End if 

If the first/last window in wl changed 

generate update event at start/end vertex 

(vstart/end, dstart/end) 

End if 

End for 

End for 

parallel using omp For each vi ∈ V′ 

For each opposite list wl of vi 

If wlstart/end  ≠ ∅ 

merge wlstart/end into wl 

End if 

If the first/last window in wl changed 

generate updating event at start/end vertex 

(vstart/end, dstart/end) 

End if 

If the start/end vertex of wl is covered by income 

windows 

generate new front node (vstart/end.id, dstart/end) 

End if 

End for 

End for 

update distances di ∈ D from the generated updating 

events 

update front queue from the generated new front nodes 

End while 

 

2.3.1. Selection of Front Node 

During each iteration of propagation in our algorithm, 

we disseminate window lists around T vertices that are in 

closest proximity to the source points. Specifically, in each 

ith thread, the algorithm handles only those window lists 

that are adjacent to the selected vertex from the i-th vertex 

queue. This procedure is executed sequentially to ensure 

that the selected vertices are consistently retrieved from the 

top of the vertex queue, denoted as v queue. This sequential 

approach is essential to maintain the integrity and order of 

the vertex selection process. 

2.3.2. Propagation of Window Lists 

In our algorithm, to handle the possibility of two 

separate threads directing window flows into the same 

window list, we assign two temporary buffers, wlstart and 

wlend, for each window list wl. These buffers are used to 

store incoming windows, as depicted in Figure 5. This 

approach differs from the MMP algorithm in that if a vertex 

vi is chosen during the front node selection phase, then only 

the adjacent lists of vi, following a counterclockwise 

sequence, are added to the FIFO queue wl. As shown in 

Figure 5(a), we first merge the incoming window in wlstart 

with the forward list wl31 on the edge (v3, v1), and then we 

add wl31 to the FIFO queue of v1. Similarly, as illustrated in 

Figure 5(b), the incoming window in wlend is merged with 

the forward list wl31 on the edge (v3, v1) before adding wl31 

to the FIFO queue of v1. This strategy is crucial for 

managing the flow of windows efficiently and avoiding 

conflicts between threads. 

 

(a) (b) 

  

(c) (d) 

Figure 5. During the propagation at v1, window list wl12 on  

the edge (v1, v2) moves to the edges (v3, v1) in (a), (b) and  

(v2, v3) in (c), (d) 

2.3.3. Merging of Window Lists 

For every chosen vertex v, we merge the forward 

adjacent lists surrounding v with their respective non-

empty buffers. As an illustration, in Figure 5(a), we merge 

the newly introduced window in wlend  with the forward list 

wl31 located on the edge (v3, v1). Similarly, in Figure 5(b), 

we merge the new window found in wlstart with the forward 

list wl31 on the same edge (v3, v1), prior to placing wl31 into 

the FIFO (First-In, First-Out) queue of vertex v1. 
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Subsequently, it's necessary to merge the lists on the 

opposite side of vertex v with their non-empty buffers. 

Demonstrated in Figures 5(c) and 5(d), the newly arriving 

windows stored in wlstart and wlend  are merged into the 

opposing list on the edge (v2, v3). This step ensures that the 

windows are consistently updated and integrated across 

both sides of each vertex. 

2.3.4. Updating of Vertecies 

In our algorithm, the geodesic distances at the start and 

end vertices of the lists, which have been merged during 

the previously mentioned two phases, are updated. 

Specifically, if a vertex v is extracted from the w queue 

during the "front node selection" phase, it is re-entered into 

the v queue, but only under the condition that at least one 

of its forward adjacent lists is not empty. This approach 

ensures that vertices are revisited and updated as necessary, 

based on the propagation and merging of window lists in 

the surrounding areas. 

3. Experimental Results 

Our geodesic algorithm was executed on a 64-bit PC 

equipped with an Intel Core i7-6700k CPU 4.0GHz 

(supporting up to 8 threads) and 32GB memory. The 

parallel components of the algorithm were developed to 

run on the CPU, utilizing the multi-threading capabilities 

of the OpenMP interface. 

As Chen and Han [5] suggested, our algorithm 

generates a number of windows that also scale to 𝑂(𝑛2).  

in its most demanding scenarios. However, a key feature of 

our algorithm is the immediate deletion of windows post-

propagation, thereby ensuring the space complexity 

remains at 𝑂(𝑛2). While this space complexity is on par 

with other existing exact algorithms, Table 1 in our paper 

demonstrates that the actual space required by our 

algorithm is considerably lower.  

To experimentally estimate the optimal value of f for 

the PWP algorithm, we run it on a variety of models with 

different resolution. Our results shown that the PWP 

algorithm archives its best time and space performances 

with f is around 0.5. For the values less than 0.5, our 

algorithm still performs well because we set the minimum 

number of available threads on the system to take the 

advantage of multi-threading CPUs. Our PWP algorithm 

runs slower and requires much more memory when f 

increases closer to 1. It can be explained as if we select too 

many nodes in vertices queue to propagate their window 

lists around then the number of unnecessary “one angle, 

one split” checking/merging is called too often and of 

running threads equal to the maximum number the selected 

front vertices have very high change to be inserted back 

into the queue. Thus, the size of the queue stays long in 

almost all propagating iterations, which leads to very high 

memory usage.  

In order to determine the most effective value of the 

factor f,  we conducted tests across a range of models with 

varying resolutions. Our findings indicate that the PWP 

algorithm achieves peak performance in both time and 

space efficiency when f is approximately 0.5. When f is set 

below 0.5, the algorithm still delivers robust results due to 

the implementation of a minimum thread utilization 

strategy, capitalizing on the benefits of multi-threaded 

CPUs. However, as f approaches 1, the PWP algorithm's 

performance declines, requiring substantially more 

memory. This decrease in efficiency can be attributed to 

the excessive selection of nodes in the vertex queue for 

window list propagation, leading to frequent and 

unnecessary "one angle, one split" checks and merges. As 

a result, the vertex queue often remains extensive 

throughout the propagation phases, causing significant 

memory consumption. 

This phenomenon is illustrated in Figures 6 and 7, 

where we present the outcomes of running our algorithm 

on two models: Bunny (160k faces) and Kitten (1.1M 

faces), using varying f values. Opting for a smaller f value 

still maximizes the potential of parallel propagation, as the 

minimum number of active threads is controlled. 

Conversely, a larger f value results in numerous redundant 

window list checks and merges, prolonging the length of 

the vertex queue, thus slowing down the algorithm and 

increasing memory requirements. We have identified the 

optimal f value to be around 0.5, at which point the PWP 

algorithm demonstrates its best execution time and 

memory efficiency. Selecting the appropriate f value is 

crucial for optimizing performance, underscoring the 

importance of a theoretical estimation of this factor. 

 

Figure 6. The impact of f on the model Bunny (160k faces) 

 

Figure 7. The impact of f on the model Kitten (1.1M faces) 

We also tested the PWP, MMP and VTP algorithms on 

a diverse array of models, ranging from smaller ones like 

the Gargoyle (40k faces), to larger models such as the 

Bunny (1.6M faces). For a comprehensive evaluation, we 

measured various parameters including the running time, 

the maximum number of active windows, and the peak 

memory usage. The data presented in Table 1 reveals that 

our PWP algorithm significantly enhances time efficiency, 

especially in large-scale models, while only requiring a 

marginal increase in memory usage. Additionally, as 

depicted in Table 2, our algorithm demonstrates competent 
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performance even on anisotropic models, highlighting its 

versatility and effectiveness across different types of 

geometrical configurations.  

Table 1. Performance comparison of the PWP, MMP and VTP 

algorithms by three factors: The running time Ts, the maximal 

memory usage M and the maximal number of active windows nw 

Model Comparison MMP VTP 
PWP 

(f = 0.5) 

Gargoyle 

(40k 

faces) 

Ts (s) 0.66 0.16 0.09 

nw 668,091 6,061 6,53 

M (MB) 48.58 0.39 0.42 

Armadillo 

(346k 

faces) 

Ts (s) 8.93 1.80 1.22 

nw 6,724,512 20,436 20,447 

M (MB) 488.32 1.31 1.31 

Fertility 

(800k 

faces) 

Ts (s) 249.38 14.12 10.62 

nw 71,607,326 205,856 180,301 

M (MB) 5,165,33 13.17 11.54 

Kitten 

(1.1M 

faces) 

Ts (s) 378.01 19.57 15.74 

nw 112,886,256 153,886 168,508 

M (MB) 8,140,97 9.85 10.78 

Bunny 

(1.6M 

faces) 

Ts (s) 496.06 25.77 18.83 

nw 154,547,216 164,644 206,641 

M (MB) 11,146,6 10.54 13.23 

Table 2. Performance comparison of the PWP, MMP and VTP 

algorithms on anisotropic models.  

Model Comparison MMP VTP 
PWP 

 (f = 0.5) 

Block 

(800k 

faces) 

Ts (s) 90.7 8.0 6.9 

nw 37,940,667 97,032 92,643 

M (MB) 2741.33 6.21 5.93 

Rocker 

arm 

(960k 

faces) 

Ts (s) 225.9 13.0 12.4 

nw 6,724,512 20,436 20,447 

M (MB) 5804.25 9.37 9.38 

Impeller 

(1.6M 

faces) 

Ts (s) 162.0 17.7 15.6 

nw 72,780,334 89,928 111,279 

M (MB) 5,259,38 5.76 7.12 

4. Conclusion 

In this paper, we introduce PWP algorithm, a novel 

approach designed for discrete geodesic computation that 

excels in both temporal and memory efficiency. The PWP 

algorithm employs dual buffers for incoming windows on 

each list, effectively handling window data. The new 

structure of PWP ensures that each phase is free from data 

dependencies or conflicts, allowing for parallel processing 

on CPU. A key advantage of the PWP algorithm is its 

capability to process numerous windows simultaneously 

and autonomously, significantly enhancing its 

performance, particularly when applied to real-world 

models. This feature makes the PWP algorithm a highly 

efficient tool in the realm of geodesic computation. 
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