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Anomaly Detection Using Prediction Error
with Spatio-Temporal Convolutional LSTM

Hanh T. M. Tran*, David Hogg

Abstract—In this paper, we propose a novel method for video anomaly detection motivated by an existing architecture
for sequence-to-sequence prediction and reconstruction using a spatio-temporal convolutional Long Short-Term Memory
(convLSTM). As in previous work on anomaly detection, anomalies arise as spatially localised failures in reconstruction or
prediction. In experiments with five benchmark datasets, we show that using prediction gives superior performance to using
reconstruction. We also compare performance with different length input/output sequences. Overall, our results using prediction
are comparable with the state of the art on the benchmark datasets.

Index Terms—Convolutional LSTM; convolutional autoencoder; prediction error; reconstruction error; anomaly detection.
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1. Introduction

AUTOMATIC detecting abnormal events in video
has been widely studied in recent years due to

its broad range of applications, including wide-area
surveillance and health monitoring. This problem is
different from event detection where the event is clearly
defined, since an anomaly is by definition unknown
in advance and may arise from unfamiliar activities or
activities in unfamiliar contexts.

The standard approach to anomaly detection has
been to learn spatio-temporal models of normal activity
using hand-crafted features [1]–[6] or deep feature rep-
resentations [7], [8]. An abnormality is detected when
spatio-temporal patterns are observed that do not con-
form to the model of normality. Many different low-
level features using dense optical flow (e.g., histograms
[5], MHOF [3] ) and other patterns of spatio-temporal
gradient [4] have been used in the past. A model of
normality is learned using these features extracted from
training data and then used to determine numerical
abnormality scores in test data. The model may be of
several different kinds, including probabilistic models
(e.g, mixture of probabilistic PCA [1], mixture of dy-
namic texture [2]), domain based (e.g, one-class SVM
[6]), sparse coding [3] and Sparse Combination Learning
(SCL) [4]. All of these methods have been used for
anomaly detection and localization within the image
frame.

Recently, deep learning architectures have been suc-
cessfully applied in many computer vision tasks includ-
ing video anomaly detection. A key advantage of deep
learning methods is that they can learn feature rep-
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resentations directly from training data without prior
definition. For example, this can be done in an unsu-
pervised manner using auto-encoders [7]–[9]. A stacked
de-noising autoencoder can be used to learn appear-
ance and motion features for anomaly detection [8]. A
Winner-take-all sparsity constraint combined within the
autoencoder has been shown to produce flow-features
that are more discriminative for a one class SVM [7] that
is trained separately on the compressed representations
learnt by the autoencoder.

End-to-end deep learning approaches have also been
proposed for anomaly detection [10]–[12], [14], [15].
The convolutional autoencoder (convolutional AE) can
be used to learn a model of normality from video,
then reconstruction error [10]–[12] or prediction error
[14], [15] provide a local measure for anomaly detec-
tion. A Generative Adversarial Network (GAN) can
be employed to generate a normal distribution over
some datasets [11], [14] by jointly optimising with a
discriminator that competes to distinguish what is a
real normal sample from what is a generated one. The
motion dynamic can be learnt using a multi-channel
approach, fusing appearance and motion information,
and a cross-channel task, forcing the generator to trans-
form raw-pixel data into motion information and vice
versa [11] or using FlowNet combined with U-net for a
single frame prediction [14]. The combination of a con-
volutional autoencoder and U-net has also been used
to build two-stream network with a shared encoder in
which one decoder is for a single frame reconstruction
and one is for translating an image to optical flow
[15]. Another Spatio-Temporal autoencoder has been
proposed for video anomaly detection [16]. The results
show that applying 3D convolution in the encoder and
3D deconvolution in the decoder helps to enhance the
capability of extracting motion patterns over the tempo-
ral dimension.

A memory module is proposed into the AE to ad-
dress these problems [17], [18]. The encoder inputs a
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Fig. 1: The encoding-decoding structure used for future prediction or reconstruction with video volumes of τ frames.

normal video frame and extracts feature maps. The
encoding features are then used to retrieve prototypical
normal patterns in the memory items and to update the
memory. Then the feature maps and aggregated mem-
ory items are fed into the decoder for reconstructing the
input video frame or predicting the next frame. Using
cosine similarity and the softmax function for matching
probability between incoming encoding features and
memory items, the global memory can be read and writ-
ten to. Since normal patterns in training and testing sets
may be different, the memory items are updated during
training and testing time, with the use of a predefined
threshold to prevent updating on anomaly patterns [18].
However, it is impossible to find an optimal threshold
to distinguish between normal and abnormal patterns
under various scenarios. Meta-learning methodology is
introduced into a Dynamic Prototype Unit (DPU) to
learn prototypes for encoding normal dynamics and to
enable the fast adaption capacity to a new scene with
only a few training frames [19]. As in previous work
[18], the DPU inputs the encoding feature maps, which
are outputs of the encoder part of U-net, to generate a
pool of dynamic prototypes. However it is trained in
a fully differential attention manner in which attention
mapping functions are implemented as fully connected
layers and updated using gradient descent style. After
training the AE backbone using only frame prediction
loss, the DPU module is trained with the meta-training
phase using frame pairs sampled from videos of diverse
scenes. In the testing phase, in order to adapt the model
to a new scene, the first few frames of the sequence
in this scene are used to construct K-shot input-output
frame pairs. The results show that the DPU is more
memory-efficient than the memory module in previous
work [17], [18].

Another approach to learning regular spatio-
temporal patterns is to use a convolutional LSTM [13],

[20]. The motivation is that reconstruction over a longer
duration using the memory of the LSTM should capture
more complex flow patterns. The convolutional network
is used to encode each frame, then feeding these encod-
ing tensors to Convolutional LSTMs to memorize the
change of the appearance which corresponds to motion
information [20]. Two Deconvolutional Networks (De-
convNet) are used, one for reconstructing past frames
and to identify whether an anomaly occurs; and one for
reconstructing the current frame. Thus the reconstruc-
tion error is an indicator of the change in appearance or
motion. The temporal unit in [13], [20] is applied on the
final spatial stage, which encodes high level represen-
tations. Interleaving RNNs between spatial convolution
layers has recently been shown to improve performance
on precipitation now-casting [21]. The model can learn
temporal information on hierarchical spatial represen-
tations from low-level to high-level. In our work, we
adopt the same architecture, except that we remain
with convolutional LSTMs instead of the complex tra-
jGRU RNN [21]. Our results show a comparable level
of performance to the state of the art on benchmark
datasets with fewer model parameters than state of
the art models. Moreover, using prediction gives better
performance than reconstruction. Finally, performance
varies as expected with different prediction windows.

2. Architecture

Figure 1 illustrates the encoding-decoding structure
for future prediction or reconstruction, motivated by
earlier work [21] and adapted for anomaly detection.
At each time step, the network takes a video volume
of τ video frames Ft−τ+1, ..., Ft, and generates an
output volume of the same size, predicting the future
Ft+1, ..., Ft+τ or reconstructing the input in reverse
order Ft, ..., Ft−τ+1.
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2.1. Encoding-decoding model

The structure consists of two networks, an encoding
network and a decoding network (Fig. 1). The encoder
contains three convolutional layers, each followed by
leaky ReLU with negative slope equal to 0.2 [22]. In
order to do down-sampling, we use all three convolu-
tional layers with stride. The strided convolution allows
the network to learn its own spatial down-sampling.
Similarly, three deconvolution layers are used in the de-
coder to learn its own spatial up-sampling. The goal of
temporal encoding is to capture and compress changes
due to motion in the input sequence into encoding
hidden states that allow the decoder to reconstruct the
input or predict the future.

Fig. 2: The regularity score of video sequence of the CUHK Avenue
dataset [4]. The score decreases when an anomaly (a running man)
appears on the scene.

Spatio-temporal LSTM cells [23] are employed as a
temporal encoder/decoder. At each time t, the convo-
lutional LSTM (convLSTM) module receives as input a
new video frame after projection in the spatial feature
space. This is used together with the memory content
and output of the previous step t − 1 to compute new
memory activations. Interleaving multiple convLSTMs
between convolutional layers helps the model learn
spatio-temporal dynamic information at different levels.
The high level states capture global spatial-temporal
representations while the lower level states retain the
detail of local spatio-temporal representations. After the
last frame is read, the decoding LSTMs take correspond-
ing states from the encoder as their initial states and
output an estimate for the target sequence (Fig. 1). The
low-level states are combined with the up-sampling
outputs as the initial states and inputs of decoding
LSTMs helps to aggregate low-level information to the
up-scaling data stream. Therefore, the output contains
details on both background and object (Fig. 3).

2.2. Input data layer

The input to the model is a video volume consist-
ing of τ consecutive frames. Each frame is extracted
from raw video, converted to a gray-scale image and
resized to 227 × 227. The pixel values are scaled to the

range [0, 1]. We stack τ frames in the 4th dimension
into video volumes and use them as the input of size
227 × 227 × 1 × τ to the encoder. Following [10], we
generate more video sequences by concatenating frames
with skipping strides of 1, 2 and 3, thereby simu-
lating faster motion patterns. Although speed can be
important in anomaly detection, we still carry out this
augmentation to minimise over-fitting and to have a fair
comparison with [10], [13]. Unlike [10], we do not stack
precomputed optical flow into our input volume, in the
expectation that the network can learn the necessary
patterns of motion.

3. Training

The weights Wl and biases bl of each layer l are
learned by minimizing the regularized least squares
error:

1

2Nτ

N∑
n=1

‖θn − θ̂n‖22 +
λ

2

∑
l

‖Wl‖22 (1)

where θ̂n is the predicted frame sequence (or the recon-
structed frame sequence) from the model and θn is the
target sequence. The first term is the prediction error
(or the reconstruction error) and the second term is to
regularize the weights. λ is a hyper-parameter used to
balance the importance of two terms.

The weights in each convolutional layer are ini-
tialized from a zero-mean Gaussian distribution with
standard deviation calculated from the number of input
channels and the spatial filter size of the layer [24].
This is a robust initialization method that particularly
considers the rectifier nonlinearities. We initialize the
weights for convLSTM using a zero-mean Gaussian
distribution with a fixed standard deviation of 0.01. The
biases for all layers are initialized to zero. The input-
to-hidden and hidden-to-hidden convolutional filters in
the convLSTM cell are the same size.

3.1. Anomalous event detection

The Adam [25] method is used to optimize the error
in Eq. 1 with batch size N = 4, momentum of 0.9 and
0.999, and weight decay λ = 5 × 10−4 [26]. We train
a network separately on each dataset so that the model
learns the specific normal patterns. An event may be
normal in one dataset but abnormal in another. For
example, people going towards the turnstile to enter
the subway station is normal in the Subway Entrance
dataset but abnormal in the Subway Exit dataset. We
start training the model with a learning rate of 10−4.
After 80 epochs, we stop training and use the model for
anomaly detection.

4. Regularity score for anomaly detection

Once the model is trained, the prediction error be-
tween each output frame F̂i and the target frame Fi
in the video sequence is computed, then errors of all τ
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TABLE 1: Performance comparison with the state of the art.

Method
AUC/EER (%)

UCSDPed1 UCSDPed2 CUHK Av-
enue

Subway En-
trance

Subway
Exit

Conv-WTA [7] 91.6/14.8 95/9.5 81/26.5 - -
AMDN [8] 92.1/16 90.8/17.1 - -
GAN [11] - 93.5/15.6 - - -
Conv-AE [10] 81/27.9 90/21.7 70.2/25.1 94.3/26.0 80.7/9.9
ST-AE [13] 89.9/12.5 87.4/12.0 80.3/20.7 84.7/23.7 94.0/9.5
Past-Current-LSTM [20] 75.5/− 88.1/− 77/− 93.3/− 87.7/−
STAE-3D [16] 92.3/15.3 91.2/16.7 77.1/33.8 − −
FlowNet-Unet-GAN [14] 83.1/− 95.4/− 85.1/− − −
Two-streams AE [15] - 94.1/− 83.3/− − −
MemAE [17] - 96.2/− 86.9/− − −
LMN [18] - 97/− 88.5/− − −
MPD* [19] 83.2/− 95.1/− 84.0/− − −
MPD [19] 85.1/− 96.9/− 89.5/− − −

Ours (prediction) 80.8/25.1 92.3/14.4 84.8/22.4 90.2/15.9 95/8

frames are summed up to form the prediction error for
a volume as follows:

e(t) =
i=t+τ∑
i=t+1

||F̂i − Fi||2 (2)

The prediction error then is normalized to compute a
regularity score s(t) of a testing volume as follows [10]:

s(t) = 1− e(t)−mint′e(t′)
maxt′e(t′)

(3)

where mint′e(t′) and maxt′e(t′) are calculated over the
prediction errors of all volumes in the same test video.
If the regularity score s(t) is less than a threshold, the
corresponding test volume is abnormal.

We also use the same architecture for reconstruction
in our experiments. Instead of using the next τ frames
as the target sequence, we use the input sequence in re-
verse order as the target. Replacing the target sequence
in Eq. 2, we obtain the reconstruction error and use it
for anomaly detection with the reconstruction model.

5. Experiments

Our method is evaluated both quantitatively and
qualitatively. We modify and use Caffe [27] for all our
experiments. Code and trained models are available at
https : //github.com/t2mhanh/convLSTM_Predicti
on_AnomalyDetection.

5.1. Datasets

Our models are trained on five of the most com-
monly used datasets for anomaly detection: UCSD
(UCSDPed1 and UCSDPed2) [2], CUHK Avenue [4],
Subway (Entrance and Exit) [5]. The UCSD and CUHK
datasets have separate training videos which contain
mostly normal events. The first 12 minutes of Subway
Entrance and the first 5 minutes of Subway Exit are used
for training.

5.2. Anomalous event detection

Two performance metrics are employed for eval-
uation and comparison with state of the art results:
Equal Error Rate (EER) and Area Under the ROC Curve
(AUC). The regularity score of each volume determines
whether it is normal or abnormal. We follow the in-
tuition that testing video volumes containing normal
events generate high regularity scores (Eq. 3) since they
are similar to training data. A testing video sequence
containing an anomaly gives a lower score. Setting
different thresholds on the regularity score, volumes
are classified into those that contain an anomaly and
those that do not. These predictions are compared with
ground-truth to give the equal error rate (EER) and
area under the curve (AUC) of the resulting ROC curve
(TPR versus FPR) generated by varying an acceptance
threshold. Good performance has a low EER and high
AUC.

Table 1 shows that the model trained for prediction
performs comparably to state of the art results. Per-
formance on UCSDPed1 is relatively poor, whilst for
CUHK Avenue, the AUC is better than most methods,
except FlowNet-Unet-GAN [14], MemAE [17], LMN
[18], MPD [19]. However, MemAE [17], LMN [18] and
MPD [19] have more parameters than our models which
is shown in Table 3.

TABLE 2: Comparison of AUC/EER with different models. τ is the
number of frames in an input sequence and a target sequence.

Method
AUC/EER (%)

UCSDPed1 UCSDPed2 CUHK
Avenue

Reconstruction 75.6/28.9 87.5/17.1 81.4/26.1

Prediction
τ = 2 78.3/27.1 86.1/21.1 85.1/22.5

τ = 5 80.8/25.1 92.3/14.4 84.8/22.4

τ = 8 79/26.5 89.6/18.5 83.2/23.2

Table 2 shows the results when different models
are used. In the table, “Reconstruction” is for a model
trained for reconstructing a sequence of 5 frames and
“Prediction” is for models trained to predict τ frames.
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The model trained for future prediction gives better
results than the reconstruction model. This may be be-
cause prediction will always try to draw back to normal-
ity, whereas reconstruction works from pre-sight of an
anomalous sequence. The quality comparison between
reconstruction and prediction is shown in Fig. 3.

Reconstruction (error e(t) = 21.57) - UCSDPed2 - biker

Prediction (error e(t) = 41.03) - UCSDPed2 - biker

Reconstruction (error e(t) = 30.28) - UCSDPed1 - car

Prediction (error e(t) = 66.25)- UCSDPed1 - car

Reconstruction (error e(t) = 11) - CUHK Avenue - running

Prediction (error e(t) = 59.81) - CUHK Avenue - running

Fig. 3: Prediction and reconstruction of third frame out of 5
(middle), compared to target frame (left); accumulated per-pixel
error over 5 frames as blue-green-red colour map (right). Ground
truth anomalies shown as rectangles. Taken from UCSDPed2,
UCSDPed1 and CUHK Avenue. Best viewed in color

The number of model parameters for the method
against different end-to-end trainable models in the

state of the art are compared in Table 3. We achieve 75
fps for anomaly detection with a GeForce GTX TITAN
X, faster than other state of the art methods with the
same setting [18].

TABLE 3: Comparison of model complexity and testing speed.

Methods Parameters (M) FPS
Conv-AE [10] 8.4 −
ST-AE [13] 1.1 −
STAE-3D [16] 0.5 −
MemAE [17] 6.2 45

LMN [18] 15.0 67

Ours 0.85 75

As can be seen in Fig. 3, the future prediction of a
biker becomes worse than the prediction of a pedes-
trian. The model is trained mostly on video sequences
containing pedestrians, the prediction of the biker looks
similar to the pedestrian. Here the prediction error is
significantly larger than the reconstruction error.

6. Conclusion

We have adapted a state of the art predictive
encoder-decoder deep network to detect abnormal
events in video. We evaluate detection performance
using both sequence prediction and reconstruction, and
show that prediction gives superior performance on
anomaly detection. For the prediction model, we obtain
competitive performance to state of the art methods
on five standard datasets. Finally, we evaluate perfor-
mance across different prediction windows, encompass-
ing varying levels of motion complexity. Our future
work includes investigating the fusion of gray-scale
images and optical flow on input.
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