
6 UD - JOURNAL OF SCIENCE AND TECHNOLOGY: ISSUE ON INFORMATION AND COMMUNICATIONS TECHNOLOGY, VOL. 20, NO. 12.2, 2022

An Automatic System for Crop Monitoring
and Culture Based on IoRT

Tran Dang Khoa Phan, Van Thanh Vu*

Abstract—The development of automated farming systems in precision agriculture has been attracting increasing research
interest. In this paper, we present an automatic system for crop culture and monitoring based on the Internet of Robotic
Things (IoRT). The system includes: an agricultural farming robot with built-in object detection block based on deep learning
to locate and classify plant and weed in the image; a device that monitors the parameters of the soil and air environment. The
information from the robot and the monitoring device is combined to help the robot determine the right way to take care of the
plants. Technical solutions for each component of the system are fully proposed, implemented and evaluated. The experimental
results show that the robot is capable of detecting objects with high accuracy; monitoring equipment operates stably; suitable
robot design, allowing precise movement of the actuator to any position in the field of view.

Index Terms—IoRT, Deep Learning, Object Detection, YOLOv3, Precision Farming.
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1. Introduction

ONE of the goals of sustainable agricultural devel-
opment is to increase the yield of crops but at the

same time reduce dependence on pesticides and herbi-
cides. Precision agriculture seeks techniques: to monitor
the parameters of the soil and air environment of the
cultivated area; and to monitor the necessary indicators
to assess the growth of the crop. From there, the neces-
sary care measures are applied precisely to each plant
object to reduce the amount of chemicals used. Along
with the development of agricultural robots, automation
in agricultural farming is getting closer to reality.

In this paper, we study the automatic crop moni-
toring and culture system. The core part of this system
is the object detection block, which locates objects of
a certain class in the image. To date, most of these
systems have relied on image analysis to detect plants
and weeds. Bawden et al. proposed a weeding robot,
in which classical image processing techniques such as
color-based image segmentation, Local Binary Pattern
(LBP) are combined with machine learning (ML) model
to detect plants and weeds in images [1]. Different types
of image features and classifiers have been combined
to improve the effectiveness of object detection [2]–[4].
However, the classical ML approach does not achieve
high accuracy because the complexity of handcraft fea-
tures and ML models is not enough to allow the model
to generalize the data.

Recently, the rapid development of deep learning
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(DL) has greatly improved many problems such as
image classification, object detection, etc. Convolutional
neural networks have been applied to solve problems
in the field of precision agriculture. Encoder-decoder
model has been proposed to segment images containing
weeds [5]. The RGB color image and the near-infrared
image were combined and fed into the model. In [6],
[7], the authors applied U-Net to segment an image into
plants and weeds. MobileNets [8] was used to increase
the inference time to 10 FPS on Raspberry Pi.

In this paper, we present an automatic crop moni-
toring and care system based on the Internet of Robotic
Things (IoRT). The term IoRT refers to intelligent robotic
devices that can monitor events; aggregate sensor data
from various sources; use local and distributed artificial
intelligence (AI) to determine the best measure; and
then act to manipulate physical objects [9]. The goal of
the system is to build a robot with built-in blocks that
detects plants and weeds in images obtained from the
camera mounted on the robot. Based on the information
about the class and coordinates of the objects, the robot
performs care operations corresponding to each type of
object. In addition, the system is also integrated with
equipment to monitor the parameters of the soil and
air environment to help the system to make decision on
care measure. The main contribution of this study is to
propose a complete system for monitoring and caring
crops based on IoRT. Technical solutions for each block
are proposed, implemented and evaluated completely.

The rest of the paper is organized as follows. In
Section 2, we present the proposed system and the
detailed design of blocks. The experimental results and
evaluation of the proposed system are described in
Section 3.
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2. Proposed system
2.1. The structure

The proposed system consists of four main blocks:
the sensor station, the crop detection, the farming robot,
and the remote monitoring and control (Fig. 1).

Fig. 1: The structure of the proposed system.

The sensor station collects the parameters of the
plant’s growth environment including temperature, fer-
tilizer content, humidity, . . . These data is sent to the
database periodically and used for making decision on
which farming operation should be applied.

The crop detection block uses a camera to capture
images of the working space. A model based on deep
learning is developed to detect and locate objects (crops
and weeds) in images. The model is deployed on an
embedded computer. The output of the model is a data
series including coordinates of the object and the class
of detected objects. That data string is sent to a storage
server through Internet.

The information of objects’ coordinates and classes
is received by the farming robot via the storage server.
This block controls a robot frame to move an actuator
to perform farming operations at positions of objects.
Precise care measure for each class improves crop yields,
while reducing energy consumption and water usage.

The remote monitoring and control block uses a
cloud computing service to store the data of the sensor
station block. Besides, it allows users to monitor the pa-
rameters of the farming system and control the system
remotely via an Android application and a website.

2.2. Hardware and software design

In this section, we present the hardware and soft-
ware design for the system proposed in Section 2.1.

2.2.1. Sensor station

The structure of the sensor station is presented in
Fig. 2. The Wi-Fi microcontroller ESP8266 is used to read
the data from the sensors and periodically transmit it
to the database via Wi-Fi. The power for all sensors is
supplied from solar energy and battery storage.

The algorithm diagram for the sensor station block is
shown in Fig. 3. First, the interfaces (UART, I2C), timer
and connections (Wi-Fi, Firebase) are initialized. Every
minute data is collected from sensors and is updated to
a database. According to research [10], compared with
other cloud computing services such as cloud MQTT,

Fig. 2: The structure of the sensor station.

FRD, Firebase has outstanding advantages, such as data
transmission rate, number of connections, data storage
method, service cost. Thus, we choose Firebase Realtime
Database service to store and synchronize data with the
system.

Fig. 3: The algorithm diagram for the sensor station.

2.2.2. Crop detection
The crop detection block has the function of locating

and classifying plants and weeds in images. The input
to the block is a color image; and the output is the
coordinates of the bounding box surrounding the object
and its classification. Because we plan to implement
this block on an embedded computer (particularly, a
Raspberry Pi 4), we choose the model based on the
compromise between the accuracy and the processing
speed. From the comparative results of the study [11],
we decide to choose the YOLOv3 model. The overall
structure of YOLOv3 is shown in Fig. 4.

Fig. 4: The structure of YOLOv3.

YOLOv3 is based on a CNN architecture. The input
image is first passed through a feature extraction block.
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The Darknet-53 architecture is used to extract feature
maps. Then, the features are fed into a multi-resolution
prediction block. YOLOv3 uses 3 prediction stages with
different resolutions. The output of each prediction
stage is the position of the bounding boxes around
the objects and their classes. This technique makes the
model capable of detecting objects appearing in images
at many different resolutions. Skip connections are used
to integrate low-level features into prediction stages
to increase prediction efficiency. Post-processing tech-
niques such as K-means, Non-Maximum Suppression
are used to select the best prediction results.

After training and testing, the model is deployed on
Raspberry Pi 4, which is an embedded computer. The al-
gorithm diagram of the crop detection block is shown in
Fig. 5. First, the camera captures images of the working
space. A captured image is divided into 4 equal parts.
Each part of the image is processed sequentially in order
to reduce the computing complexity. When a command
is received from Firebase, images are in turn passed to
the YOLOv3 model to perform object detection. The
object’s class and coordinates are updated to Firebase.

Fig. 5: The algorithm diagram of the crop detection block.

2.2.3. Farming robot

The design of the farming robot consists of the robot
frame and the control circuit. The design of the robot
frame is shown in Fig. 6. The basic specifications are as
follows: dimensions - 0.7m × 1.6m × 0.81m; distance
from the ground - 0.23m. The robot requires 3 stepper
motors for moving along 3 axes. Since the Y but with the
long Y axis, it needs to be stable while movi axis is long,
we use 2 stepper motors in parallel to make the motion
along this Y axis stable and accurate. The robot also has
3 position switches for each axis to determine the limit
of each axis, avoiding the situation that the motor still
rotates when it goes to the end of its path. The sprinkler
actuator is capable of moving along the X and Z axes.

Fig. 6: The robot frame.

According to the requirement of the load, we choose
the stepper motor 57HS56 with the following basic
parameters: voltage - 4.42V ; maximum load current -
3A, 2 phase. Accordingly, we select the control circuit
TB6600 with the following parameters: voltage - 9÷42V ;
maximum load current - 4A; optically isolated and high-
speed input; built-in over-current and over-voltage pro-
tection; micro-stepping modes - 1/2, 1/4, 1/8 and 1/16.
The microcontroller ATMega2560 is chosen to control
the stepper motors thanks to the number of pins for
digital and analog communication and stable operation.
Regarding data collection from the server, the ESP8266
is used as the Wi-Fi microcontroller.

Fig. 7: The algorithm diagram for robot control.
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The algorithm diagram for robot control is shown in
Fig. 7. The ATMega2560 microcontroller initializes the
communication with the ESP8266 (UART) and sets the
initial values for the stepper motor control circuit, posi-
tion switches, and sensors. Then, the actuator is moved
to the home position, waiting for the command from
the ESP8266. Depending on the command received, the
microcontroller executes the required modes from the
ESP8266. Upon completion, the actuator is returned
to the home position, waiting for commands from the
ESP8266.

When receiving a command for farming operation,
the robot updates the image coordinates of plants and
weeds. The system calculates the actual coordinates
in the working space. The actuator is moved to each
position according to these coordinates. At each location
of crops, the robot measures soil moisture and water
crops if the humidity is below the threshold. For weeds,
the robot sprays herbicide.

The algorithm diagram for receiving and sending
data to Firebase is shown in Fig. 8. The ESP8266 con-
nects to Wi-Fi and initializes the setting for Firebase
connection. Then, the ESP8266 reads the variables of
operating modes in turn. At the same time, the ESP8266
sends a command to the ATMega2560 to perform the
requested mode.

Fig. 8: The algorithm diagram for receiving and sending data to
Firebase.

2.2.4. Remote monitoring and control

In order to remotely monitor and control the system,
we design an user interface via a website and an An-
droid application. The website and the mobile applica-
tion have a similar design, including 3 pages (tabs) with
the functions described as the diagram below (Fig. 9).

Fig. 9: The structure of the website and the Android application.

3. Experimental results
3.1. Sensor station

The main circuit board of the sensor station block is
designed in double-sided printed circuit with a compact
size of 6cm × 5cm (Fig. 10a). The block is equipped
with sensors according to the industry standards ISO
10012 − 1 and ISO 10012 − 2. In addition, a solar
panel with a capacity of 35W and a battery station
of 12.6V/7.8Ah is used to maintain operating power
for this block. All devices are integrated on a single
rack to ensure compactness and ease of installation. The
cubic volume of the entire sensor station block is about
24cm×18cm×12cm. The construction results of sensor
station block are shown in Fig. 10b.

(a) (b)

Fig. 10: The sensor station: (a) The main circuit board; (b) Installa-
tion on a rack.

To evaluate the performance of the sensor station
block, we have monitored the data acquisition and
transmission process of this block within 10 days in the
condition of stable Wi-Fi condition and outdoor envi-
ronment. Fig. 11 shows the data updated from Firebase
and displayed on the website. Monitoring results show
that the data is continuously updated and there are no
interruptions or data errors during the transmission.

Fig. 11: The data of soil moisture updated from Firebase.
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3.2. Farming robot

The construction results of the farming robot are
shown in Fig. 12. Fig. 12a is the robot made of industrial
aluminum frame, firmly coupled, ensuring stability for
the movement of the actuator. The sprinkler actuator is
shown in Fig. 12b. This actuator, which is controlled by
stepper motors, is connected to a water pump motor
and a soil moisture sensor.

(a) (b)

Fig. 12: The farming robot: (a) The robot frame; (b) The sprinkler
actuator.

We evaluate the farming robot block by the accuracy
of the actuator control. Positions with known coor-
dinates are evenly distributed on the working plane.
Then, the control parameters are calculated to move
the actuator to these positions. For each position, the
actuator is moved to the position and returned to the
home position. This process was performed 50 times for
each position to evaluate errors. For each experiment,
the Euclidean error between the ground-truth position
and the actual position is recorded. Statistical results
show that the error fluctuates in the range of 4 ÷ 8mm
and does not change significantly with distance (within
the working plane). The position switches allow the
system to eliminate the accumulated error.

3.3. Crop detection

The crop detection block is evaluated through
training and testing on our database. We collected a
database, including images of lettuces and weeds from
vegetable farms in Lien Chieu district (Da Nang). Crops
were recorded at different growth stages. The total num-
ber of images is 5, 038. We labeled images manually.
Each object in the image is assigned a bounding box
and a class. Illustration of the labeling process is shown
in Fig. 13.

According to the opinions obtained from the farm-
ers, lettuces at different growth stages have different
care methods. Therefore, we divided lettuces into 2
classes: large lettuces and small lettuces. Meanwhile,
different types of weeds are gathered into a single layer.
The total number of labels is 51, 375. The number of
labels for the large lettuces, small lettuces, and weeds
are 21, 833,16, 366 and 13, 176, respectively. The split
ratio between the training set and the test set is 80÷ 20.

To evaluate the model, we use the following criteria:
AP (Average Precision), mAP (Mean Average Precision),
and IoU (Intersection over Union) [11]. The model is
implemented by Python. The training parameters are

Fig. 13: Illustration of the labeling process.

set as follows: batch size – 64; number of loops – 30, 000;
initialization coefficient – 0.001.

The change of the loss function and mAP with the
number of iterations for the training set is shown in Fig.
14. It can be seen that the loss function converges after
about 20, 000 iterations. However, we trained the model
for 30, 000 iterations to ensure the model completely
converges. In the results, the mAP value converged to
the value of about 79%.

Fig. 14: The dependence of the loss function and mAP on the
number of iterations.

The AP results of each class for the test set are shown
in Table 1. It can be seen that the APs for large lettuces
and small lettuces are high, while the AP for weeds is
much lower. The possible causes are: (i) the number of
samples of the lettuce classes is majority, so the model
tends to detect this object to minimize the loss function;
(ii) compared with lettuces, weeds are diverse in shape
and color, so it would be more difficult to detect weeds.

TABLE 1: The AP results for the test set.

Classes Large lettuce Small lettuce Weeds

AP 91.16% 89.31% 61.47%

For the test set, the model achieved the mAP result of
80.49%. Knowing that, the mAP results of the YOLOv3
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model in the original study [11] ranged from 51.5% to
57.9%. Accordingly, the obtained results are positive.
In addition, the average IoU result reached 0.64. The
illustrative results for an image are shown in Fig. 15a.
The information of objects’ coordinates and classes are
updated to Firebase (Fig. 15b).

(a) (b)

Fig. 15: (a) Illustrative results for object detection; (b) Coordinates
and classes of detected objects updated to Firebase.

Since the data is unbalanced between classes, we
plan to improve the training and testing results of the
model by the following ways: (i) increase the number
of the minority class (weeds) to achieve the balance
between classes; (ii) adjust the loss function to assign
greater weight to the minority class samples.

3.4. Remote monitoring and control

(a)

(b)

Fig. 16: Website interface: (a) Smart care mode; (b) Data monitoring
mode.

The interface of the website is shown in Fig. 16. The
website allows users to choose the following modes:
smart care, data monitoring, and setting. For the smart
care mode, the user can select the crop detection func-
tion, which is usually done first with the new crop
tray. After that, the system will periodically work to

identify the objects on the planting tray. The information
of objects’ location and classes is updated to Firebase.
The robot relies on the data of object detection from
Firebase to perform farming operations. For the data
monitoring mode, the user can monitor the parameters
collected from the sensor station. In the case that the
measured values exceed the given thresholds, the effects
will appear for warning.

The interface of the mobile application is similar to
that of the website (Fig. 17). The system information
page provides location, time and environmental condi-
tions updated from Firebase. It also allows users to set
parameters such as humidity thresholds.

(a) (b) (c)

Fig. 17: Application interface: (a) System information; (b) Data
monitoring mode; (c) Smart care mode.

4. Conclusion
In this paper, we have presented an automatic crop

care and monitoring system based on IoRT platform.
The system includes: a robot frame with integrated
object detection block based on the YOLOv3 model; and
a soil and air environment monitoring device. Hardware
and software design for each component of the system
was fully proposed, implemented and evaluated. The
experimental results showed that the system is capable
of correct operation and can be deployed in practice. In
the future, we will develop localization and navigation
blocks for the robot.
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