SYNTHESIS AND STRUCTURAL DETERMINATION OF PYRROLIDINE-2,3-DIONE DERIVATIVES FROM 4-ACETYL-3-HYDROXY-5-PHENYL-1-(3-NITROPHENYL)-3-PYRROLINE-2-ONE

Nguyen Tran Nguyen*, Vo Viet Dai

The University of Danang - University of Science and Education

*Corresponding author: ntnguyen@ued.udn.vn

(Received: November 17, 2022; Accepted: February 20, 2023)

Abstract - Numerous heterocyclic compounds containing 3-pyrrolidine-2-one or pyrrolidine-2,3-dione core have been found in nature and showed valuable biological activities. Therefore, the synthesis of 3-pyrrolidine-2-one derivatives and pyrrolidine-2,3-dione derivatives have attracted more and more attention from organic chemists and medicinal chemists. In this manuscript, 4-acetyl-3-hydroxy-1-(3-nitrophcnyl)-5-phenyl-3-pyrroline-2-one has been prepared via three-component reaction and, besides, two 1,4,5-trisubstituted pyrrolidine-2,3-diones have also been synthesized via the reaction between the above 3-pyrrolidine-2-one derivative and aliphatic amine such as methylvamine and 4-methoxybenzylamine. The structure of desired products have been confirmed via 1D NMR (1H NMR, 13C NMR), 2D NMR (HSQC, HMBC) and high resolution mass spectrometry (ESI – HRMS).

Key words - 2-pyrrolidinone; 3-pyrroline-2-one; 1,4,5-trisubstituted pyrrolidine-2,3-dione; 1,5-dihydro-2H-pyrroline-2-one; multi-component reaction

1. Introduction

It is clear that nitrogen-containing heterocyclic compounds always play an important role in drug discovery [1], [2]. Heterocyclic compounds containing 2-pyrrolidinone core have attracted more and more attention due to their existence in various natural and non-natural biologically active compounds. For instance, Salinosporamide A (1) is a marine natural product produced by bacteria Salinispora tropica and Salinispora arenicola [3]. Flavoalkaloid with 2-pyrrolidinone ring (2) isolated from Xi-Gui green tea and showed protective effect against the senescence induced by high dose glucose on the HUVECs at 1.0 and 10 μM [4]. Non-natural macrocycle containing 2-pyrrolidinone moiety (3) exhibited strong Tyk2 inhibitory activity, along with excellent selectivity over the Jak family kinases (Figure 1) [5].

![Figure 1. Biologically active natural and non-natural compounds with 2-pyrrolidinone core](image1)

Within the family of 2-pyrrolidinone derivatives, 1,5-dihydro-2H-pyrrol-2-ones, also named as 3-pyrroline-2-one, could be further modified and therefore, they are valuable building blocks in organic synthesis [6]. In addition, the structure of these unsaturated γ-lactam derivatives also occurs in numerous biologically active natural product. For example, oteromycin (4) has been isolated from fungus strains MF5810 and MF5811 which exhibited activity as a HIV-1 integrase inhibitor [7]. Equisentin (5) was isolated from the fungus Fusarium pallidiforme which shows a very broad range of biological activities [8]. Cryptocin (6), derived from the endophytic fungus Cryptosporiopsis cf. quercina, is inactive against human pathogenic fungi but active against numerous plant pathogenic ones (Figure 2) [9]. Moreover, 1,5-dihydro-2H-pyrrol-2-one is also a key structural scaffold which could be found in many synthetic bioactive compounds [10].

![Figure 2. Naturally occurring 1,5-dihydro-2H-pyrrol-2-ones derived from fungi](image2)

One of the most common methodologies for the construction of the skeleton of substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones is based on one-pot multi-component reactions of aromatic aldehydes, amines and acetylenedicarboxylate in the presence of an acid catalyst [11], [12], [13], [14]. However, 3-pyrroline-2-one derivatives obtained from this method contain alkoxycarbonyl group (−COOR) at the 4-position and therefore, these nitrogen-containing five-membered rings could only be functionalized with nucleophilic amine at the 3-position. The resulting compounds exist predominantly in the enamine form due to resonance stabilization via intramolecular hydrogen bonding (Figure 3) [15].

![Figure 3. Synthesis of substituted 3-hydroxy-1,5-dihydro-2H-pyrrol-2-ones based on three-component reaction and their reaction with amine (R'NH2)](image3)
In addition to alkoxycarbonyl group (−COOR), acetyl group (−COCH₃) could also be attached to the 4-position of the 3-hydroxy-1,5-di hydro-2H-pyrrol-2-ones to obtain 4-acetyl-3-hydroxy-1,5-di hydro-2H-pyrrol-2-ones [16]. In this manuscript, the synthesis of 4-acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrrole-2-one via three component reaction will be reported. Moreover, two pyrrolidine-2,3-dione derivatives have been synthesized via the reaction between 4-acyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrrole-2-one and aliphatic amines in ethanol solvent. The structure of all products will be elucidated via modern spectroscopic methods.

2. Experimental section

2.1. General experimental methods

Bruker Avance II+ 600 MHz spectrometers, and chemical shifts (δ) are reported in parts per million (ppm) referenced to tetramethylsilane (TMS) or the internal (NMR) solvent signals. High resolution mass spectra (HRMS) were recorded with SCIEX X500 QTOF instrument in which electrospray ionization (ESI) source in a positive mode was applied. The temperature of the source was set at 300°C. C N H O purity nitrogen. 7.97 − 7.95 (m, 2H; Ar

2.2. Procedure for synthesis of 4-acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrrole-2-one [17]

Benzaldehyde (0.075 mL, 1.5 equiv., 0.75 mmol), 3-nitroaniline (69.0 mg, 1.0 equiv., 0.5 mmol) and glacial acetic acid (1.0 mL) were added to a round-bottom flask of 10 mL. The resulting mixture was magnetically stirred under Ar atmosphere for 1 hour. Subsequently, ethyl 2,4-dio xovalerate (0.07 mL, 1.0 equiv., 0.5 mmol) was added and the reaction was carried out at room temperature for 4 hours under Ar atmosphere. The crude product was recrystallized in the solvent mixture of dichloromethane and ethylacetate, dichloromethane was then evaporated on rotary evaporator to obtain pure product (76.5 mg, 45.1%) as off-white solid.

2.3. Procedure for synthesis of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrro lidine-2,3-dione [17]

4-Acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrro lin-2-one was obtained as an off-white solid, melting point: 232 − 233°C. HRMS (ESI-TOF MS/MS) m/z: found 339.0982 [M + H]⁺, 361.0802 [M + Na]⁺ (calculated: 339.0981 [M + H]⁺, 361.0800 [M + Na]⁺). 1H NMR (600 MHz, CDCl₃) δ 8.34 (t, J(H,H) = 2.16 Hz, 1H; Ar-H), 7.97 − 7.95 (m, 2H; Ar-H), 7.46 (t, J(H,H) = 8.23 Hz, 1H; Ar-H), 7.25 − 7.32 (m, 5H; Ar-H), 5.88 (s, 1H). 2.17 ppm (s, 3H; CH₃).

3. Results and discussion

4-Acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrrolin-2-one showed resonance signals in the chemical shift region of 7.97 − 7.95 ppm corresponding to nine protons of two benzene rings. In addition, the spectrum also exhibited two singlets at 5.88 and
2.17 ppm representing for proton at the 5-position of 3-pyrrrole-2-one heterocyclic ring and three protons of methyl group (−CH₃), respectively (Figure 7). Moreover, the ¹³C NMR spectrum of this compound in CDCl₃ was also recorded. Along with resonance signals of aromatic carbon atoms in the region of 148.55 – 116.77 ppm, peaks of other characteristic carbon atoms were also observed in the spectrum. Peaks at 195.88 and 28.81 ppm represent for carbon atoms of carbonyl group (C=O) and methyl group (−CH₃), respectively, of acetyl moiety (−COCH₃) attached to the 4-position of the heterocyclic five-membered ring. Furthermore, carbons at the 2- and 5-positions of the heterocyclic ring were characterized by two resonance signals at the chemical shift of 163.86 and 62.17 ppm, respectively.

Figure 7. ¹H NMR spectrum of 4-acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrrrole-2-one

¹H NMR (600 MHz, CDCl₃) δ 11.44 (s, 1H; NH), 8.25 (t, ³J(H,H) = 2.13 Hz, 1H; Ar-H), 8.06 (dd, ³J(H,H) = 8.15 Hz, 4J(H,H) = 2.16 Hz, 4J(H,H) = 2.19 Hz, 1H; Ar-H), 7.93 (dd, ³J(H,H) = 8.19 Hz, ⁴J(H,H) = 2.18 Hz, ⁴J(H,H) = 2.18 Hz, 1H; Ar-H), 7.44 (t, ³J(H,H) = 8.19 Hz, 1H; Ar-H), 7.25 – 7.19 (m, 5H; Ar-H), 5.81 (s, 1H), 3.01 (d, ³J(H,H) = 5.13 Hz, 3H; CH₃), 1.86 ppm (s, 3H; CH₃). ¹³C NMR (150 MHz, CDCl₃) δ 175.34, 165.83, 164.78, 148.38, 138.11, 137.92, 129.83, 129.25, 129.23, 128.88, 128.03, 120.36, 117.30, 107.31, 61.13, 30.34, 15.35 ppm.

The ¹H NMR spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl) pyrrolidine-2,3-dione appeared resonance signal of proton of secondary amino group (−NH−) at high chemical shift, 11.44 ppm, which is due to intramolecular hydrogen bond. In addition, the spin – spin coupling between protons of secondary amino group (−NH−) and methyl group (−CH₃) which separated by three sigma (σ) bonds was also observed and as a consequence, protons of methyl group was characterized by a doublet at 3.01 ppm. Furthermore, the spectrum showed two singlets at 5.81 and 1.86 ppm representing for one proton at the 5-position of the heterocyclic ring and three protons of the remaining methyl group, respectively (Figure 8). Besides, nine aromatic protons were exhibited by resonance signal in the chemical shift region of 8.26 – 7.19 ppm.

Figure 8. ¹H NMR spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl) pyrrolidine-2,3-dione

In addition to ¹H NMR and ¹³C NMR, 2D NMR spectra of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione were also recorded. ¹H – ¹³C HSQC spectrum showed that protons resonance at 1.86 ppm, 3.01 ppm, and 5.81 ppm correlate with carbons resonance at 15.35 ppm, 30.34 ppm, and 61.13 ppm, respectively. Therefore, peaks at 15.35 ppm, 30.34 ppm, and 61.13 ppm in ¹³C NMR spectrum correspond to C7, C8, and C5, respectively. Besides, there were also other cross peaks resulted from the correlation between aromatic protons and aromatic carbons which are directly attached to each other (Figure 9).

Figure 9. ¹H – ¹³C HSQC spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

In the 2D ¹H – ¹³C HMBC spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl) pyrrolidine-2,3-dione, protons H5, H8 and H7 resonance at 5.81 ppm, 3.01 ppm and 1.86 ppm, respectively, all showed cross peaks with the same carbon resonance at 165.83 ppm. Therefore, ¹³C resonance signal at 165.83 ppm must be that of C6. In addition, the ¹³C resonance at 107.31 ppm showed two cross peaks to H5 and H7 and this means that peak at 107.31 ppm belongs to C4. Besides, proton H5 resonance at 5.81 ppm exhibited cross peak to ¹³C resonance at 138.11 ppm. Furthermore, there were cross peaks aroused from the correlations between carbon signal at 138.11 ppm and hydrogens resonance at 8.25 ppm (triplet, ³J(H,H) = 2.13 Hz), 8.06 ppm (doublet of doublet of doublet, ³J(H,H) = 8.15 Hz, ⁴J(H,H) = 2.16 Hz, ⁵J(H,H) = 2.19 Hz) and 7.44 ppm (triplet, ³J(H,H) = 8.19 Hz). Therefore, peaks at 138.11 ppm,
8.25 ppm, 8.06 ppm, and 7.44 ppm will correspond to C15, H16, H20, and H19, respectively. There were three cross peaks observed from the correlation of 13C resonance signal at 148.38 ppm to H19, H16 and proton resonance at 7.93 ppm. Thus, peaks at 148.38 ppm and 7.93 ppm will represent for C17 and H18, respectively (Figure 10).

In 2D HSQC spectrum, there was a correlation between 13C resonance at 128.88 ppm and proton resonance at 7.20 ppm as a multiplet. Therefore, resonance signals at 7.20 ppm, 128.88 ppm must be those of H12 and C12, respectively. In addition, in 2D HMBC spectrum, protons H5, H12 resonance at 5.81 ppm and 7.20 ppm, respectively, showed cross peaks to the same carbons resonance at 128.03 ppm. Thus, high intensity signal at 128.03 ppm was resulted from the resonance of two chemically equivalent carbon atoms C10 and C14. On the other hand, there were strong cross peaks in HSQC spectrum ensued from the correlation between four protons resonance at 7.26 – 7.24 ppm as a multiplet and carbons resonance at 129.23 ppm, 128.03 ppm. Hence, high intensity peak at 129.23 ppm, 128.03 ppm. Hence, high intensity signal at 7.26 – 7.24 ppm as a multiplet but also hydrogen atom H5. It is undoubtedly that resonance signal at 137.92 ppm will correspond to carbon atom C9. Lastly, based on HSQC spectrum, it could be confirmed that 13C resonance signals at 117.30 ppm, 120.36 ppm, 129.25 ppm, 129.83 ppm represent for carbon atoms C16, C18, C20, C19, respectively. The spectroscopic data of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione could be summarized in Table 1.

Table 1. 1H NMR, 13C NMR spectroscopic data of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione (600/150 MHz, CDCl$_3$)

<table>
<thead>
<tr>
<th>Position</th>
<th>δ_C (ppm)</th>
<th>δ_H (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3</td>
<td>175.34, 164.78</td>
<td>128.88, 7.20 (1H, m)</td>
</tr>
<tr>
<td>4</td>
<td>107.31</td>
<td>138.11</td>
</tr>
<tr>
<td>5</td>
<td>61.13</td>
<td>117.30</td>
</tr>
<tr>
<td>6</td>
<td>165.83</td>
<td>148.38</td>
</tr>
<tr>
<td>7</td>
<td>15.35</td>
<td>120.36</td>
</tr>
<tr>
<td>8</td>
<td>30.34</td>
<td>129.83</td>
</tr>
<tr>
<td>9</td>
<td>137.92</td>
<td>129.25</td>
</tr>
<tr>
<td>10, 14</td>
<td>128.03</td>
<td>8.25 (t, $^J = 2.13$ Hz)</td>
</tr>
<tr>
<td>11, 13</td>
<td>129.23</td>
<td>8.06 (dd, $^J = 1.9$ Hz, $^J = 2.19$ Hz, 1H)</td>
</tr>
</tbody>
</table>

4-[1-(4-methoxybenzyl)amino]ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione was obtained as a light yellow solid, melting point: 233 – 236 °C. HRMS (ESI-TOF MS/MS) m/z: found 458.1716 [M + H]$^+$, 480.1535 [M + Na]$^+$ (calculated: 458.1716 [M + H]$^+$, 480.1535 [M + Na]$^+$). 1H NMR (600 MHz, DMSO-d$_6$) δ 11.46 (t, 3J(H,H) = 5.85 Hz, 1H; NH), 8.56 (t, 4J(H,H) = 2.21 Hz, 1H; Ar-H), 8.02 (dd, 5J(H,H) = 2.21 Hz, 1H; Ar-H), 7.94 (dd, 6J(H,H) = 8.25 Hz, 6J(H,H) = 2.26 Hz, 7J(H,H) = 2.28 Hz, 1H; Ar-H), 7.60 (t, 8J(H,H) = 2.16 Hz, 1H; Ar-H), 7.35 (d, 9J(H,H) = 8.35 Hz, 2H; Ar-H), 7.27 – 7.24 (m, 4H; Ar-H), 7.17 (t, 10J(H,H) = 7.37 Hz, 1H; Ar-H), 6.95 (d, 11J(H,H) = 8.65 Hz, 2H; Ar-H), 6.36 (s, 1H), 4.61 (dd, 12J(H,H) = 6.03 Hz, 13J(H,H) = 15.12 Hz, 1H; CH$_2$), 4.57 (dd, 14J(H,H) = 5.73 Hz, 15J(H,H) = 15.11 Hz, 1H; CH$_3$), 3.75 (s, 3H; OCH$_3$), 1.95 ppm (s, 3H; CH$_3$). 13C NMR (150 MHz, DMSO-d$_6$) δ 174.12, 164.81, 164.21, 158.84, 147.77, 138.67, 137.89, 130.01, 128.99, 128.71, 128.65, 128.34, 128.09, 127.83, 119.84, 116.73, 114.27, 107.53, 58.71, 55.13, 46.06, 15.36 ppm.

Figure 7. 1H NMR spectrum of 4-[1-(4-methoxybenzyl)amino]ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Similar to 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione, the 1H NMR spectrum of 4-[1-(4-methoxybenzyl)amino]ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione also exhibited resonance signals of secondary amino proton (–NH) at
high chemical shift due to intramolecular hydrogen bond, aromatic protons of two benzene rings attached to the 1- and 5-positions of heterocyclic ring. In addition, four protons of para-disubstituted benzene ring were showed by two doublets at the chemical shift of 7.35 ppm and 6.95 ppm. It is clear that three protons of methoxy group (−OCH₃) have lower shielding constant as compared to those of methyl group at the 7-position. Thus, singlet peaks at 3.75 ppm and 1.95 ppm must be that of protons of methoxy group and methyl group, respectively. Furthermore, two methylene protons at the 8-position are chemically non equivalent ones, also called diastereotopic protons, and they will couple with each other. Besides, each methylene proton will also couple with secondary amino proton (−NH) that are separated by three sigma bonds. As a consequence, the resonance of two methylene protons will correspond to two peaks of doublet of doublet at 4.61 ppm and 4.57 ppm.

4. Conclusions

4-Acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrroline-2-one was synthesized successfully via three-component reaction of m-nitroaniline, benzaldehyde and ethyl 2,4-dioxovalerate with the yield of 45.1%. The reaction between this 3-pyrroline-2-one derivative, containing acetyl group (−COCH₃) at the 4-position, with aliphatic amine such as methylamine and 4-methoxybenzylamine in absolute ethanol as green solvent will result in the formation of 1,4,5-trisubstituted pyrrolidine-2,3-diones. The structure of products was confirmed by nuclear magnetic resonance spectroscopy (1D and 2D NMR) and high resolution mass spectrometry (LC-ESI-TOF HRMS).

Acknowledgement: This research was financially supported by Ministry of Education and Training, Vietnam (project grant B2021-DNA-17)

REFERENCES

SUPPORTING INFORMATION

Figure S1. 13C NMR spectrum of 4-acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrroline-2-one
Figure S2. 13C NMR spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S3. 13C NMR spectrum of 4-[1-(4-methoxybenzyl)amino]ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S4. HSQC spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S5. HMBC spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S6. HMBC spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S7. ESI – HRMS spectrum of 4-acetyl-3-hydroxy-1-(3-nitrophenyl)-5-phenyl-3-pyrroline-2-one

Figure S8. ESI – HRMS spectrum of 4-(1-methylamino)ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione

Figure S9. ESI – HRMS spectrum of 4-[1-(4-methoxybenzyl)amino]ethylene-5-phenyl-1-(3-nitrophenyl)pyrrolidine-2,3-dione