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A Method for Fast Synchronization of Chaotic
Systems and Its Application to Chaos-based

Secure Communication
Tho Nguyen Van, Ngoc Do Thanh Bao*, Ninh Mai Thi An, Rin Nguyen Vy, Dung Le Dinh

Abstract—Chaos theory is one of the fields of research that has many practical applications. An important application of chaos
in communication is that it can be used for secure communication. To be able to use the chaotic signal in communication,
we need to synchronize the chaotic signal between the receiver and the transmitter. In this paper, a sliding mode controller
is proposed for global synchronization between two chaotic systems. The interesting point of this controller is that it can help
reduce the synchronization time based on the selection of the appropriate gain parameter. This method has also been applied
to a secure communication system with chaos masking. Finally, numerical simulations are given to illustrate the effectiveness
of the proposed method.

Index Terms—chaotic, synchronization, secure communication, sliding mode control, Lyapunov stability theory
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1. Introduction

CHAOS behavior, an interesting phenomenon in var-
ious nonlinear systems, has been discovered by

scientists for a long time. In the early 1900s, Henri
Poincare published significant findings about small dif-
ferences in the initial conditions when he researched
orbits in the solar system [1]. The first considerable leap
in chaos theory was made by Edward Lorenz. Lorenz
showed the absence of a period and the divergence
of the system with only a very small difference in the
initial conditions [2]. His work proposed a simplified
mathematical mode including three ordinary differen-
tial equations now known as the Lorenz equations. In
a chaotic system, the produced signals do not syn-
chronize with any other system. It means two chaotic
systems are impossible to synchronize with each other.
However, Pecora and Carroll demonstrated that two
chaotic systems could be synchronized if they could
exchange information correctly [3]. Their work on the
synchronization of chaotic systems has attracted a lot of
attention in various domains of science and engineering
during the last two decades, especially in information
technology [4]–[6].

Because of the importance of the synchronization
phenomenon in chaotic systems, many synchroniza-
tion methods have been developed, such as adaptive
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synchronization [7], pulse synchronization [8], method
reverse step design [9], observer-based synchronization
[10], [11], and sliding mode control method [12]–[17].
Among these methods, a sliding mode controller with
the advantage of a solid response for parameter un-
certainty and noise seems attractive for fast synchro-
nization. In [12], Sundarapandian proposed a nonlin-
ear controller to synchronize Lorenz’s and Pehlivan’s
chaotic systems. Rodrigues et al. also proposed a slid-
ing mode control law and a standard observer for the
synchronization problem [13]. Besides, the sliding mode
controller has been applied to the synchronization of
various chaotic systems such as: Rikitake system [14],
Four-Scroll Novel Chaotic System [15], forchaotic gyros
systems [16], Lu and Bhalekar-Gejji chaotic systems [17].

Motivated by the work on synchronization of chaotic
systems proposed by Pecora and Carroll [3] and by the
fact that power spectrums of chaotic systems are similar
to white noise, the produced signals from chaotic sys-
tems can be used for carrying and hiding information
over the communication channel. As a result, many
studies on secure communication have been published
in the literature. In [18], the authors have proposed
the chaos mask-based communication scheme. In this
scheme, the two chaos generators at the transmitter
and receiver will be synchronized with each other. The
message is added to the chaotic signal of the transmit-
ter and recovered at the receiver. Later, many models
were also published with more robust synchronization
methods [19]–[22]. Chaos-based modulation methods
have also been proposed [23]–[25]. Chaotic modulation
offers a potentially simple solution for wideband com-
munications; it ought to offer better performance under
multipath propagation conditions.

In this work, we propose a chaotic synchronization
ISSN 1859-1531
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method using a sliding controller and apply it to a
chaos-based secure communication system. The advan-
tage of this approach is that it is possible to reduce
the synchronization time based on the appropriate gain
parameter selection of the slide controller. We also con-
ducted a numerical simulation to evaluate the effective-
ness of the proposed method and its applicability in the
secure communication system.

The rest of the paper is organized as follows. Section
2 describes the Lorenz chaotic system and proposes
the chaotic synchronization method based on the sta-
bility theory. Section 3 presents simulation results and
analyzes the advantages of the synchronous method.
Section 4 describes the results of applying the pro-
posed synchronous method to the secure communica-
tion model. Conclusions are made in section 5.

2. Lorenz system and Synchronization

2.1. Lorenz system

In this paper, the Lorenz system, a well-known
model for systems and its synchronization-based appli-
cation, is used to exemplify the proposed method.

In general, dynamics of chaotic systems are de-
scribed by a set of nonlinear differential equations
with respect to state variables. The following difference
equations describe the Lorenz dynamic continuous 3D
system:

dx

dt
= σ(y − x)

dy

dt
= x(r − z)− y

dz

dt
= xy − bz

(1)

where x, y, z is the state variables; /sigma, r, b is the
system parameters. Well-known parameter values for
Lorenz system showing chaotic behaviors are often used
for numerical simulations: σ = 3 , r = 28, and b = 8/3.

Fig. 1: The orbit of the phase on the Lorenz chaotic system

If the Lorenz system has chaotic behaviors, it op-
erates without cycles. Fig. 1 shows the trajectory of
the phase on the Lorenz chaotic system with given
parameters. We see that the system is in a non-periodic
motion; when the time approaches infinity, the curve in
phase space does not go to a fixed point or a periodic
trajectory. In addition, this orbital is always in a definite
phase space domain and never shifts out of this domain.

The Lorenz system is very sensitive to initiation con-
ditions. Even a very small change in the initial condition
can make a massive difference to the system. As can be
seen from Fig. 2, two Lorenz systems with slightly dif-
ferent initial conditions will split apart quickly, creating
completely different orbits.

Although the operation of a Lorenz system is not
cyclical, it is also not a random process. In general, the
Lorenz chaotic system is a deterministic system, which
could be represented by a set of equations with specific
parameters. We can determine the value of the system
at a specified time.

Fig. 2: Variable over time of Lorenz chaotic system with the initial
conditions are the very small difference.

Because of its characteristics, the chaotic system has
been considered an ideal solution for secure commu-
nication systems. The chaotic signal helps mask the in-
formation transmitted over the communication channel.
Simultaneously, the sensitivity to the system’s initial
conditions makes it very difficult to estimate a future
position from its position in the past.

2.2. Synchronization of Lorenz Systems

Chaos synchronization is a very interesting topic that
has been recently studied. Chaos synchronization has
the following feature: two identical chaotic systems with
different initial conditions will diverge from each other,
but they will retain the same pattern of attraction. In
order to use in the communication system, the receiver
needs a copy of the transmitter’s chaotic signal. In
other words, we need to synchronize the chaotic signal
between the receiver and the transmitter. Synchroniza-
tion is a requirement of many communication systems;
however, the traditional synchronous implementations
of these systems are not applicable in a chaotic system.
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New methods are therefore required. Consider that
the Lorenz system includes one drive system and one
response system. The drive system is described by the
Lorenz dynamics as follows:

dx1
dt

= σ(y1 − x1)
dy1
dt

= x1(r − z1)− y1
dz1
dt

= x1y1 − by1

(2)

The response system is also described by the Lorenz
dynamics:

dx2
dt

= σ(y2 − x2) + u1

dy2
dt

= x2(r − z2)− y2 + u2

dz2
dt

= x2y2 − by2 + u3

(3)

where ui(i = 1, 2, 3) is control laws that should be
identified to ensure the response system is synchronized
with the drive system. The error between two chaos
systems is defined as:

e1 = x2 − x1
e2 = y2 − z1
e3 = z2 − z1

(4)

Take the derivative on both sides of Eq(2), we have
system error differential equations as follows:

de1
dt

= σ(e2 − e1) + u1

de2
dt

= re1 − e2) + x2z2 − x1z1 + u2

de2
dt

= −be3 − x1y1 + x2y2 + u3

(5)

The mission of the control law is to ensure the syn-
chronization between the drive system and the response
system so that errors toward zero.

Here, we select Control Act:

u1 = −ke1 − σe2
u2 = −ke2 − re1 + x1z1 − x2z2
u3 = −ke3 − x2y2 + x1y1

(6)

where k is customizable gain parameter, k ≥ 0. From
Eq(5) and Eq(6), we have:

de1
dt

= (σ + k)e1

de2
dt

= (1 + k)e2)

de2
dt

= −(b+ k)e3

(7)

Eq(7) has a solution:

e1 = e−(σ+k)t

e2 = e−(1+k)t

e3 = e−(b+k)t

(8)

When t→∞, the e1,e2,e3 → 0.
Select the Lyapunov function to ensure the stability

of the Lorenz chaotic system as follow:

V (e) =
1

2
(e21 + e22 + e23) (9)

Take the derivative both sides of Eq (9), we have:

dV (e)

dt
= e1

de1
dt

+ e2
de2
dt

+ e3
de3
dt

(10)

Replace Eq(7) to Eq(10), the result is:

dV (e)

dt
= −(σ + k)e21 − (1 + k)e22 − (b+ k)e23 (11)

We found that V (e) is a positive function in R3 and
dV (e)
d(t) is a negative function in R3, i.e., a stable system at

equilibrium point (0, 0, 0). According to Lyapunov sta-
ble theory, the control law in Eq(6) will ensure stability
for Lorenz’s chaotic system.

3. Analysys and Simulation

Fig. 3: (a) all states and (b) Estimated for all state.
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As can be seen from Eq(6), the proposed control law
uses a custom value k as an error amplifier between
the drive and response systems. If k is too small, the
time required for the two systems to synchronize will be
significant. However, when parameter k is too large, the
control function oscillates, generating high-frequency
square pulses. Therefore, choosing the proper value of
k can reduce the time required to synchronize between
two systems.

For evaluation, we simulate the proposed syn-
chronous control law with system parameters are σ =
10, r = 28 and b = 8/3. The initial conditions of the
drive system are x1(0) = 10, y1(0) = 18 and z1(0) = 14;
initial condition of the response system are x2(0) = 17,
y2(0) = 22 and z2(0) = 9. Simulations were performed
with k = 10 and k = 50, respectively. The simulation
results are shown in Fig. 3.

As can be seen from Fig. 3, the response system starts
to trace the drive system and finally becomes the same;
simultaneously, the synchronization error converges to
zero in the case of k = 10 and k = 50, respectively.
However, the time required to synchronize two Lorenz
systems in the case of k = 50 is t ≥ 0.09s, much smaller
than that of t ≥ 0.44s with k = 10. .The proposed
method is also compared with related work in [12]. By
choosing the proper value of k in the proposed method,
the synchronization process could be accomplished in a
shorter period.

4. Application on Secure Communication

Fig. 4: The chaos-based secure communication system.

In Fig. 4, we display the architecture of secure
communication applications based on chaotic systems.
At the transmitter, a masking signal produced by the
drive system has added the information to create the
information-carrying signal. The information-carrying
signal is transmitted to the receiver over a communica-
tion channel. The masking signal is removed at the re-
ceiver, and information is recovered. The mask removal
must rely on synchronizing the two chaotic systems at
the transmitter and the receiver. We apply the proposed
synchronization method for this communication system
and use numerical simulations for evaluation.

The simulation results in Fig. 5 show that the re-
ceiver can synchronize with the transmitter based on
the received signal. The information can successfully be
recovered by removing the masking signal afterward.

Fig. 5: Simulation chaos-based secure communication.

5. Conclusion

In this paper, a new sliding mode control
method has been proposed for the global chaotic
synchronization of the Lorenz system. Sliding mode
controllers with a customizable gain parameter can
reduce synchronization time compared to previous
methods. The application of the synchronization
method to secure communication systems has been
successfully evaluated. Numerical simulations show
the effectiveness of the proposed method.
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