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Abstract - Suffusion is one of the four types of internal erosion 

and accounts for 46% of erosion phenomena in earth dams. 

Suffusion is an erosion of fine particles inside the soil structure 

that move out of the voids between coarse particles caused by 

permeability flow. Identification of internal erosion is necessary 

to mitigate the loss of humans and property as underground 

erosion occurs. However, determining suffusion susceptibility in 

situ is complex and takes a lot of time. This study proposed a fine-

grained erosion prediction model based on physical parameters 

related to the grading curve and the dry density. Using the 

principal component analysis (PCA) tool evaluated the influence 

of these parameters on suffusion. The proposed predictive model 

of the erosion resistance index (ERI) supports stakeholders in 

quickly determining the extent of erosion and then taking 

appropriate measures to maintain the earth dams. 

Key words - Erosion resistance index; well-graded soil; gap-

graded soil; prediction model; suffusion. 

1. Introduction 

There are many reasons for the failures of earth dams 

[1]. A common cause that induces damage to irrigation 

construction is internal erosion. This paper focuses on 

suffusion, a case of internal erosion [2]. According to Wan 

and Fell [3], suffusion can occur as three conditions are 

satisfied: fine particle content is sufficiently large, fine 

particles in the voids of coarse particles that do not subject 

to effective stress, and the flow rate must be large enough. 

In addition, suffusion is a complex double process of three 

activities: detachment, migration, and clogging [4]. Fine 

particles that do not pass through the constrictions of 

coarse particles can become trapped in their voids [5]. 

Loose particles that are moved or filtered during erosion 

change the soil's hydraulic path pressure, voids, and 

physical and mechanical properties [6]. Moreover, 

suffusion may increase the porosity and permeability of 

the soil layer or soil structures [7]. Fine-grained erosion, 

although there is little potential risk of soil structure 

instability or collapse and loss of soil skeleton, can cause 

long-term damage to earth dams [8]. Thus, fine-grained 

erosion is one of the common causes of the failure of water 

structures such as earth dams, dikes, and embankments 

over time. 

Floods that inundate habitats and arable land have 

severely eroded embankments and dams, resulting in 

human and economic losses [9-10]. In Vietnam, there are 

about 7,800 large and small dams, of which a lot of dikes 

and dams need to be repaired and upgraded [11]. 

According to statistics, over 2,700 km of dikes protecting 

densely populated areas are considered grade III above 

special level. Thus, to ensure the safety of embankments 

and dams, the prediction of suffusion for the existing 

structures seems to be an essential issue for managers to 

ensure economy and sustainability, as well as the future 

safety of the areas surrounding the dams. 

Forecasting suffusion in earthen dams has the function 

of ensuring safety for plants, animals, and people living 

around them. Thus, this fine-grained erosion prediction is 

to optimize maintenance and ensure the integrity of dams. 

In addition, the length of earth dams is often very long, 

which leads to a lot of testing to evaluate the erosion level. 

At the same time, this testing process takes a lot of time. 

On the other hand, it is complex in the laboratory to 

describe the degree of suffusion of different soils along the 

length of the dam [12]. This difficulty can be solved by 

using a predictive model for optimization that describes the 

degree of fine-grained erosion. 

The internal stability of the soil is one of the crucial 

factors impacting the overall life of a dam. A few incidents 

are related to internal instability [6]. The internal stability 

of the soil is influenced by geometrical conditions (particle 

pattern, particle distribution, and pore size), hydraulic 

conditions (gradient and flow rate), and mechanical 

conditions. Previous research based on the above 

conditions assessed the potential of soil instability. 

Istomina defined grain movement or suffusion relative to 

the uniformity coefficient Cu [13]. Kézdi suggested a 

criterion about fine content and coarse fraction to assess 

their self-filtering susceptibility [14]. Kenney and Lau 

recommended the particle-size curve diagram H-F to 

determine the internal instability of granular soils [15]. 

Wan and Fell proposed a method to assess the likelihood 

of internal instability for well-graded silt-sand-gravel soils 

depending on two boundary conditions [3]. Li and Fannin 

suggested a comparative method according to the criteria 

of Kezdi, and Kenney-Lau [16]. Chang and Zhang 

recommended extended internal stability criteria using the 

results of the previous researchers based on the physical 

understanding of soil microstructure [17]. 

However, the above criteria only determine the erosion 

capacity, not the specific erosion level of the soil.  

So, several recent studies focus on prediction models of 

erosion susceptibility based on physical parameters  

[12, 18-19]. Yet, some of these physical parameters are 

difficult to determine values at the field, such as degree of 

saturation, percentage of fine particles less than 0.005 mm, 

plasticity index, methylene, and internal friction angle. 

Therefore, this article investigated by statistical 

analysis to find out parameters highly affecting ERI and, 
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as well as propose the formula to calculate the predicted 

erosion susceptibility based on physical parameters that 

are easily determined to improve efficiency and save 

costs in the preliminary assessment of the condition of 

earth dams. 

2. Physical parameters 

According to Le et al [12], they used three parameters 

of the soil including dry density (k), internal friction angle 

(φ), methylene blue value (Vbs), and physical parameters 

relative to particle composition such as Finer Kenny and 

Lau (KL), gap ratio (Gr), (H/F)min, particle content with a 

diameter smaller than 0.063 mm (P), particle distribution 

(d90, d60, d50, d20, d15, and d5) to determine the erosion 

predict model. However, physical parameters related to φ, 

Vbs, and P are hard to confirm in the field or the laboratory. 

The study proposed eliminating these difficult-to-define 

parameters and adding others that can be easily determined 

in the field or the laboratory. Previous research results 

show that soil instability is related to the uniformity 

coefficient (Cu) determined based on the distribution curve 

[13]. At the same time, particle content with a diameter 

smaller than 0.075 mm (P') affects the stability of the soil 

[19]. Thus, the study proposed the following parameters, 

that are input values, to be included in the model to predict 

the ERI (I) being output value: 

Parameter I: Erosion resistance is related to the ratio 

between particle size and infiltration length, confining 

stress, and the visual factor affecting the shape of aquifers 

on groundwater flow, representing the ability of the soil to 

resist erosion due to outside impacts. Based on ERI, it is 

possible to classify the sensitivity to soil erosion, which is 

determined based on the mass of dry eroded particles and 

accumulated flow energy [20]. This index is divided into 

six levels from very easy erosion to very erosion resistant, 

corresponding to ERI values from 1 to 6. 

Parameter γk: There is the weight of soil particles in a 

unit volume of natural soil. Erosion susceptibility is highly 

dependent on the dry density value. The larger this value 

is, the more ERI increases [12, 19]. 

Parameter Finer KL (%): The percent of fine particles 

KL was determined based on the (H/F)min value of Kenny 

and Lau's criterion (see Figure 1), which indicates that the 

particles within the Finer KL in the soil skeleton are likely 

to be eroded [21]. 

Parameter (H/F)min: According to the evaluation 

criteria for erosion capacity of granular soil [15], which is 

evaluated by the minimum value of H/F. Particles with a 

diameter size smaller than D considered (Fmin) may be 

eroded from the soil if there are not enough soil particles 

with sizes from D to 4D considered (Hmin). 

Parameter Cu: [22] Indicating the degree of 

unevenness of the particle composition. The larger the Cu, 

the more unequal the soil’s size and vice versa. Cu indicates 

the likelihood that the fine particles pass through the voids 

formed by the coarse particles in the soil skeleton. The 

higher this value is, the more susceptible the soil is to 

erosion [13]. 

Parameter P’ (%): According to Wan and Fell [3], 

fine particles smaller than 0.075 mm in diameter increase 

soil erosion resistance. Moreover, fine particles are likely 

to dominate the stability inside the soil [17]. 

Parameter Gr: According to Chang and Zhang [17], 

there is a ratio between the highest and smallest particle 

sizes (Gr = Dmax/dmin) that characterizes the gap in the 

grading curve (see Figure 2). For continuous grading, the 

value is taken as 1.0. This parameter has a significant 

influence on the extent of erosion. 

Parameters d5, d15, d20, d50, d60, d90 (mm): [22] The 

grain diameters have 5%, 15%, 20%, 50%, 60%, and 90%, 

respectively. 

 

Figure 1. Illustrating the parameter Finer KL [21] 

 

Figure 2. Illustrating grading curves for both soils [17] 

3. Suffusion prediction model 

3.1. Data sets 

Tables 1 and 2 present datasets on 13 physical 

parameters and ERI of 16 specimens for gap-graded soils 

and 11 specimens for well-graded soils from [12, 23-24]. 

To show accurate results, ERI for the same specimens is 

averaged. 
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Table 1. Data from 16 tests of 14 physical parameters of gap-graded soils [12, 23-24] 

Specimens ERI (Iα) 
Dry density 

(kN/m3) 

Finer  

KL (%) 

min 

(H/F) 
Gr P’ (%) Cu 

d5 

(mm) 

d15 

(mm) 

d20 

(mm) 

d50 

(mm) 

d60 

(mm) 

d90 

(mm) 

1-T-1 3.47 16.43 23.0 0.13 1.60 1.62 14.86 0.14 0.29 0.45 2.97 3.27 3.97 

4-T 3.50 16.13 16.5 0.09 2.67 0.47 11.42 0.19 0.45 2.08 3.12 3.35 3.99 

5-T 3.89 17.00 25.0 0.00 8.00 5.06 43.75 0.08 0.13 0.15 4.12 4.55 5.86 

6-T 3.64 17.00 25.0 0.12 1.60 1.76 15.88 0.13 0.28 0.39 2.92 3.25 3.97 

B-q 3.28 17.39 25.0 0.04 2.50 2.18 19.58 0.11 0.21 0.26 2.92 3.25 3.97 

B-i 3.25 17.39 25.0 0.04 2.50 2.18 19.58 0.11 0.21 0.26 2.92 3.25 3.97 

B-90 3.36 17.39 25.0 0.04 2.50 2.18 19.58 0.11 0.21 0.26 2.92 3.25 3.97 

C 2.73 17.39 27.5 0.03 2.50 2.39 20.53 0.11 0.20 0.25 2.86 3.22 3.96 

DR-A 4.49 17.87 20.0 0.11 2.40 2.93 14.91 0.09 0.15 0.25 1.56 1.69 2.63 

DR-B 3.02 16.00 25.0 0.00 4.80 5.06 26.03 0.08 0.13 0.15 2.41 2.71 4.73 

DR-C 2.59 16.00 25.0 0.00 4.80 5.06 35.25 0.08 0.13 0.15 2.99 3.67 5.65 

G3-11 2.90 16.00 25.0 0.00 6.00 4.36 30.53 0.08 0.13 0.15 2.92 3.25 3.97 

G3-13 3.47 16.00 15.0 0.00 6.00 2.61 25.04 0.10 1.50 2.13 3.15 3.36 3.99 

G3-14 3.98 16.00 20.0 0.00 6.00 2.93 29.17 0.09 0.15 0.25 3.05 3.31 3.98 

A 4.30 17.39 15.0 0.04 2.50 1.31 14.63 0.15 0.70 2.13 3.15 3.36 3.99 

B 3.77 17.39 25.0 0.04 2.50 2.18 19.52 0.11 0.21 0.26 2.92 3.25 3.97 

Table 2. Data from 11 tests of 14 physical parameters of well-graded soils [12, 23-24] 

Specimens ERI (Iα) 
Dry density 

(kN/m3) 

Finer KL 

(%) 

min 

(H/F) 
Gr P’ (%) Cu 

d5 

(mm) 

d15 

(mm) 

d20 

(mm) 

d50 

(mm) 

d60 

(mm) 

d90 

(mm) 

3-T1 4.72 17.00 51.84 0.45 1.00 13.33 22.23 0.01 0.10 0.17 0.54 0.89 3.85 

3-T2 3.95 15.50 51.84 0.45 1.00 13.33 22.23 0.01 0.10 0.17 0.54 0.89 3.85 

R1 5.13 17.39 15.26 0.59 1.00 1.48 13.17 0.15 0.32 0.63 2.67 3.03 4.48 

R2-90 2.83 17.39 25.04 0.20 1.00 3.69 24.50 0.09 0.16 0.26 2.59 3.01 4.48 

R2-97 3.41 18.74 25.04 0.20 1.00 3.69 24.50 0.09 0.16 0.26 2.59 3.01 4.48 

CH-5 4.71 16.54 60.01 0.41 1.00 4.28 4.25 0.09 0.22 0.26 0.55 0.75 3.63 

CH-10 5.49 18.90 40.61 0.44 1.00 0.87 12.92 0.19 0.30 0.37 1.38 3.18 8.35 

CD 5.70 19.14 76.46 0.11 1.00 34.13 10.11 0.01 0.03 0.04 0.14 0.18 1.46 

R3 4.34 18.66 25.00 0.20 1.00 2.32 18.88 0.11 0.21 0.25 2.59 3.01 4.48 

R4 4.21 18.66 20.00 0.24 1.00 1.87 16.94 0.13 0.23 0.33 2.75 3.13 4.53 

R5 4.30 18.66 15.00 0.29 1.00 1.41 15.27 0.15 0.31 1.33 2.88 3.24 4.62 

3.2. Analysis tool 

PCA is a multivariate statistical analysis technique 

used to decrease the set of dependent variables to a 

smaller data set of basic variables based on the correlation 

model of the original variables [25]. In this study, 

software R is used to perform PCA, creating a vector 

showing the correlation of the parameters. Analyzing the 

correlation between variables to evaluate the influence of 

the variable on the predictive model and removing those 

variables that have a low or no influence on the model. 

PCA visually represents the influence of the parameters 

through the correlation circle, by means of vectors with 

the origin at the center of the circle. The magnitude of the 

vector represents how much influence that variable has on 

the model. The direction of the vectors represents the 

relationship between the variables. When these vectors 

are farther from the center if vectors are in the same 

direction and close to each other, the variables are 

positive correlation; if vectors are opposite, they are 

negatively correlated; if orthogonal, they are not 

correlated with each other. 

3.3. Results and discussions 

The analysis was performed for well-graded and gap-

graded soils with the variables being the physical 

parameters presented in Tables 1 and 2 used for the 

statistical. The parameters Gr and d5 should be removed 

from the model for well-graded soils because their values 

in all specimens are equal or too small. The erosion 

prediction model was created by analyzing physical 

parameters for both soils. 

PCA analysis creates new factors from a combination 

of existing variables having a smaller number of variables 

but still explains the nature of the old combination. For 

PCA, it is necessary to select factors with eigenvalues 

greater than 1.0 [26] and cumulative variances greater 

than 80% [27]. Scree plots in Figures 3 and 4 show the 

eigenvalues and cumulative variances of factors for gap-
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graded and well-graded soils, respectively. The factors 

Dim1, Dim2, and Dim3 have eigenvalues greater than 1.0 

and the sum of their cumulative variances is greater than 

80% (the cumulative variance sum of the three factors in 

Figure 3 is 81.2%; Figure 4 is 85.1%). Thus, the above 

three Dims are used to analyze the correlation circle. 

 

Figure 3. Scree plot – eigenvalues versus cumulative variance 

in PCA analysis for gap-graded soil 

 

Figure 4. Scree plot – eigenvalues versus cumulative variance 

in PCA analysis for well-graded soil 

Figures 5 and 6 exhibit that the variables are shown on 

two graph planes of the factor combination Dim1 - Dim2 

and Dim2 - Dim3 for both soil types, the length of the 

vectors is the degree of influence of the variable on the 

factor that has been determined in the analysis of the 

previous factor. 

For gap-grade soil, based on plane 1 (Figure 5a) and 

plane 2 (Figure 5b), vectors d20 and d15 are in the same 

direction and close to each other on both planes; i.e., these 

two parameters are correlated together. In which, d15 has 

a shorter length leading to a lower degree of influence, it 

is excluded from the model. Vectors Gr and d90 are also 

positively correlated at plane 1. In addition, vectors d90 

and I are orthogonal to each other at plane 2, so d90 is 

excluded from the model. d5 is positively correlated with 

I on plane 1 but orthogonal to each other on plane 2, so 

d5 is excluded from the model. Similarly, d50 and d60 are 

eliminated from the model because they are orthogonal to 

I in both planes. Finally, P' is also removed from the 

model because it is negatively correlated with I in plane 

1 and orthogonal in plane 2. 

a) 

 

b) 

 
Figure 5. Correlation circles in the PCA of 13 parameters for 

gap-graded soils about the combination of factors: 

a) On plane 1 of Dim1 – Dim2; b) On plane 2 of Dim2 – Dim3 

a) 

 

b) 

 

Figure 6. Correlation circles in the PCA of 11 parameters for 

well-graded soils about the combination of factors: 

a) On plane 3 of Dim1 – Dim2; b) On plane 4 of Dim2 – Dim3 
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For well-graded soil, considering plane 3 (Figure 6a) 

and plane 4 (Figure 6b), parameters d15, d20, and d90 are 

close together and orthogonal with I on plane 3, so these 

parameters should be eliminated from the model. 

Discarding the P' because it is orthogonal to I on both 

planes. Vectors d50 and d60 exhibit positive correlations in 

both planes, which are orthogonal to vector I in plane 4 

and should be removed from the model. 

It is necessary to reduce the variables of physical 

parameters by their redundant information. From the 

results of PCA, six parameters d, Finer KL, (H/F)min, Cu, 

Gr, and d20 are used for the erosion prediction model for 

gap-graded soils while four parameters d, Finer KL, 

(H/F)min, Cu are used for erosion prediction model for well-

graded soil. A new correlation between the selected 

parameters and I was determined for both soil types. 

For gap-graded soil: (N=16) 

𝐼𝛼 = −1.73 + 0.51𝛾𝑑 − 0.16𝐹𝑖𝑛𝑒𝑟 𝐾𝐿 − 0.01𝐶𝑢 

+4.72 (
𝐻

𝐹
)

𝑚𝑖𝑛
+ 0.15𝐺𝑟 − 0.5𝑑20 (R2 = 0.85)

 (1) 

For well-graded soil: (N=11) 

𝐼𝛼 = −7.86 + 0.59𝛾𝑑 + 0.02𝐹𝑖𝑛𝑒𝑟 𝐾𝐿 − 0.03𝐶𝑢 

+4.36(𝐻/𝐹)𝑚𝑖𝑛  (R2 = 0.91) (2) 

 

Figure 7. Estimated value (Pred(I)) versus actual value (I) 

for gap-graded soils 

 

Figure 8. Estimated value (Pred(I)) versus actual value (I) 

for well-graded soils 

Figures 7 and 8 show the estimated and actual model’s 

estimated and actual ERI values. Multivariate linear 

regression analysis, building the expression of erosion 

resistance coefficient I through selected physical 

parameters after PCA analysis. Models 1 and 2 are erosion 

prediction models for gap-graded and well-graded soils, 

respectively. The coefficient of determination R2 

represents the fitness of the model with the input 

parameters included in the model. The coefficient of 

determination between 0.8 and 1.0 indicates that the model 

is being used at a fairly good level [28]. Therefore, two 

models are validated for the predictive model. 

Table 3. Effect of parameters to model on gap-graded soil 

Parameters t Pr > |t| 
Lower bound 

(95%) 

Upper bound 

(95%) 

Dry density 4.01 0.003 0.22 0.79 

Finer KL -3.51 0.007 -0.26 -0.06 

(H/F)min 1.94 0.084 -0.78 10.21 

Gr 1.11 0.295 -0.16 0.47 

Cu -0.24 0.819 -0.08 0.06 

d20 -2.38 0.042 -0.97 -0.02 

Table 4. Effect of parameters to model on well-graded soil 

Parameters t Pr > |t| 
Lower bound 

(95%) 

Upper bound 

(95%) 

Dry density 4.37 0.005 0.26 0.92 

Finer KL 3.79 0.009 0.01 0.04 

(H/F)min 4.27 0.005 1.86 6.86 

Cu -1.63 0.155 -0.09 0.02 

Results from Tables 3 and 4 show that dry density has 

the greatest influence on ERI for both gradations 

(td →I = 4.01; Pr = 0.003 for gap-graded soil and 

td →I = 4.37; Pr = 0.005 for well-graded soil).  

In addition, Finer KL has the second effect on gap-graded 

soil (tFiner KL →I = 3.51; Pr = 0.007) while it has a rather 

large effect on well-graded soil (tFiner KL →I = 3.79;  

Pr = 0.009). Finally, dry density and Finer KL are 

empirically supported with significance at t = 2.57 and  

p = 0.01. 

4. Conclusion 

This study focused on examining the role of physical 

parameters affecting suffusion. Thanks to PCA and linear 

regression, the physical parameters used in the model can 

reduce. The parameters removed do not affect the erosion 

prediction results. After PCA-based analysis, the physical 

parameters that have little influence on the model were 

eliminated from the 13 proposed physical parameters for 

both distributions. The six physical parameters d, Finer 

KL, (H/F)min, Cu, Gr, and d20 were retained for gap-graded 

soils. For well-graded soil, removing two parameters Gr 

and d20 out of the six proposed above parameters from the 

model, keeping four parameters. The results of the study 

are drawn as follows: 

- Dry density has the highest effect on ERI. 

- New models to predict ERI are proposed for soils. 
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Finally, the research results help predict the ERI of 

earth dams quickly, thereby providing the basis for 

management agencies to make assessments and decisions 

on upgrading and repairing dikes and dams. Besides, 

ensuring safety for the lives of people around the dams. 
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