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Abstract - In this work, geometrically nonlinear static bending 

analysis of sandwich beams with a porous core and two skins 

made of functionally graded materials using a mesh-free method 

is presented. The material types of the core and face sheets of the 

beam are chosen so that the material continuity between the layers 

is guaranteed. The nonlinear governing equation including 

geometric nonlinearity is established via the principle of virtual 

work. This equation is discretized into a system of algebraic 

equations by the mesh-free approach, which is based on the C1 

point interpolation method and polynomial basis functions, and 

then solved by the direct iterative method. The convergence of 

the mesh-free method is tested to determine the sufficient mesh 

level for the analysis. Comparative and comprehensive studies are 

performed to investigate both the correctness and the influences 

of several important parameters and boundary conditions on the 

linear and nonlinear deflections of the beam. 

Key words - Geometrically nonlinear bending; functionally 

graded materials; porous material; porous sandwich beam; mesh-

free analysis 

1. Introduction 

Sandwich structures composed of a porous core and 

two functionally graded material (FGM) skins, shortened 

here as PFGM sandwich structures for convenience, offer 

many excellent features. While the FGM skins have high 

stiffness, and good ability of thermal, corrosion, and 

weather resistance, the porous material core is lightweight 

and efficient for thermal and sound insulation as well as for 

energy absorption. Furthermore, by tailoring the materials 

of the skins and the core appropriately, physical properties 

can be smooth in the whole domain of the structures. Thus, 

the stress concentration, which may lead to delamination, 

at the interface layers can be avoided. To enhance the 

efficiency of application in reality, studying to explore the 

mechanical behavior of these structures becomes an 

essential task. Many reports related to this topic by authors 

are now available in the literature. For example, Mu and 

Zhao [1] examined the first natural frequency of PFGM 

sandwich beams by extended Galerkin method. Wang et al. 

[2] focused on the time history response of PFGM 

sandwich beams excited by a non-uniformly distributed 

moving mass employing Chebyshev–Ritz approximation. 

Chinh et al. [3] presented the static bending of the PFGM 

sandwich beam by Reddy’s shear deformation beam 

model. Hung and Truong [4] performed the free vibration 

response of PFGM sandwich beams resting on the Winkler 

foundation using various beam models. Using the Ritz 

technique, Hung et al. [5] dealt with the thermo-electrical 

free vibration of PFGM sandwich beams inserted into two 

piezoelectric layers and resting on a two-parameter elastic 

foundation. Adopting Navier’s solution, Hung et al. [6] 

investigated the static behavior of a PFGM sandwich beam 

considering the influence of the liquid phase in the porous 

core. Derikvand et al. [7] studied the buckling of PFGM 

sandwich beams by the differential transform method 

associated with the framework of third-order shear 

deformation beam theory. Duc et al. [8] analyzed the 

nonlinear buckling and post-buckling of PFGM sandwich 

stiffened truncated conical shells lying on a two-parameter 

elastic foundation. Nguyen and co-workers [9] presented 

the static flexural and free vibration response of a PFGM 

sandwich plate with graphene platelets (GPLs) 

reinforcement by isogeometric analysis. 

In mechanical modeling, structural analysis with 

formulations established by the assumption of ignoring the 

deformation (not updated with the deformation), also 

called geometrically linear analysis, is simple and 

computationally inexpensive. However, for slender 

structures/structures under heavy load, the deformation is 

significant; thus, this assumption does not reflect their 

realistic behavior and may lead to serious design errors. To 

overcome the limitation, the geometrically nonlinear 

analysis considering the deformation effect becomes 

necessary. Beams are primary elements used for structural 

constructions. Modeling the mechanical behavior of beams 

with the consideration of geometrical nonlinear effects has 

been studied by several authors. For example, Lin et al. 

[10] simulated the geometrically nonlinear bending of 

FGM beams with variable thickness by using a meshless 

Smoothed Hydrodynamic Particle method. Utilizing 

Chebyshev–Ritz method, Wang et al. [11] reported the 

geometrically nonlinear bending behavior of sandwich 

beams consisting of composite skins with agglomerated 

GPL reinforcement and a metal foam core. Jedari Salami 

[12] investigated the geometrically nonlinear bending of 

sandwich beams with functionally graded graphene 

platelet-reinforced composite (GPLRC) skins and 

polyurethane foam core using the Ritz method. Srikarun et 

al. [13] focused on the linear and nonlinear bending of 

sandwich beams with isotropic skins and a porous core 

under various types of distributed load by utilizing the 

Gram-Schmidt-Ritz method. Feng et al. [14] investigated 

the geometrically nonlinear behavior of composite beams 

reinforced with GPLs employing Ritz approximation. Li et 

al. [15] investigated the geometrically nonlinear bending 

response of two-dimensional FGM beams using the 

generalized differential quadrature method. Reddy et al. 
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[16] developed finite element models for FGM 

microbeams including the von Kármán non-linearity. 

Zhang [17] presented a model for geometrically nonlinear 

analysis of FGM beams in the thermal environment by the 

physical neutral concept and the Ritz method. 

To the best of the authors’ knowledge, although there 

have been several studies on the nonlinear bending 

behavior of sandwich beams, more in-depth studies are still 

needed for new structural elements. Therefore, in this 

paper, for the first time, the nonlinear bending analysis of 

sandwich beams consisting of FGM face sheets and anFG 

porous core is conducted. The material’s continuity 

between the layers is guaranteed by choosing appropriate 

skins and core materials. Based on Reddy’s third-order 

beam theory and geometrical nonlinearity, the nonlinear 

governing equations are derived from the virtual work 

principle incorporated. The mesh-free approach, using C1 

point interpolation method and polynomial basis functions, 

is adopted to discretize the governing equation into 

algebraic equations and then solved by the direct iterative 

method. The convergence is conducted to determine the 

sufficient mesh level for the analysis. The correctness of 

the current study is validated by comparing the study 

results with those of other publications in the literature. A 

parametric study is also conducted to examine in detail the 

effects of the power-law index, porosity coefficient, core-

to-skin thickness ratio, and edge conditions on the linear 

and nonlinear deflections of the beam. 

2. Basic formulations 

2.1. PFGM sandwich beam and material properties 

Consider a PFGM sandwich beam of dimensions L×b×h 

as illustrated in Figure 1. The thicknesses of the skins and the 

porous core are denoted as hf and hc, respectively (h = hc + 

2hf). The z-axis is in the vertically upward direction, and the 

x-axis belongs to the mid-plane. The two similar skins are 

made of FGM which is a mixture of ceramic and metal. The 

core is constructed of a metal foam, which is a type of porous 

material. The beam is subjected to a transverse load with an 

amplitude of qo(x) on the top surface. 

There are many mathematical models proposed for 

designing the variations of mechanical properties of FGM 

and metal foam. The power law and cosine rule variations 

are widely used for the former and the latter, respectively. 

Based on these variations, the effective Young’s modulus 

(E) of the two FGM skins and the core is assumed to 

change along the thickness of the beam as follows [2, 3]: 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
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in which Em and Ec are Young’s moduli of two primary 

materials composing FGM of the skins; the pure material 

of metal foam (having no pores) is the same as the metal 

constituent of the FGM skins; k is the power-law index 

(0  k); eo is the porosity coefficient (0  eo < 1). It is evident 

from Eq. (1) that Young’s modulus E varies continuously in 

the whole domain of the beam. Poisson’s ratio (v) is assumed 

to be constant for each layer, and shear modulus can be 

determined via the relation ( ) ( ) / (2 2 )G z E z= +  . 

2.2. Displacement, strain and stress fields 

In this work, based on the framework of third-order 

beam theory (TOBT), the components u(x, z), w(x, z) of the 

displacement field, which are, respectively, corresponding 

to the x- and z-directions, can be expressed as 
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Where, uo, wo, and o are the axial displacement, transverse 

displacement, and the shear strain on the mid-plane  

(i.e., z = 0), respectively. They are three primary variable 

functions of the problem which need determining. 

The strain field based on the von Kármán geometric 

nonlinearity can be given by 
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The stress-strain relationships obey Hook’s law and can 

be presented in a compact form as 
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2.3. Energy expressions 

The variation of internal energy (W) of the PFGM 

sandwich beam can be determined as follows: 

Figure 1. Configuration and geometrical parameters of  

PFGM sandwich beam 
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Next, plugging the strains from Eq. (3) into Eq. (6), the 

variation of internal energy can be described by 
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Where, DE1, DE2, DE3 and DE4 are the matrices of stiffness 

coefficients which are defined as 
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Eq. (8) shows that the stiffness coefficients in the 

matrices DE2, DE3 and DE4 depend on the transverse 

displacement wo(x) of the beam, except for those in DE1. 

The variation of external work (S) done by the 

transverse load qo(x) can be expressed by 

( )
0

L

o oS q w x dx= −      (9) 

In the mechanical analysis, the principle of virtual work 

can be employed to derive the equilibrium equation of the 

system. It can be stated as the following formula 

0W S+ =       (10) 

2.4. Mesh-free approach 

Various analytical and numerical methods can be used 

to find out the primary variable functions of the problem. 

This study employs the mesh-free method developed by 

Hung et al. [18] to obtain approximate solutions. 

2.4.1. Approximation of displacement fields 

The variable functions need approximating through their 

function values at nodes, also called the nodal values, in the 

problem domain. This means that the discretized nodal 

values become the alternative unknowns. In what follows, 

the detailed procedure of the approximation is presented. 

Consider an influence domain s which is a sub-

domain of the problem domain . The domain s is 

represented by N arbitrarily distributed nodes along the  

x-axis. In s, an arbitrary function ( )ˆ
oh x  can be 

approximated using C1 Hermite interpolation as 
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Where,  and  denote the vectors of coefficients and 

polynomial basis, respectively. 
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To determine the unknown coefficients in the vector , 

function ( )ˆ
oh x of Eq. (11) is enforced to pass through the 

nodal values at nodes in the influence domain. For 

example, the enforcement for the node m-th at the 

coordinates x = xm can be written as 
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in which andom om   represent the function values (nodal 

values) of ( )ˆ
oh x  and ( )ˆ /oh x x   at x = xm, respectively. 

For m = 1, …, N, Eq. (14) can then be described in the 

compact form as follows 
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Where, QP is the moment matrix of size (2N × 2N) that is 
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and vector q contains the nodal values in the domain s: 
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From Eq. (15), vector ξ  is determined by the inverse 

of matrix: 
1

Qξ P q      (18) 

The approximate function ( )ˆ
oh x  is obtained by 

substituting back vector ξ into Eq. (10): 
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Where, ( )xψ is called the vector of shape functions. This 

vector is defined by 
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The vector of shape functions ( )xψ  that is established 
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for ( )ˆ
oh x  is then employed to approximate all the primary 

unknowns of the problem, i.e., uo(x), wo(x), and o(x). 

Note that the nodal values of different functions at the 

same node are different. 

2.4.2. Discrete form 

According to the mesh-free method, the domain of the 

PFGM beam is discretized into a set of sub-domains c 

called background cells. c can be independent of the 

influence domains. Supposing that c belongs to the 

influence domain s. Hence, the unknown functions of the 

problem in c, i.e., uo(x), wo(x), and o(x) can be 

approximated through their nodal values by using Eq. (19). 

Next, substituting them into Eqs. (7) and (9), to express the 

energies via the nodal values. After that, substituting the 

energies into Eq. (10) leads to the equilibrium equations as 
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In Eq. (21), 
c

L
K  is the linear stiffness matrix which 

refers to the matrix of elastic stiffness coefficients DE1; 

c

NL
K  is the geometric stiffness matrix which refers to the 

matrices of stiffness coefficients DE2, DE3 and DE4; 
c

Q is 

the nodal load vector; Us is the vector of the nodal values. 

They are defined by 
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In Eq. (25), ( ) ( )ˆand 
om om

represent for the function 

values of function ( )  and its first derivative at the 

coordinate of the m-th node, respectively. 

The matrix  and vector H in Eqs. (22-24) are 

determined via the shape functions (x) and (x) 

(extracting from Eq. (20)) as follows 
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For all background cells, Eq. (21) is subsequently 

assembled into the system of global discrete equations: 

( )L NL

F+ =K K U Q     (28) 

where KL and KNL are the global stiffness matrices, QF is the 

global load vector, and U is the global nodal value vector. 

It should be noted that the linear analysis is recovered 

by neglecting the matrix KNL in Eq. (28). 

3. Numerical examples and discussion 

In this section, two types of axially immovable edge 

conditions are considered. They are fully clamped and 

hinged edges which are, respectively, abbreviated as C and 

H in the presentation. Their kinematic conditions require as 

Clamped (C): 0o
o o o

w
u w

x


= = = =


   (29) 

Hinged (H):  0o ou w= =    (30) 

In mesh-free modeling, the size of the influence domain 

is designed to collect 3-4 nodes per domain, and uniformly 

distributed nodes are used. 

Because the geometric stiffness matrix depends on the 

nodal displacements, i.e., KNL = KNL(U), Eq. (28) is a 

nonlinear equation and has to be solved by iterative methods. 

In this work, the direct iterative method is employed. The 

solution of Eq. (28) for the n-th iteration can be stated as 

( )( ) ( )1n nL NL

F

− + =
 
K K U U Q    (31) 

The iteration is supposed to achieve convergence if the 

solution satisfies the following condition 
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ΔU ΔU
ΔU U U

U U
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To accelerate the convergence, a weighted average of 

the solutions, i.e.,
( )1n−

U , instead of ( )1n−
U , proposed by 

Reddy [19], is employed to evaluate the matrix KNL at the 

n-th iteration. 

( ) ( ) ( ) ( )1 2 1
1

n n n− − −
= + −U U U     (33) 

where β is the parameter tested to avoid the non-

convergence in the analysis. In this study, β = 0.25 is 

selected and numerical analyses show that it results in 

stable convergence. 

3.1. Convergence test and validation 

To test the convergence of the mesh-free analysis, 

raising the number of distributed nodes (mesh level) in the 

influence domain until the results of the two adjacent 

analyses are almost the same. The test is done for linear 

bending of single layer FGM beam by ignoring the porous 

core and the bottom skin. The function of Young’s 

modulus is given by 

( )
1

2

k

c m c

z
E E E E

h

 
= + − + 

 
   (34) 

Geometry sizes of the beam and material properties of the 

FGM are L = 1 m, 𝑏 = ℎ = 1×10-2 m, Em = 200 GPa, 

Ec = 20 GPa, m = c = 0.25. The FGM beam is subjected to 

uniformly distributed load qo or sinusoidally distributed load 
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qosin(x/L), qo = 2.5 N/m. This beam with CC edges was 

conducted by Wang et al. [11] via the Ritz method and Reddy 

et al. [16] via the finite element method. The obtained results 

are reported in Table 1. Very good convergence is achieved, 

and the mesh levels with 31 and 41 nodes yield almost the 

same results. Thus, the 31-node mesh level will be used in the 

next investigations. Besides, the studied results match well 

with those of Wang et al. [11] and Reddy et al. [16]. 

Next, the validation is performed for the nonlinear flexural 

bending of the sandwich porous beam with isotropic skins 

under a distributed load of qo = 50 kN/m. Geometry parameters 

and material properties are L = 1 m, 𝑏 = ℎ = 5×10-2 m,  

Em = 200 GPa, m = 0.3. This problem was studied by Wang 

et al. [11] and Srikarun et al. [13]. For comparison purposes, 

replacing E(z) by E(z)/(1-2) in Eq. (5) and setting k = 0 in 

Eq. (1) to be compatible with the studies of Wang and 

co-workers [11] and Srikarun and co-workers [13].  

Non-dimensional mid-span deflection ( )ˆ / 2 /w w L h=  of 

the beam with HH edges is illustrated in Table 2. Again, a 

good agreement can be seen, which confirms the validation. 

3.2. Comprehensive study 

In this part, the effects of important parameters on 

linear and nonlinear bending of PFGM sandwich beams are 

performed to comprehend their characteristics. It is 

assumed that (a) FGM of the skins is composed of ceramic 

(Ec = 380 MPa, c = 0.3) and metal (Em = 70 MPa,  

m = 0.3) [2]; (b) the porous core is a metal foam  

(Em = 70 MPa, m = 0.3) [2]. The geometrical parameters of 

the sandwich beam are L = 1 m, ℎ/b = 1. Non-dimensional 

deflection ˆ /w w h=  is used for the presentation. 

Table 1. Convergence and comparison of central deflection 

w(L/2) (unit: 10-5 m) of single layer FGM beam (linear analysis) 

Number of 

nodes 

For uniformly 

distributed load 

For sinusoidally 

distributed load 

k = 0.0 k = 1.0 k = 0.0 k = 1.0 

5 3.91072 9.15041 3.30830 7.74097 

11 3.91083 9.15062 3.30838 7.74107 

21 3.91088 9.15071 3.30841 7.74113 

31 3.91090 9.15074 3.30842 7.74115 

41 3.91092 9.15078 3.30844 7.74118 

Ref. [11] 3.91075 9.15046 3.30832 7.74097 

Ref. [16] 3.9109 9.1508 3.3079 7.7400 

Table 2. Validation of the deflection ( )ˆ / 2w L  of sandwich beam 

with porous core (nonlinear analysis, hc/hf = 8) 

eo This study Ref. [11] Ref. [13] 

0 0.110417 (5)* 0.110413 0.108052 

0.25 0.115868 (5)* 0.115864 0.113392 

0.5 0.122006 (5)* 0.122001 0.119408 

0.75 0.129072 (5)* 0.129067 0.126338 

(•)∗ implies the number of iterations satisfying the convergence 

of Eq. (32). 

Effects of porosity coefficient (eo), power-law index 

(k), core-to-skin thickness ratio (hc/hf) and edge conditions 

on the non-dimensional central deflection of PFGM 

sandwich beams under uniformly distributed load (qo) with 

different levels are depicted in Figure 2 - Figure 5, 

respectively. The beam with length-to-height ratio L/h = 50 

is selected for these investigations. 

Meticulously observing Figure 2-Figure 5 shows that (a) 

when applied load qo increases, the deflection varies linearly 

if the effect of geometric nonlinearity is not considered. On 

the contrary, it varies nonlinearly if this effect is included; 

(b) at the same load level, nonlinear deflection is smaller 

than linear one. This is due to the additional matrix KNL of 

the nonlinear analysis making the system stiffer in the 

current study. In other words, the stiffness of the beam can 

increase if it is included the effect of nonlinear deformation. 

In addition, the greater the applied load is, the greater the 

discrepancy between linear and nonlinear deflections is. 

Thus, neglecting the geometric nonlinearity may result in 

significantly overestimated deflection of the beam under a 

large applied load; (c) effects of k, hc/hf, and edge conditions 

on the linear deflection are much stronger than the nonlinear 

one. The gaps between the plots of the linear deflection 

increase with increasing applied load qo, whereas those of 

the nonlinear deflection have small changes. 

 

 

 

 

 

 

 

 

 

Figure 2. Effects of eo on the deflection ( )ˆ / 2w L  of 

 PFGM sandwich beam 

 

 

 

 

 

 

 
 

Figure 3. Effects of k on the deflection ( )ˆ / 2w L  of  

PFGM sandwich beam 

 

 

 

 

 

 

 

 

Figure 4. Effects of hc/hf on the deflection ( )ˆ / 2w L  of  

PFGM sandwich beam 
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Figure 5. Effects of edge supports on the deflection ( )ˆ / 2w L  of 

PFGM sandwich beam 

Figure 2 shows that the deflection increases with 

increasing eo. This is because the beam with higher of pore 

density (higher value of eo) is softer. In contrast, as shown 

in Figure 3, the deflection decreases when k increases. This 

is because increasing the value of k leads to an increase in 

the ceramic constituent which has a greater Young’s 

modulus. In other words, the beam becomes stiffer as k 

increases or eo decreases. 

It is clear in Figure 4 that the PFGM sandwich beam 

becomes weaker if the thickness of the core is greater 

(higher hc/hf). Consequently, it gives a greater deflection. 

Finally, among the three edge types of the beam as 

illustrated in Figure 5, the HH beam gives the greatest 

deflection, whereas the smallest one belongs to the CC 

beam. It is also interesting that when applied load  

qo increases, the geometric nonlinearity has the strongest 

impact on the HH beam, but the smallest one on the CC one. 

4. Conclusions 

Linear and nonlinear static deflections of sandwich 

beam with a porous core and two skins made of FGM are 

investigated. Material properties of the beams are tailored 

so they are continuous along the thickness direction.  

The equilibrium equation including the von Kármán 

geometric nonlinearity is derived from the virtual work 

principle in conjunction with TOBT. The C1 Hermite 

interpolation based-mesh-free approach is utilized to 

discretize the equilibrium equation. The direct iterative 

method with the weighted average of the solutions is 

adopted to deal with the nonlinear system of equations. 

The study shows the efficiency of the mesh-free approach 

with a high convergence rate. The correctness and 

reliability of the developed formulations are confirmed. 

The numerical results show the significantly 

overestimated deflection of the beam under a large applied 

load if the geometric nonlinearity is neglected in the 

analysis. Furthermore, the power-law index, porosity 

coefficient, core-to-skin thickness ratio, and edge 

conditions have important effects on the linear and 

nonlinear deflections of the studied beams. 
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