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Computation Initial Degree and Waldschmidt
Constant for Sets of Small Number of

Multiple Points
Nguyen Chanh Tu*

Abstract—Waldschmidt constant is firstly introduced by Waldschmidt in 1975. Since then, many results of this constant
was achieved mostly about finding lower bounds. That is recently one of active, fascinating and important topics. However,
computation of Waldschmidt constant or the initial degree is very hard in general, even for cases of small numbers of points
in the projective plane. Recently, the constants were computed for certain sets of points with one, two and three supporting
lines. The paper shows values of the initial degree and Waldschmidt constant for sets with at most 6 points in all configurations
in projective plane. These constants represent the complexity of optimal solutions in repeated path problems that have many
applications in computer science, informatics theory and telecommunications.

Index Terms—Waldschmidt constant, initial degree, zero-dimensional scheme, fat points, path problem

✦

1. Introduction

W E denote by Pn the projective space over an
algebraically closed field k. Let P ∈ Pn, we say

that a form f of the polynomial ring R := k[x0, . . . , xn]
has multiplicity at least m at P if all partial derivatives
of f of order < m vanishing at P .

Let X := {P1, . . . , Ps} ⊂ Pn, let m1, . . . ,ms be
positive integers. Let Pi ⊂ R be the defining ideal of Pi

consisting of all forms vanishing at Pi, for 1 ≤ i ≤ s. We
denote by Z := m1P1+· · ·+msPs the zero-dimensional
scheme corresponding to the ideal J = ∩s

i=1P
mi
i con-

sisting of all forms of R vanishing at Pi with multiplicity
at least mi, for i = 1, . . . , s. This zero-dimensional
scheme is called a fat point scheme.

Let A = ⊕tAt, be any homogeneous ideal in R :=
k[x0, . . . , xn]. The value α(A) = min{t|At ̸= 0} is called
the initial degree of A. For the ideal J = ∩s

i=1Pmi ,
the initial degree α(J) is the least degree of the hyper-
surfaces containing Pi with multiplicity at least mi, for
1 ≤ i ≤ r.
Definition 1. Let X = {P1, . . . , Ps} ⊂ Pn, and I =

∩s
i=1Pi ⊂ R = k[x0, . . . , xn]. For m ∈ N, denote

I(m) = ∩s
i=1Pm

i , the ideal of the fat point scheme
Z =

∑s
i=1 mPi with equal multiplicity m. The value

lim
m→∞

α(I(m))

m

is called the Waldschmidt constant of I or of the set X
and denoted by γ(I) or γ(X).
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It is not hard to see the following basic properties.
Lemma 1. With notations as above, then

1) α(I(m)) ≤ mα(I).

2) γ(I) is well defined and 1 ≤ γ(I) ≤ α(I(m))

m
≤

α(I), ∀m ≥ 1.
3) γ(I) ≤ n

√
s.

Proof 1. See [3] and [18].

The constant is firstly introduced by Waldschmidt
[22], [23]. Since then, many results of this constant was
achieved mostly about finding lower bounds, see [2],
[4]–[9], [11], [12], [16], [17]. That is recently one of active,
fascinating and important topics as many applications
in various areas of mathematics and other sciences,
see [18] for more information. These constants represent
the complexity of optimal solutions in repeated path
problems that have many applications in computer sci-
ence, informatics theory and telecommunications.

However, computation of α(I(m)) and γ(I) is very
hard in general, even for cases of small numbers of
points in the projective plane. For a set of small number
of points in general position in P2, the Waldschmidt
constant was known only for cases of s points where
1 ≤ s ≤ 9 or s is a perfect square, see [14], [15]. Recently,
the constants were computed for certain sets of r + s
points where there are r collinear points and s points in
general position, 1 ≤ s ≤ 7, see [21]. Note that, if s = 1,
it is the case of almost collinear as in [13]. The constants
are also computed for certain sets with one, two and
three supporting lines as in [18]–[20].

In this paper, we will compute the constants for sets
consisting at most 6 points with all possible configura-
tion. We used many tools in computer algebra systems
to support of computations.
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For proofs in next section, we need to use following
results of Bezout.
Theorem 1 ( [10], I.7.7). Let Y be a variety of dimen-

sion at least 1 in Pn, and let H be a hypersurface
not containing Y . Let Z1, . . . , Zs be the irreducible
components of Y ∩H . Then

s∑
j=1

i(H,Y ;Zj) degZj = (deg Y )(degH).

Note that i(H,Y ;Zj) is the intersection multiplicity if
Y and H along Zj .
Corollary 1 (Bézout’s Theorem, [10], I.7.8). Let Y, Z be

distinct curves in P2 having degrees d, e. Let Y ∩Z =
{P1, ..., Ps}. Then

s∑
j=1

i(H,Z;Pj) = de.

Note that i(H,Z;P ) ≥ multP (H) · multP (Z) and the
equality holds if and only if H and Z have no tangent
in common at P , see [3].

2. Main results
Let X = {P1, . . . , Ps} be a set of points in P2, let

I = ∩s
i=1Pi ⊂ R = k[x, y, z] be the corresponding ideal

of X . For m ∈ N, denote I(m) = ∩s
i=1Pm

i .
The paper shows the constants α(I(m)) and γ(I) =

γ(X) for all possible configurations of X when 1 ≤ s ≤
6.

First of all, we need a simple lemma for collinear
case.
Lemma 2. If all points of X are collinear, then α(I(m)) =

m for m ∈ N and γ(X) = 1.

The proof is trivial. From that we state the result for 1
or 2 points as special cases.
Corollary 2. If X consists of 1 or 2 points then α(I(m)) =

m for m ∈ N and γ(X) = 1.

We consider now the case of 3 points, which has 2
configurations.
Theorem 2. Let X be the set of three points. If the points

are collinear then α(I(m)) = m for m ∈ N and
γ(X) = 1. If the points are in general position then
α(I(2m)) = 3m,α(I(2m−1)) = 3m−1 for m ∈ N and
γ(X) = 3/2.

Proof 2. The collinear case follows Lemma 2. For the
case of general position, let f1, f2, f3 be linear forms
defining 3 lines each of them connects 2 points of
X . It is easy to see that f = fm

1 fm
2 fm

3 ∈ I
(2m)
3m

and g = fm
1 fm

2 fm−1
3 ∈ I

(2m−1)
3m−1 . Then α(I(2m)) =

3m,α(I(2m−1)) = 3m − 1 for m ∈ N and γ(X) =
3/2. Note that this result firstly obtained by Nagata
in 1959 (see [14]), also mentioned in [18].

The case of 4 points has 3 configurations and the values
of the contants are as follows.
Theorem 3. Let X be a set of 4 points in the projective

plane.

1) If the points are collinear then α(I(m)) = m for
m ∈ N and γ(X) = 1.

2) If there are exactly 3 points of X collinear then
α(I(3m)) = 5m for m ∈ N and γ(X) = 5/3.

3) If the points are in general postion then
α(I(m)) = 2m for m ∈ N and γ(X) = 2.

Proof 3.

1) The case of collinear follows Lemma 2.
2) Let X = {P1, P2, P3, P4} where P1, P2, P3 are

collinear; let f0 be the linear form defining the
line containing P1, P2, P3; let f1, f2, f3 be linear
form defining the lines respectively connecting
P4 with P1, P2, P3. Consider f = f2m

0 fm
1 fm

2 fm
3 .

It is clear that f ∈ I
(3m)
5m and I

(3m)
5m−1 = 0 for

m ∈ N. Therefore α(I(3m)) = 5m for m ∈ N
and γ(X) = 5/3.

3) For the case of general position, let C be the
quadratic form defining the conic containing 4
points of X . It is clear that f = Cm ∈ I

(m)
2m and

I
(m)
2m−1 = 0. Therefore α(I(m)) = 2m for m ∈ N

and γ(X) = 2.

The case of 5 points has 4 configurations and the values
of the constants are as follows.
Theorem 4. Let X be a set of 5 points in the projective

plane.

1) If the points are collinear then α(I(m)) = m for
m ∈ N and γ(X) = 1.

2) If there are exactly 4 points collinear then
α(I(4m)) = 7m for m ∈ N and γ(X) = 7/4.

3) If there are at most 3 points collinear (including
the case of general position), then α(I(m)) = 2m
for m ∈ N and γ(X) = 2.

Proof 4.

1) The case of collinear follows Lemma 2.
2) Let X = {P1, . . . , P5} where P1, P2, P3, P4 are

collinear; let f0 be the linear form defining the
line containing P1, P2, P3, P4; let f1, f2, f3, f4
be linear forms defining the lines respectively
connecting P5 with P1, P2, P3, P4. Consider f =

f3m
0 fm

1 fm
2 fm

3 fm
4 . It is clear that f ∈ I

(4m)
7m and

I
(4m)
7m−1 = 0 for m ∈ N. Therefore α(I(4m)) = 7m

and γ(X) = 7/4.
3) Let C be the quadratic form defining the

conic containing 5 points of X . It is clear that
f = Cm ∈ I

(m)
2m and I

(m)
2m−1 = 0. Therefore

α(I(m)) = 2m for m ∈ N and γ(X) = 2.

The case of 6 points has 10 configurations and the values
of the constants are as follows.
Theorem 5. Let X be a set of 6 points in the projective

plane.

1) If the points are collinear then α(I(m)) = m for
m ∈ N and γ(X) = 1.

2) If there are exactly 5 points collinear then
α(I(5m)) = 9m for m ∈ N and γ(X) = 9/5.
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3) If all points are on an irreducible conic or on 2
lines, each of which contains at most 4 points of
X , then α(I(m)) = 2m for m ∈ N and γ(X) = 2.

4) If all points are on 4 lines, each line con-
tains exactly 3 points of X then α(I(2m)) =
4m,α(I(2m+1)) = 4m + 3 for m ∈ N and
γ(X) = 2.

5) If all points are on 3 lines, each of the lines con-
tains exactly 3 points of X , then α(I(4m)) = 9m
for m ∈ N and γ(X) = 9/4.

6) If there are 3 points collinear and X can not
contained in 2 lines then α(I(3m)) = 7m for
m ∈ N and γ(X) = 7/3.

7) If the points are in general position then
α(I(5m)) = 12m for m ∈ N and γ(X) = 12/5.

Proof 5.

1) Follows Lemma 2.
2) Let X = {P1, . . . , P5, Q} such that P1, . . . , P5

lies on a line l = V (f0), point Q /∈ l. Let
f1, . . . , f5 be linear forms defining the lines
respectively connecting Q with P1, . . . , P5. Con-
sider f = f4m

0 fm
1 fm

2 fm
3 fm

4 fm
5 . It is clear that

f ∈ I
(5m)
9m and I

(5m)
9m−1 = 0 for m ∈ N. This

follows that α(I(5m)) = 9m for m ∈ N and
γ(X) = 9/5.

3) If X lies on a conic defined by a quadratic
form C or if X are on 2 lines defined by linear
forms f1, f2, then it is clear that Cm or fm

1 fm
2

are in I
(m)
2m , and I

(m)
2m−1 = 0. That implies that

α(I(m)) = 2m for m ∈ N and γ(X) = 2.
4) Let X = {P1, . . . , P6} such that there are 4 lines

defined by linear forms l1, l2, l3, l4 containing
all points of X as in Fig. 1. It is clear that
lm1 lm2 lm3 lm4 ∈ I

(2m)
4m and lm+1

1 lm+1
2 lm+1

3 lm4 ∈
I
(2m+1)
4m+3 . Then α(I(2m)) = 4m,α(I(2m+1)) =
4m+ 3 for m ∈ N and γ(X) = 2.

Fig. 1: 6 points on 4 lines

5) Let X = {P1, . . . , P6} such that there are 3
lines defined by linear forms l1, l2, l3 contain-
ing all points of X as in Fig. 2. Note that,

three points P2, P4, P6 are not collinear. Let
P2P4 = V (d1), P2P6 = V (d2), P4P6 = V (d3).
We see that l2m1 l2m2 l2m3 dm1 dm2 dm3 ∈ I

(4m)
9m , thus

Fig. 2: 6 points on 3 lines

α(I(4m)) ≤ 9m for all m ≥ 1 and γ(I) ≤ 9/4.
We will show that I

(4m)
9m−1 = 0 for all m ≥ 1.

Suppose that there exists 0 ̸= f ∈ I
(4m)
9m−1.

By Bézout’s Theorem, we see that l1 | f and
similarly l2 | f, l3 | f . We can write f = la1 l

b
2l

c
3g,

where deg(g) = d and a+b+c+d = 9m−1. If d1
is not a factor of f , then by Bézout’s Theorem,
we have a + b + d ≥ 8m, implying c < m.
Similarly we have a < m, b < m. Note that
a + b ≥ 4m, b + c ≥ 4m, a + c ≥ 4m, then
a + b + c ≥ 6m. This contradicts to a < m, b <
m, c < m. Therefore d1, d2, d3 are factors of f .
Moreover, we see that a ≥ 2, b ≥ 2, c ≥ 2. It
means that f has a factor f0 = l21l

2
2l

2
3d1d2d3 of

degree 9 Let f1 = f/f0, then f1 ∈ I
(4(m−1))
9(m−1)−1.

By induction, it is impossible since when m = 1

any member in I
(4)
8 can not have a factor of

degree 9.
Thus I

(4m)
9m−1 = 0 for all m ≥ 1. It means that

α(I(4m)) = 9m for all m ≥ 1 and γ(I) = 9/4.
6) There are 2 configurations for this case as in

Fig. 3. For configuration (b), where three points

Fig. 3: 6 points with at least one supporting line

P1, P2, P3 lie on a line V (l1), three points
P1, Q1, Q2 lie on a line V (l2). Let C = V (g)
be the conic containing P2, P3, Q1, Q2, Q3 and d
be the linear form defining the line P1Q3. Then
lm1 lm2 dmg2m ∈ I

(3m)
7m and I

(3m)
7m−1 = 0. It means

that α(I(3m)) = 7m for m ∈ N and γ(X) = 7/3.
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For configuration (a), where there is a line
V (l) containing P1, P2, P3. Let C1, C2, C3 be
quadratic forms defining 3 conics, each of which
contains Q1, Q2, Q3 and 2 of P1, P2, P3. Then
C1C2C3l ∈ I

(3)
7 . It means that α(I(3)) ≤ 7 and

γ(X) ≤ 7/3.
Suppose that there exists f ∈ I

(3m)
7m−1. On the

line l, the polynomial f vanishes at each point
P1, P2, P3 with multiplicities at least 3m, there
for f = lag where l ∤ g,deg(g) = b and a+ b =
7m− 1. We have b ≥ 3m.
If any of Q1Q2 = V (l1), Q2Q3 =
V (l2), Q1Q3 = V (l3) is not a divisor of V (g),
then b ≥ 6m. On the other hands, we have
3a+b ≥ 3·3m. Then 3a+3b ≥ 9m+12m = 21m.
Therefore a + b ≥ 7m, this contradicts to
a + b = 7m − 1. If g = lb11 lb22 lb33 h, where
deg(h) = c and li ∤ h for any 1 ≤ i ≤ 3. Then
b1+b2+b3+c = b and 2b1+2b2+2b3+c ≥ 3·3m.
On the other hands 3a + c ≥ 9m. This implies
that 3(b1 + b2 + b3)+ 2c ≥ 9m+ b ≥ 12m. Then
3a+ 3(b1 + b2 + b3 + c) = 3(a+ b) ≥ 21m and
a+ b ≥ 7m, this contradicts to a+ b = 7m− 1.
It means that α(I(3m)) = 7m and γ(I) = 7/3.

7) Let X consist of 6 points in general position, let
C1, C2, C3, C4, C5, C6 be conics containing 5 of
6 points in X . Denote Ci = V (fi) for 1 ≤ i ≤
6. Then the curve f = fm

1 · · · fm
6 ∈ I

(5m)
12m and

I
(5m)
12m−1. This implies that α(I(5m)) = 12m for

all m ≥ 1 and γ(I) = 12/5.

3. Conclusion

The paper shows values and detail computations
of the initial degree and Waldschmidt constant for sets
with at most 6 points in all configurations in projective
plane. The methods of computation in the paper can be
extended for more complicated configurations in projec-
tive plane. These constants represent the complexity of
optimal solutions in repeated path problems that have
many applications in computer science, informatics the-
ory and telecommunications.
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