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Abstract - The hydraulic servo drive system has the ability to 

operate stably with high reliability in conditions of continuous 

operation and large capacity. Aside from these advantages, the 

system always has nonlinear and uncertain factors that affect and 

reduce the quality of the controller. These factors include the 

affected disturbances and the uncertainty of the system model. This 

paper proposes a method to identify the sum of nonlinear effects and 

disturbances for the hydraulic drive system, which uses the axial 

piston pump, based on the application of the Radial Basic Functions 

neural network (RBF) and state observer model. The simulation 

results show that the total disturbances and nonlinear effects can be 

accurately estimated in real time through the weight updating rule. 
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1. Introduction 

Hydraulic drive systems have been widely applied to 

many systems in civil and other dedicated applications 

because of their high reliability under continuous operating 

conditions and large working capacity. This study 

examines a hydraulic servo drive system using the axial 

piston pump and motor normally installed for the inertial 

stabilization platform on dedicated mobility vehicles. The 

axial piston pump has the advantages of compact size and 

the ability to precisely regulate flow through the tilt angle 

adjustment of the inclined disc structure in the pump. In 

addition, due to their sealed design and less wear and tear 

than other pumps, piston pumps are widely used in high-

pressure hydraulic systems. However, there are always 

nonlinear factors or noise that can affect the stability of the 

control process ([1] to [4]), such as oil leakage, load 

change, compressibility of the oil, elasticity of the 

pipelines, temperature, viscosity, etc. Traditional control 

methods like PID are difficult to achieve the desired quality 

[5], [6]. Therefore, to improve the quality of the controller, 

it is necessary to identify the state changes and 

disturbances that affect the system. There are many 

proposed disturbance compensation solutions ([7] to [13]), 

but they are only applied to systems which do not require 

high accuracy and fast response. Studies [14] and [15] also 

proposed solutions for estimating nonlinear disturbances 

using observers to improve the quality of the control 

system. In which [14] uses the design of a variable neural 

adaptive robust observer for the state, [15] uses the NDO 

observer combined with the SMC algorithm. However, in 

[14], due to the characteristics of the neural adaptive 

observer, the system has a low convergence rate and a large 

error during the initial time. In [15], the NDO observer 

could minimize "chattering" effect on control activities but 

also cause the tracking precision of the system to degrade. 

In the scope of this paper, the authors propose a method 

that combines an external state observer (ESO) with a 

radial neural network (RBF) based on the parallel model to 

estimate the state of the system and disturbances. With the 

fast response advantage of the RBF network, disturbances 

can be approximated with high accuracy in real time using 

the online weight update rule. 

2. Mathematical model of the system 

In systems that use hydraulic actuators with cylinders and 

pistons, the oil flow always varies with the displacements of 

the pistons in the cylinders. That variation depends not only 

on the number but also on the moving characteristics of the 

pistons. For an axial piston hydraulic pump or motor, the 

stroke of the pistons of the pump is adjusted using a 

swashplate. In which the angle α of the swashplate relative to 

the piston axis is adjusted by the servo-valve mechanism 

(Figure 1). The servo-valve works as an electro-hydraulic 

converter that converts the input electrical control signal into 

the pump flow, resulting in a change in hydraulic motor speed 

and then the actuator position. 

 

Figure 1. Servo valve-controlled axial piston hydraulic pump 

The volume flow rate is obtained by: 

2
3tan( ) 10

4

d
q D i n=     


  (l/min),  (1) 

Where, d is the piston diameter (m); D is the diameter of 

the piston circle in rotating cylinder block (m); i is the 
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number of pistons; n is the rotation rate of the pump shaft 

(rpm); and α is the angle of the swashplate. 

Swashplate angle α is adjusted by electromagnetic force 

using a magnetic coil, so tan( ) ( ),pK u t  where 
pK  is 

the gain factor of the magnetic coil and ( )u t  is the control 

input signal. 

Assuming that the rotation speed of the drive shaft is 

constant, one has the force balance equation of control 

pistons with load: 

( )
1

p p s P

p s P

p

m y d y k y F A p

y d y k y F A p
m

+ + + =

 = − − − +
,  (2) 

where: y - displacement of actuator; 
pm - total weight of 

loads; 
pd  - viscous damping of pistons and loads;  

sk  - spring constant; A P  - effective area of cylinders;  

p  - total load pressure; F - total force applied to pistons. 

Assume that the total load pressure p  depends on the 

control signal ( )u t  in following nonlinear relationship: 

( ) ( ),Np f u t=       (3) 

Replace (3) to (2), one gets: 

( )
1

( ) ( ) ,p s P N

p

y d y k y F A f u t
m

= − − − +     (4) 

Define the state variables: 1 2,  x y x y= = ; 

Assume that the system has been affected by external 

disturbance ( )d t . 

Define the nonlinear functions: ( , ) ( )NF x u y d t= + . 

The state space model of the system can be represented 

by following expressions: 

 

1 1

2 2

1

2

( ) ( )0 1 0
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( )
( ) 1 0 .                         
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x t

      
= +      
      



  

=  
 

  (5) 

The system of equations (5) can be written in the 

following short form: 

( , )

( )

Nx Ax B F x u

y t C x

= + 


= 
    (6) 

3. Design the disturbance estimator based on state 

observer and RBF neural network 

In the extended state observer (ESO), a gain matrix 

 1 2

T
L l l= , and an adjustment function v(t) were added 

to make the error prediction process converge. The system 

of equations of the ESO can be expressed as: 

ˆˆ ˆ ˆ[ ( , ) ( )] ( )

ˆ( )

Nx Ax B F x u v t L y y

y t C x

 = +  + + −


= 
   (7) 

where ˆ ˆ and x y are respectively estimated values of x, y and 

ˆ( ) sign( )v t y y= − . 

Define ˆ ,  1,2.i i ie x x i= − = as the state estimation errors 

and
1 2[ , ]Te e e= , from (6) and (7), lead to: 

[ ( , ) ( )]Ne K e B F x u v t=  + +    (8) 

where ˆ( , ) ( , ) ( , )N N NF x u F x u F x u= − are estimation errors 

of ( , )NF x u  and K A LC= − . 

The gain matrix L is chosen so that K is a Hurwitz 

matrix and lim ( ) 0
t

e t
→

= with fast enough convergence rate 

without destabilizing the system. 

Based on the dynamic equations that describe the 

system model (6) and the expression of the ESO (7), 

structure of the system with the state and disturbance 

observer using an RBF neural network can be built, as 

shown in Figure 2. 

 

Figure 2. Structure of the estimation system 

Since ( , )NF x u satisfy the conditions of the Stone-

Weierstrass theorem, we can use an RBF neural network to 

estimate it with the desired precision. Function ( , )NF x u is 

estimated using the RBF neural network with the following 

expressions: 

* *

1

( , ) ( ) ( )
m

T

N i i

i

F x u w x W x
=

= + = +     ,  (9) 

Where,   is the estimation errors which satisfy 
M  ; 

M  is the desired limitation value of the estimation errors; 

* * * *

1 2[ , ,..., ],mW w w w=  are the “ideal weights” of neural 

network used in order to estimate ( , )NF x u ; and 

1( ) [ ... ]mx =    are activation functions that are chosen by 

using Gaussian functions (10): 

2

2
exp , 1...m

2

i

i

i

x c
i

 − −
 = =
 
 




   (10) 

Estimated value ˆ ( , )NF x u  is fed to the ESO as inputs to 

enhance the accuracy of the system state estimating 

process, thus improving the quality of the control loop. 

Figure 3 represents the structure of the RBF neural network 

used to estimate the function ( , )NF x u , and m is the number 

of nodes in the hidden layer. 
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Estimated value ˆ ( , )NF x u is calculated by the following 

expression: 

ˆ ˆ( , ) ( )T

NF x u W x=  ,    (11) 

where Ŵ is the weight matrix of the RBF network. Let W  

be the estimation error: 

*ˆ .W W W= −      (12) 

 

Figure 3. Structure of the RBF neural network used to 

 estimate ( , )NF x u  function 

Obviously, when 0,W →  or *Ŵ W→ , function 

( , )NF x u  could be estimated with error value ( , )NF x u

smaller than given .M  

The cost function of RBF network is: 

2 2

1

1 1
ˆ( )

2 2
J e y y= = −     (13) 

From (8), it follows that 

1

1

( )Te K B W

e C e

− = −    +


= 

 
   (14) 

The weights of the neural network are updated online 

during the learning process without any available data set. 

And these weight matrices are updated according to the 

Gradient Descent method: 

ˆ ˆ( 1) ( ) ( 1)W k W k W k+ = +  +    (15) 

Where η is learning rate of the network. From (13) and 

(14), ( 1)iW k +  are calculated according to: 

( ) ( )1 1

1

( 1)
( 1) ( 1)

T T

T T
T T T T

J J e
W k

W k e W k

C CeK B B K e C− −

     
 + = =    

 +   +   

= − = − 

  (16) 

Thus, (15) is equivalent to: 

( )1

1
ˆ ˆ .

T
T TW W B K e C−= −      (17) 

Combine (12) and (17), it follows that 

( )1

1 .
T

T TW W B K e C−= −      (18) 

With these learning techniques, after every sampling 

period, the weights of the neural network are updated using 

online data instead of a pre-collected data set. This method 

ensures the system can operate in real-time with a fast 

response. 

4. Stability analysis 

Consider the candidate Lyapunov function: 

( )T TV e Pe tr W W= +     (19) 

Thus, ( )T T TV e Pe e Pe tr W W= + + ,  (20) 

Where, P is a positive-definite symmetric matrix. Since K 

is a Hurwitz matrix, there exists a positive-definite matrix 

Q, which is defined by the formula: 

( P )TQ K PK= − + ,    (21) 

and min ( )r Q  is the minimum eigenvalue of Q. 

Combining (8), (18), (19), (20), and (21), the derivation 

of the V function is determined by the following 

expression: 

( ) ( )
( )

( )

( ) ( )( )

1

1

1

1

2 ( , ) ( )

[ ( )]
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)

T T T

N
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T T T
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N

T
T T T T

e K P PK e e PB F x u v t
V

tr W W B K e C

e Qe e PB F x u v t

tr W W tr W B K e C

−

−

 + + +
 =
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 

 − + +
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 
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 (22) 

Apply the inequalities: 

2 ;T T Ta b a a b b + ;ab a b   

2
( ) ;Ttr a a a= and ( ) ( ) ( )tr a b tr a tr b+  + , 

it follows that 

( )

( ) ( )
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2
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1

1
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Replace the inequalities (23) to (22) and denotes matrix 

( )11
,

2

T
T TZ B K C C−=  it follows that 
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2 2
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2 2

2
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(24) 

If these following conditions 

( )

( )
2

min

2

2

2 ( )

3

M

Max

Max

PB v t
e

r Q

W

  +


+ 











   (25) 

are met, then V̇ ≤ 0, the state observer system combined 

with the RBF neural network is stable. 
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5. Simulation results 

In order to illustrate the performance of the estimation 

algorithm, the system is simulated in the Malab-Simulink 

environment based on the built model. 

Considering a hydraulic drive system with the 

following parameters: 

2 2

0,96( ); 20( / ); 500( / );

10( ); / 4 0.5 ( );

p p s

P

m kg d Ns m k N m

F N A m

= = =

= = 
 

In RBF neural network approximation, the parameters 

of  and i ic  must be chosen according to the scope of the 

input value (amplitude U0 of signal u(t)). 

In detail, for the input u(t) signal with U0 = 5, use a RBF 

network with a number of nodes in the hidden layer of 

m = 7 and activation functions with the following parameters: 

 5; 0.5;  3 2 1 0 1 2 3 ; 4;i c= = = − − − =    

and extended state observer with parameter matrices: 

   
0 1 0

150 300 ;  ;  ;  1 0 .
0 0 1

T
L A B C

   
= = = =   

   
 

The simulation result of the estimation algorithm that 

estimates the nonlinear function ( , )NF x u  is shown as Figure 4. 

 

Figure 4. Estimating the nonlinear function with σi = 5 

Remark 1: According to simulation results, it can be 

seen that, if  and i ic   are set in an effective range relative 

to input signal scope, the neural network RBF can fairly 

accurately estimate the total disturbances and nonlinear 

function with small time delay. Basically, this delay time 

depends on the activation functions and the number of 

nodes in the hidden layer of the neural network. 

Conversely, if these parameter values are chosen 

inappropriately, the Gaussian function will not be 

effectively mapped, and the RBF network will be invalid. 

 

Figure 5. Estimating the nonlinear function with σi = 1 

This issue is illustrated in Figure 5. In this case, 

activation functions with σi = 1 cannot cover the range of 

the input signal scope U0. As a result, the function F(x,u) 

cannot be estimated correctly. 

Estimated value ˆ ( , )NF x u  is then fed to the extended 

state observer to estimate the system states x1, x2. Results 

are shown in Figures 6 and 7. 

 

Figure 6. Estimating the system state variable x1 

 

Figure 7. Estimating the system state variable x2 

Remark 2: After the settling time of the network 

training process, state estimation errors approach 0 and 

depend on the initial system states, convergence rate, and 

learning rate of the network. According to simulation 

results, the system, with the combination of the state 

observer and the RBF neural network with an online 

weight updating rule, could accurately estimate the 

affected disturbances and the states of the servo valve-

controlled hydraulic system. 

To evaluate the effectiveness of the proposed method 

to estimate the system states on the basis of combining an 

RBF neural network with the ESO, the article simulates 

the estimation algorithm in the case of using only the 

Luenberger state observer (as shown in Figures 8 and 9). 

 

Figure 8. Estimating x1 without RBF neural network 
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Figure 9. Estimating x2 without RBF neural network 

Remark 3: The system state estimation method using 

the state observer combined with an RBF neural network 

has way more accurate results than using only the 

Luenberger state observer. This is especially evident for 

the state variable x2, which contains nonlinear and 

disturbance factors affecting the system. 

6. Conclusion 

The servo-valve-controlled hydraulic systems using 

axial piston pumps, like any other hydraulic systems, are 

always affected by disturbances and nonlinear factors. 

Therefore, control strategies using traditional controllers 

like PID make it difficult to meet the high accuracy 

requirement. This article presents a method to estimate the 

nonlinear components and external disturbances based on 

a parallel model that combines the RBF neural network 

with an extended state observer. The built model has a 

simple structure and the ability to estimate those factors in 

real time with the desired accuracy. The advantages of this 

estimation algorithm also have also been demonstrated by 

simulation results in the Matlab-Simulink environment. 

In addition, the model of this disturbance estimator can 

be used for the development of high-quality adaptive 

controls for hydraulic servo drive systems. 
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