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A Hybrid Model for Probabilistic Analysis of
Modern Power Systems with Integration of

Renewable Energy Resources
Nguyen Thi Ai Nhi, Le Dinh Duong*, Ngo Van Duong, Huynh Van Ky

Abstract—Modern power systems faces various uncertainties both from conventional sources, due to stochastic nature of both
the load and the availability of generation resources and transmission assets, and from renewable resources. The increasing
penetration of wind and solar power generation introduces additional uncertainty, causing more difficulties in power system
analysis. To deal with uncertainties, Probabilistic Power Flow (PPF) has been introduced as an efficient tool. In this paper, we
develop a hybrid model that combines scenario analysis technique and cumulant based PPF approach. It can take into account
various sources of uncertainty in the power system and their correlations. The proposed approach is performed on IEEE-118
bus test system, indicating good performance in comparison with Monte Carlo approach.

Index Terms—Renewable energy, Uncertainty, Probabilistic Power Flow, Cumulant, Scenario analysis.

✦

1. Introduction

DURING the operation of the power system, the pa-
rameters of operating mode such as power flow or

current flowing through branches, voltage of nodes, etc.,
must be regularly calculated and then compared with
their permissible limits to evaluate as well as to propose
suitable solutions to handle and ensure the security of
the system in case of a risk of unsafety. The traditional
Deterministic Power Flow (DPF) method [1] is the tool
used to determine the mode parameters; however, in the
calculation process, the DPF method only uses power
injections from nodes (from loads, generation resources,
etc.) which are fixed values and the grid structure that is
known in advance, so the uncertainty factors (random
factors) from loads, power generation, grid structure
(such as random failures of lines and equipment) are
not taken into account. This is the large drawback of the
DPF calculation method.

In order to overcome the above disadvantages, Prob-
abilistic Power Flow (PPF) method was introduced and
become a very effective calculation tool to account for
uncertainties in the system. Power injected by loads
and power sources, working status of elements such
as lines, transformers... can follow certain probabilistic
laws [2]. Especially, for today’s power systems, integrat-
ing more and more renewable energy sources into the
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system such as wind power, solar power, etc., introduces
large amounts of uncertainties that increase the level
of uncertainty in the system. PPF must fully take into
account all such the uncertainties in the computation
process and give outputs such as nodal voltage, current
and power through the lines... in the form of probability
distributions. Therefore, the PPF calculation method
allows to evaluate the probability of the existence of
dangerous modes (voltage, current, transmission power
exceeding the allowable values) in the system, from
that the operator can propose an appropriate solution
to improve safety for the system.

The PPF method was first proposed by Borkowska
in 1974 [3] and since then many research works on this
field have been published in the world. In general, PPF
methods can be divided into three main groups: ana-
lytical methods, approximation methods and numerical
methods.

Analytical methods use algorithms or techniques of
analysis such as convolution [4-6] and semi-invariant
(cumulant) [7-11]. Applying analytical techniques com-
bined with the input-output relationship of the problem
allows to determine the distribution functions of the
output random variables (such as nodal voltage, cur-
rent and power transmitted through branches) accord-
ing to system parameters (line impedance, transformer
impedance...) and probability distributions from input
random variables from load, power generation of con-
ventional generators and renewable energy sources, etc.

The input-output relationship of the power flow cal-
culation problem is nonlinear. However, the analytical
method only works with the linear input-output rela-
tionship. Therefore, before using analytical techniques,
the input-output relationship is linearized using expan-
sion methods such as McLaren, Taylor expansion.
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The general advantage of the analytical method is
that the calculation results are quickly obtained. Among
two methods using convolution and cumulant tech-
niques, the convolution method is more computation-
ally intensive, requires more memory, and gives slower
results than the cumulant method. Therefore, the cumu-
lant method is now more commonly used than the con-
volution method. The cumulant method is often used
in conjunction with series expansion techniques, e.g.,
Gram-Charlier [7, 8], Cornish-Fisher expansions [11], to
obtain a distribution functions for the output random
variables. Thanks to the advantages of fast calculation,
the analytical method can be used to calculate for
large power systems in practice. However, the analytical
method has the following main disadvantages: 1) Due
to the use of techniques to linearize the input-output
relationship, the accuracy of the analytical method is
greatly affected when the input variable changes in
a wide range such as the output of wind sources; 2)
Analytical method using expansion techniques such
as Gram-Charlier, Cornish-Fisher and these techniques
give high accuracy if the distribution functions of the
input variables are normal distribution (Gausian distri-
bution) or close to the normal distribution. However, for
real power systems, the distributions of the input ran-
dom variables often follows the distributions different
from the Gausian distribution, so the results obtained
when applied in practice are not very accurate.

The typical approximation method in PPF is the
point estimate method [12-15]. In this method the input
random variables are parsed out into a series of values
and corresponding weights, then the output random
variable’s moment is calculated as a function of the
input random variables. From that, the distribution
function of the output random variable is established
based on the calculated moment.

The advantage of the point estimate method is that
it gives relatively fast results, so it can also be applied
to calculations for large power systems. In addition, this
method uses the nonlinear input-output relationship of
the power flow calculation problem, so the calculation
results do not depend on the linearization process like
the analytical method. However, the point estimation
method has the disadvantage that the accuracy de-
creases with increasing the order of the moment, so the
distribution function of the output variable has a de-
crease in accuracy. Another limitation of the approxima-
tion method is that when applying calculations to large-
scale power syste with an increased number of input
random variables, the computational burden increases,
making the total calculation time increase significantly.

Monte Carlo simulation (MCS) based PPF is a typical
method of the group of simulation methods [16-18]. In
the Monte-Carlo method, the input random variables
(representing processes, random events) will be sam-
pled and then the power flow calculation process (using
the same methods as the traditional DPF method) will
be performed for all those samples. The accuracy of this
method depends greatly on the sampling technique and
on the number of samples taken (number of samples

is often very large). This method uses the nonlinear
input-output relationship of the problem like the tradi-
tional power flow calculation methods. To increase the
efficiency of the computation, the techniques of Latin
hypercube [19], Latin supercube [20] and importance
sampling [21], etc., are used.

One of the most advantage of the Monte-Carlo simu-
lation method is that the results obtained are very accu-
rate and reliable. The probability distributions of the in-
put random variables are generally easier to implement
than analytical and approximation methods. However,
the largest disadvantage of Monte Carlo simulation is
that it requires too much computation time, so it is
difficult to apply power system calculations, especially
large power systems in practice.

From the above overview and analysis, it is shown
that each PPF method has its own characteristics, so
depending on the actual application, we choose the
most appropriate PPF method.

In order to overcome a number of the above-
mentioned difficulties, in this paper we develop a
methodology for PPF based on the combination of
cumulant and scenario analysis techniques that allows
to integrate various types of input probability distribu-
tion functions, to take into account correlation of input
random variables and to reduce the computation time
while ensuring to a certain degree of accuracy.

2. Uncertainty modeling

2.1. Using probability distributions to model uncer-
tainty

Modelling of uncertainties from input random vari-
ables is necessary for PPF computation. In the paper, the
uncertainty sources from solar, wind, and load demand
are considered and modelled.

• Wind generation
The Weibull distribution is widely used in wind

speed analysis [22]. The probability density function
(PDF) of Weibull distribution is

f(v) =
k

c
.
(v
c

)k−1
. exp

[
−
(v
c

)k
]

(1)

where v is wind speed; k is the shape parameter; c is the
scale parameter.

The characteristic curve of a wind turbine can be
represented as follows

Pwp(v) =



0 v ≤ vci or v > vc0

Pw
v − vci
vr − vci

vci < v < vr

Pw vr < v < vc0

(2)

Where vr, vci and vc0 are the rated, cut-in, and cut-out
wind speed, respectively; PW and Pwp are the rated and
output power of wind generation, respectively.

• Solar generation
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Beta distribution [23] is usually used to model solar
radiation:

f(r) =
Γ(α+ β)

Γ(α)Γ(β)
.

(
r

rmax

)α−1

.

(
1− r

rmax

)β−1

(3)

where rmax and r are the maximum and actual solar
radiations, respectively; α and β are distribution param-
eters; Γ(·) is the well-known Gamma function.

Ppv(r) =



PS
r2

rcrstd
r < rc

Pw
r

rstd
rc ≤ r ≤ rstd

PS r > rstd

(4)

where rstd and rc are the solar radiation in the standard
condition of environment and a certain radiation point,
respectively; PS is the rated power of the photovoltaic
(PV) unit; Ppv is the output power. Normally, solar
generation operates in the unity power factor.

• Load
The uncertainty of each load is represented by a

Gaussian distribution [9, 10] in which the mean (ex-
pected value) is its base power and the standard de-
viation is assumed to be equal to a certain percentage,
e.g., 8%, of the expected value.

2.2. Scenario based uncertainty modelling

In order to solve problems under uncertaity, scenario
analysis is one of the most useful tool. The uncertainties
as well as the correlations of input random variables can
be characterized by using the scenario analysis.

• Scenarios generation
Scenario generation is the process of representing

uncertainty with a large number of scenarios. Sampling
techniques are commonly used to generate scenarios
based on the distributions and correlations of uncer-
tainty factors. In this paper, the comprehensive and
realistic method in [24] is exploited to generate sce-
narios. The model makes use of time series analysis
and Principal Component Analysis (PCA) along with
data preprocessing techniques to explicitly capture the
salient characteristics of uncertainty factors such as dis-
tinct seasonal and diurnal patterns, spatial and temporal
correlations, and non-Gaussianity. Moreover, the model
is able to reduce the dimensions of data sets, so it is
helpful for working with high-dimensional data.

• Scenarios reduction
Generally, to capture the salient features of uncer-

tainties, a scenarios generation technique needs to gen-
erate a very large number of scenarios leading to high
computational burden. A scenario reduction technique
is then used to reduce the computational burden and
obtain a small number of representative scenarios. For
this task, we apply fast forward selection (FFS) method
[25].

3. Methodology
3.1. Cumulant based PPF method

The method of calculating PPF based on cumulant
[9, 10] is performed as follows:

The equations for calculating power flow in matrix
form are as

w = g(x) (5)
z = h(x) (6)

where, w is the vector of power injected into nodes; x is
the vector of the state variable (voltage, phase angle); z
is the vector of the transmitted power on the branches;
g(x) are power flow equations; h(x) is the function to
calculate power flow.

Initially, DPF is performed to calculate the power
flow for the system. After that, Taylor expansion can be
used to linearize the equations around their solution x.
The results are as follows:

∆x = G|x∆w (7)
∆z = H|x∆w (8)

where, G|x and H|x are the inverse of the Jacobian
matrix and the sensitivity matrix of the power flow
according to the power injected into the nodes, respec-
tively; G|x and H|x are calculated for x.

In PPF, each component of the vectors x, w, and
z is treated as a realization of the random variable
corresponding to the state variable, the power injected
into the nodes, and the power on the branches. Based on
the linear relationship (7) and (8), the cumulant-based
PPF calculation method is performed in the following
steps:

• Calculate the DPF for the system and get the solu-
tion x and G|x and H|x;

• Compute the cumulant of the state variables and
the power transmitted on the branches according to
the cumulant of the input random variables based
on the linear relationship (7) and (8);

• Use expansion techniques to estimate the proba-
bility density function (PDF) and/or cumulative
distribution function (CDF) functions of the output
random variables.

3.2. Scenario based cumulant PPF method

The procedure of the developed scenario based cu-
mulant PPF (denoted as SBCPPF) is:

• Step 1: Input the required data for PPF (loads,
renewable energy resources, network topologies,
correlation information);

• Step 2: Form structure ω =
{ω1, ω2, . . . , ωi, . . . , ωN} for N non-Gaussian
input random variables and generate scenarios as
presented in Section 2.2;

• Carry out the scenario selection technique FFS to
obtain a reduced number Ns of representative sce-
narios ω∗ = {ω∗

1 , ω
∗
2 , . . . , ω

∗
i , . . . , ω

∗
Ns, };

• Step 4: Perform the cumulant method for each rep-
resentative scenario ω∗

i to obtain the corresponding
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means and standard deviations of output random
variables;

• Step 5: Form the CDFs and PDFs for output ran-
dom variables by the weighted sum of Gaussian
functions series based on (9) and (10):

f(x|ω∗) = π(ω∗
1 )f(x|ω∗

1) + · · ·+ π(ω∗
Ns)f(x|ω∗

Ns)

=
Ns∑
i=1

π(ω∗
i )

1√
2πσ2

i

e
−
(x− µi)

2

2σ2
i (9)

F(x|ω∗) = π(ω∗
1 )F (x|ω∗

1) + · · ·+ π(ω∗
Ns)F (x|ω∗

Ns)

=
Ns∑
i=1

π(ω∗
i )

∫ x

−∞

1√
2πσ2

i

e
−
(γ − µi)

2

2σ2
i dγ

(10)

where πω∗
i is the occurence probability of scenario

ω∗
i

• Step 6: Perform probabilistic analysis and assess
the security of the system (e.g., probability of over-
/under-voltage, probability of line overloading).

4. Tests and discussion

To illustrate and compare the above methods, a case
study related to IEEE 118-bus test system is used. The
tests are implemented in Matlab (on a PC using 2.53
GHz CPU and 4 GB RAM).

The required data for DPF of the IEEE 118-bus test
system are provided in [26]. To test the developed
method, the system is modified, i.e., four wind farms
and six solar parks are connected to ten buses as given
in Table 1 and Table 2, respectively. The information
relevant to wind farms, solar parks, loads and their
uncertainties are assumed to be known. For the sake of
simplicity, load at each bus is modelled by a Gaussian
distribution. The expected value of the distribution is
equal to its base value while its standard deviation is
assumed, for example, to be equal to 8% of its mean.
Similarly, the uncertainties from wind farms and solar
parks are assumed to follow Weibull distributions and
Beta distributions, respectively, with the parameters as
given in Table 1 and Table 2. In addition, the correlation
coefficient for wind outputs at different buses is equal to
0.5 while that information for solar outputs at different
buses is 0.6.

TABLE 1: Information for wind resources

Node vci vr vco c k Pw

(m/s) (m/s) (m/s) (MW)
3 3 12 25 20 2 114
16 3 12 25 15 1 132
17 3 12 25 20 1.8 70
50 3 12 25 25 2.1 72

After obtaining the necessary input information for
the problem, scenario generation technique, discussed
in Section 2.2, is used to generate 1000 (N = 1000)

scenarios that characterize non-Gaussian input random
variables, i.e., wind and solar resources. Next, 50 (Ns =
50) representative scenarios are obtained by using FFS
method.

TABLE 2: Information for solar resources

Node α β rmin rmax rc rstd Ps

(kW/m2) (kW/m2) (W/m2) (W/m2) (W/m2) (W/m2) (MW)
2 2.2 4.1 0 1000 150 900 90
7 2.6 4.2 0 1000 150 900 72
14 2.7 3.8 0 1000 150 900 92
51 3.1 4.0 0 1000 150 900 82
84 3.2 3.9 0 1000 150 900 30
86 2.4 3.7 0 1000 150 900 102

In order to assess the accuracy and efficiency of
the developed PPF method (i.e., SBCPPF), a MCS with
10,000 samples has been performed and taken as refer-
ence.

For evaluating the accuracy of the considered
method, the Average Root Mean Square (ARMS) error
is also computed using the results from MCS as in [9].
ARMS is calculated as [9]:

ASRM =

√
NP∑
1
(MCSi − SBCPPFi)2

NP
(11)

where MCSi and SBCPPFi are the i-th value on CDF
curves obtained by MCS and by the SBCPPF method,
respectively. NP is the number of samples considered
(in this case, an interval of p.u. is used). The base power
of 100 MVA is used.

Besides MSC and SBCPPF, CMPPF is also imple-
mented. Probability distributions of all output random
variables can be estimated. Nevertheless, for illustration
purposes, the CDFs of some selected output random
variables are depicted. Fig. 1 and Fig. 2, for example,
plot CDFs of real power flow through line 69-75 (i.e.,
P69−75) and of voltage at bus 58 (i.e., V58), respectively.
As can be seen from the figures, the results from the
developed approach SCBPPF is better than the results
obtained by CMPPF in comparison to MCS results.

Fig. 1: CDFs of real power flow through line 69-75 (P69−75)

For evaluating the accuracy according to ARMS, the
smaller values of ARMS errors obtained by SCBPPF
in comparison to that of CMPPF show the higher ac-
curacy of SCBPPF in estimation of probability distri-
butions. To demostrate the accuracy, the mean (Mean)
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and maximum (Max) values of ARMS errors of all out-
put random variables of the system (i.e., active power
flows, reactive power flows, nodal voltages and angles)
are also shown as follows: ARMSMax

SBCPPF = 0.12%,
ARMSMax

CMPPF = 0.54% and ARMSMean
SBCPPF = 0.07%,

ARMSMean
CMPPF = 0.36%.

Fig. 2: CDFs of real power flow through line 69-75 (P69−75)

Regarding computational burden, Table 3 clearly
shows that all the cumulant methods considered give
results in a few seconds, compared to a hundred of
seconds from MCS. SBCPPF requires more computation
time, compared to CMPPF; however, the amount of
increase is not significantly. Hence, SBCPPF is suitable
for calculation and analysis of a practical large scale
system.

TABLE 3: Computation time comparison

Method MCS CMPPF SBCPPF
Time (s) 253 2.38 4.85

PPF provides results in terms of probability distribu-
tions for output variables that are useful for assessing
power systems taking into account the uncertainties
from input variables.

For instance, the real power flow limit of line 69-75 is
assumed to be equal to 115 MW (the vertical dotted line
in Fig. 1), the probability so that power flow through
line 69-75 is over its limit can be computed as

P{P69−75 > 115} = 2.1% (12)

With the above result calculated, the operators of
the system can identify the possible overload level of
the branch so that depending on the importance of the
branch, they can propose appropriate solutions to avoid
overloading such as reducing the load or using devices
to regulate the power transmitted through that branch.

Probability so that voltage at a considered bus is out
of its operating range (i.e., assumed to be [0.95, 1.05] p.u.
in this test) can also be calculated. It can be seen from
Fig. 2 that voltage at node 58 is within its operating
range.

Therefore, the system operator can use the results in
probabilistic form from PPF to evaluate the operating
states of the system. In case a risk is detected, the
operator can suggest reasonable solutions to deal with
the issue.

5. Conclusion

In this paper, a scenario based cumulant PPF ap-
proach is developed. It can account for various sources
of uncertainty in power systems and their correlations.
The developed approach together with the traditional
cumulant method and MCS are carried out on IEEE-118
bus system. The results obtained are compared showing
that the proposed approach can achieves high accuracy,
while requiring less computation time in comparion
with MCS. The proposed methodology application re-
sults are useful in power system analysis and in assess-
ing power system security, such as probability of line
overloading, probability of over-/under-voltage.
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