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Abstract - This study investigates the ultimate bearing capacity 

of a rigid strip footing on a sandy slope using the Rigid Plastic 

Finite Element Method (RPFEM). To accurately represent a wide 

range of frictional conditions at the footing roughness, a new 

interface element was introduced, capable of accommodating 

both perfectly rough and perfectly smooth conditions. A new 

constitutive equation is introduced to model these interface 

elements, which had a significant influence on the failure mode 

of the strip footing. Moreover, the study focuses on assessing 

critical parameters, including the internal friction angle of the 

sandy ground, as well as slope geometry parameters (slope angle 

, edge distance L, and slope height H). The RPFEM results 

illustrate that increasing the edge distance positively influences 

the bearing capacity, while a higher slope angle exerts a negative 

effect. Notably, variations in slope height produce consistent 

outcomes, regardless of the frictional conditions. 

Key words - Bearing capacity; Rigid footing; Sandy slope; 

Rough footing; Smooth footing; RPFEM 

1. Introduction 

Determining the ultimate bearing capacity of rigid strip 

footings on sloping terrains is a crucial focus area in 

geotechnical engineering. The main objective is to 

establish the maximum load that a strip footing can endure 

without experiencing failure or excessive deformation. 

Although established solutions for computing ultimate 

bearing capacity in horizontal sandy soils are available [1 - 

4]. However, the maximum bearing capacity and failure 

mechanisms of rigid strip footings on sandy slopes 

continue to be a subject of ongoing research. 

Numerous researchers, including [5 - 10] have put forth 

theoretical and numerical methods for estimating the 

maximum bearing capacity of footings on sandy slopes. It's 

worth emphasizing that the ultimate bearing capacity of a 

rigid strip footing is significantly affected by the frictional 

conditions at the footing base and the ground surface. 

Typically, the footing surface is characterized under two 

extreme conditions: perfectly rough or perfectly smooth. 

Many previous studies, like those conducted by [10 - 12], 

have predominantly concentrated on the rough footing, 

overlooking the influence of smooth footings. This 

omission raises queries about the impact of footing 

roughness on the ultimate bearing capacity of the footing-

slope system, leaving a comprehensive understanding of 

the failure mechanism lacking. 

To address these challenges, prior investigations 

conducted by [10, 13 - 16] introduced the concept of 

employing an interface element to assess the maximum 

bearing capacity and failure modes of rigid strip footings 

on level ground. Their findings demonstrated the 

effectiveness of utilizing an interface element in these 

determinations. In the current study, the interface element 

is extensively utilized to explore failure mechanisms under 

both rough and smooth footings. The study employs a two-

dimensional analysis utilizing the Rigid Plastic Finite 

Element Method (RPFEM), previously utilized in 

geotechnical engineering by [17, 18]. Two new 

constitutive equations are introduced in this study: one for 

the material of the strip footing and the sandy slope, and 

another one for interface elements that model the interface 

plane between the footing base and the ground surface. 

This study extensively investigated the effect of various 

factors, such as soil strength (internal friction angle ), and 

the geometric parameters of the slope (slope angle, β, slope 

height, H, and edge distance, L), on ultimate bearing 

capacity for rough and smooth footings. It also compared 

these findings with the maximum bearing capacity of 

horizontal sandy soil, denoted as Vult. The results obtained 

through RPFEM have provided valuable insights into how 

these parameters influence the bearing capacity. 

2. Methodology for assessing ultimate bearing capacity 

2.1. Application of rigid plastic constitutive equation to 

footing and soil elements 

Tamura et al. has derived an elastic-plastic constitutive 

equation using a Drucker-Prager type yield function as Eq. 

(1). The yield function is expressed using the first invariant 

of the stress tensor (I1=tr()) and the second invariant of 

the deviatoric stress tensor (
1
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coefficients related to c and  based on the Mohr-Coulomb 

failure criterion, and tensile stress is defined as positive. 

The stress tensor is denoted as σ, and the deviatoric stress 

tensor is denoted as s, leading to the following Eq. (1). 
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The stress σ in an object undergoing plastic 

deformation can be decomposed into the determined stress 

σ(1), obtained from the plastic strain rate, and the 

undetermined stress σ(2), which cannot be determined from 

the plastic strain rate. The determined stress σ(1) is 

expressed as follows based on the associated flow rule. 

(1)

23 0.5

p

e


=

+


      (2) 



ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 21, NO. 12.1, 2023 23 

 

where, 
p represents the plastic strain rate, and 

p p:e =    represents the equivalent plastic strain rate. 

The undetermined stress σ(2) consists of stress components 

along the linear portion of the yield function Eq. (1) and 

cannot be directly determined from the constitutive 

equation. However, by utilizing the fact that stress lies on 

the yield function, the components of undetermined stress 

can be expressed in Eq. (3). Applying the associated flow 

rule to the yield function Eq. (1) yields the condition for 

plastic strain rate (volumetric change characteristics). 
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where, 
p

v
ε is the plastic volumetric strain rate. Using the 

fact that Eq. (3) is a condition for plastic strain rate 

orthogonal to the yield function Eq. (1), σ(2) can be 

expressed as follows using an undetermined coefficient α. 
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where, I shows the unit tensor. Here, utilizing Eq. (2) and 

(4), we derive the elastic-plastic constitutive equation for 

the specified yield function, as expressed: 
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This constitutive equation includes the undetermined 

coefficient α. However, by conducting an analysis of 

boundary value problems along with the constraint 

conditions from Eq. (3), α can be determined. The elastic-

plastic constitutive equation is suitable for deformable 

objects and not applicable to rigid bodies. However, for 

instability analysis, it becomes essential to examine rigid 

bodies. Therefore, the elastic-plastic constitutive equation 

is extended in Eq. (6); by performing an operation that 

replaces the equivalent plastic strain rate e  with a 

threshold value 
o

e  when e  falls below this threshold 

value, Eq. (6) is obtained. 
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This operation is effective in preventing division by 

zero in the rigid body region when the equivalent strain rate 

becomes small, as indicated in Eq. (5). Furthermore, the 

replacement by 
o

e has the effect of discounting the strength 

of the ground by ( )o
/ 1e e  , thereby creating an 

equivalent reduction in shear strength. Therefore, Eq. (6) 

can be expected to have the same effect as creating a 

constitutive equation that appears to reduce shear strength, 

similar to Eq. (5), allowing for slight plastic deformation 

even in the rigid body portion. This enables the 

establishment of a similar structural relationship with 

respect to stress within the yield function, as in Eq. (6), and 

the ability to solve the equilibrium equation stably. The 

threshold value 
o

e is determined through numerical 

experiments where 
o

e is varied beforehand, and a value 

that does not significantly affect the analytical solution is 

selected. 

Hoshina et al. [19] developed a constitutive equation 

that integrated the strain rate constraint directly using the 

penalty method, a methodology also employed by [3, 4, 10, 

13, 14, 15, 16]. The expression for the stress-strain rate 

relationship associated with the Drucker-Prager yield 

function is presented as follows: 
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By introducing a penalty constant denoted as "κ," the 

integration of the Finite Element Method (FEM) with this 

constitutive equation enables an equivalent analysis of the 

upper bound theorem for plasticity, which is termed the 

RPFEM method within this research. A significant 

characteristic of this constitutive equation is its explicit 

definition of the stress-strain rate relationship. The rigid 

plastic constitutive equation is effective for its simplicity 

and efficiency in evaluating the soil's ultimate limit state. 

This offers a notable advantage by eliminating the 

necessity for uncertain elastic modulus values associated 

with the ground. 

2.2. Application of rigid plastic constitutive equation to 

interface elements 

This study aims to elucidate the relationship between 

stress and displacement velocity at the interface between 

the base of a footing and the ground surface during linear 

interactions involving various objects. It achieves this by 

employing a rigid-plasticity constitutive equation. An 

essential aspect of this research is the consideration of the 

discontinuity in the displacement velocity field at the 

contact surface. Additionally, it incorporates a stress vector 

't' governed by a Mohr-Coulomb-type yield function. 

( ) tan 0
s s n s

f t c t= − + =t      (8) 

where, ts and tn represent the stress vector components 

acting along the shear and normal directions of the 

discontinuity line, while s and cs correspond to the 

frictional and cohesive strengths of the interface elements. 

In this study, interface elements with zero thickness (a 

node-to-node element) are used into the contact plane 

between two bodies, as shown in Figure 1. The relative 

displacement velocity vector, denoted as u , is defined as 

the difference between the displacement velocity vectors at 

the (+) surface, 
+

u , and at the (-) surface, 
−

u . 

The motion conditions associated with shear on the 

discontinuity line (volume change characteristics) are 

expressed by the following equation. 
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where, ,
s n

u u  represent the relative displacement 
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velocity in the shear and normal directions, respectively. 

Similar to the soil material, when dividing the constitutive 

relationship into the determined stress t(1) defined by the 

yield function equation and the undetermined stress t(2), the 

following rigid-plastic constitutive equation is obtained. 
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where, ξ is the penalty constant, and the constraint 

condition Eq. (11) is explicitly introduced into the 

constitutive equation. 

Furthermore, u represents the norm of the relative 

displacement velocity, and in the case of small relative 

displacement velocities, the operation of replacing u

with a threshold value 
o

u threshold is used to describe 

the behavior of two objects behaving as one. 

 

 

 

 

 

 

 

a) stress state on 

the discontinuity line 

b) motion of the discontinuity 

line 

Figure 1. Vector of stress and velocity of relative displacement 

3. Ultimate bearing capacity of rigid strip footing 

3.1. Influence of footing roughness 

As stated in the introduction, this main objective is to 

use a two-dimensional model for analyzing the behavior of 

the slope beneath a strip footing. A strip footing of width  

B is placed on a sandy soil slope with slope angle  and 

slope height H at an edge distance L from the crest of the 

slope, as shown in Figure 2. The investigation focuses on 

assessing the effect of slope geometry, including various 

slope angles (β ranging from 5° to 25°), edge distances  

(L from 0.0B to 5.0B), and slope heights (H from 0.5B to 

4.0B). Figure 2 illustrates a typical finite element mesh and 

boundary conditions for simulating the footing-slope 

system, employing an interface element at the contact 

plane between the footing base and the soil surface.  

To ensure that the boundaries do not affect the failure mode 

or maximum bearing capacity of the rigid strip footing,  

the dimensions of the model were sufficiently large.  

A central point load was applied to a strip footing with a 

width of B=5.0 m. The strip footing was simulated as a 

solid element with high strength to replicate a rigid footing. 

Both the strip footing and the sand slope are modeled as 

rigid perfectly plastic materials with specific properties:  

γf =γsoil=18 kN/m³, cf =50.000 kPa, and ϕf = 0 deg. The 

internal friction angle of the sand slope varied from  

ϕsoil =30 deg to 40 deg, and a small cohesion value  

(csoil =0.5 kPa) is applied to aid in the computational process. 

Two different friction conditions for the footing roughness 

were considered, and the interface element properties can be 

found in Table 1. Choosing the fine mesh size is crucial for 

improving simulation accuracy during model building. An 

iterative process is employed to determine the initial and 

final mesh sizes, with approximately 4000 initial elements 

and 6000 final elements chosen for reliable results. A fine 

mesh density near the footing base is maintained. The 

analysis revealed that the bearing capacity remained within 

a 0.5% difference when increasing the mesh to around 6000-

7000 elements, affirming the effectiveness of boundary 

conditions. The study investigated four distinct failure 

modes: face failure, toe failure, base failure, and Prandtl-

type failure, as illustrated in Figure 2. 

 

 

 

Figure 2. Boundary conditions for a strip footing subjected to  

a centrally applied vertical load on a sandy slope 

Table 1. Parameters for footing roughness 

Parameter Rough footing Smooth footing 

Internal friction angle s (o) 30, 35, 40 0 

Cohesive strength cs (kPa) 0.5 0.5 

The maximum bearing capacity of the rigid strip 

footing was generally determined to be approximately 

V=1975 kN/m for rough footing, and approximately 

V=1117 kN/m for smooth footing. This represents about 

57% of the value observed under rough footing, as 

illustrated in Figure 3. These results are consistent with the 

findings reported by Pham et al. 3 for horizontal sandy 

soil, where a 52% difference was observed between the two 

frictional conditions of the footing roughness. 

Figure 3 shows for the norm strain rate distribution of the 

strip footing under a central vertical load. The norm strain 

rate, represented by contour lines, falls within a certain range 

( )max
0 e− . The distribution of the strain rate presents the 

failure mode of the strip footing, which is influenced by the 

footing roughness. Notably, the failure areas differ 

significantly due to the different footing roughness. 

Additionally, the rigid block formed beneath the footing 

base appears distinct between the rough and smooth footings. 
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The obtained failure mode closely resembles the slip line 

pattern observed in the rough footing as described in Pham 

et al. 10. The failure mode involves one-sided failure into 

the slope in case of the rough footing (as shown in Figure 

3a). Conversely, the failure mode is presented by two rigid 

triangular wedges in case of the smooth footing (as shown in 

Figure 3b). These wedges tend to move towards the two 

edges of the footing because the interface element of the 

smooth footing base permits horizontal movement. These 

numerical results from RPFEM underscore the significant 

effect of the footing roughness on both the ultimate bearing 

capacity and the failure mode of the footing-slope system. 

 

 
a) In case study of rough footing (V=1975 kN/m) 

 

 

b) In case study of smooth footing (V=1117 kN/m) 

Figure 3. Deformation diagram of rigid strip footing on sandy 

slope of =30deg in case of =15o, L=0.0B, and H=2.0B 

3.2. Effect of slope geometry on ultimate bearing capacity 

3.2.1. Effect of slope angle and edge distance 

To assess the influence of slope angle β and edge 

distance L, a set of analyses was conducted across different 

values of  (30 deg, 35 deg, and 40 deg). Figure 4 depicts 

the vertical load ratio (V/Vult) in relation to the edge 

distance ratio (L/B) under both rough and smooth footings. 

In which, Vult represents the ultimate bearing capacity of a 

strip footing on horizontal sandy soil. These results reveal 

that an increase in the slope angle (β) leads to a reduction 

in the ultimate bearing capacity. Importantly, it's 

noteworthy that the ultimate bearing capacity of the 

footing-slope system consistently falls within the range of 

values applicable to horizontal sandy soil, irrespective of 

the footing's roughness. These plots clearly illustrate that 

augmenting the edge distance (L) enhances the ultimate 

bearing capacity. When the edge distance (L) reaches a 

critical value, denoted as Lcr, the bearing capacity stabilizes 

at a constant level, similar to that of horizontal sandy soil. 

The value of the critical distance Lcr seems to be influenced 

by the internal friction angle φ. Furthermore, it's observed 

that the critical distance Lcr is greater for the rough footing 

compared to the smooth footing. Consequently, increasing 

the edge distance does not substantially impact the ultimate 

bearing capacity, regardless of the footing roughness. In 

Figure 4, for a standard case with =30 deg, it is 

determined that the critical distance Lcr is approximately 

2.0B for the rough footing, while it is about 1.25B for the 

smooth footing. This outcome aligns well with the findings 

of Meyerhof [6]. These results suggest that the RPFEM 

method can reasonably predict both the bearing capacity 

and the critical distance Lcr by varying the value of . 

 

a) Rough footing 

 

b) Smooth footing 

Figure 4. Effect of slope angle , and edge distance L on 

normalized vertical load (V/Vult) in case of H=2.0B 

Furthermore, Figure 5 indicates the failure modes of the 

strip footing on a sandy slope of =30deg being depicted for 

rough and smooth footings when dealing with a high slope 

angle of β=25°. These failure mechanisms exhibit distinctive 

characteristics. In one mechanism, toe failure is observed for 

the rough condition (as seen in Figure 5a), while the other 

mechanism illustrates a face failure for the smooth condition 

(as depicted in Figure 5b). In comparison to β=15°, shown 

in Figure 3, the failure zone has extended further towards the 

crest side of the slope. This extension results from the 

unfavorable impact of soil weight, acting as an external force 

that initiates instability in the footing-slope system. It 

becomes clear that as the slope angle β increases, the failure 

mechanism shifts from the face failure mechanism to the toe 

failure mechanism. In the case of a rough surface condition, 

the strip footing achieves its maximum bearing capacity at 

around V=1023 kN/m, whereas under smooth conditions, 

this capacity is approximately V=605 kN/m. This 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

N
o
rm

al
iz

ed
 v

er
ti

ca
l 
lo

ad
 (

V
/V

u
lt
)

Normalized edge distance (L/B)

β=5° - ϕ=30deg β=15° - ϕ=30deg β=25° - ϕ=30deg

β=5° - ϕ=35deg β=15° - ϕ=35deg β=25° - ϕ=35deg

β=5° - ϕ=40deg β=15° - ϕ=40deg β=25° - ϕ=40deg

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

N
o
rm

al
iz

ed
 v

er
ti

ca
l 
lo

ad
 (

V
/V

u
lt
)

Normalized edge distance (L/B)

β=5° - ϕ=30deg β=15° - ϕ=30deg β=25° - ϕ=30deg

β=5° - ϕ=35deg β=15° - ϕ=35deg β=25° - ϕ=35deg

β=5° - ϕ=40deg β=15° - ϕ=40deg β=25° - ϕ=40deg

V 

Horizontal sandy soil 

Horizontal sandy soil 

V 



26 Pham Ngoc Quang, Pham Ngoc Vinh 

 

underscores the substantial influence of β on the ultimate 

bearing capacity. As a result, with a continued increase in 

the slope angle β, the footing-slope system eventually 

experiences a gravity-induced overall failure mode. 

 

 

a) In case study of rough footing (V=1023 kN/m) 

 

 

b) In case study of smooth footing (V=605 kN/m) 

Figure 5. Deformation diagrams of strip footing on sand slope 

of =30deg for high slope angle =25o, L=0.0B, and H=2.0B 

 

 

 
b) In case study of rough footing (V=3170 kN/m) 

 

 
b) In case study of smooth footing (V=1943 kN/m) 

Figure 6. Deformation diagram of strip footing on sand slope of 

=30deg for large edge distance L=1.0B, =15o, and D=2.0B 

Figure 6 provides additional clarity on the failure 

patterns observed in the footing-slope system, particularly 

when considering a substantial edge distance (L=1.0B) for 

both rough and smooth footings. These failure patterns 

commonly manifest when a rigid footing is situated at a 

distance from the slope's crest, akin to conditions observed 

in horizontal sandy soil, as previously discussed in the 

research conducted by Loukidis et al. [20] and Pham et al. 

[3, 4, 21, 22]. It becomes apparent that augmentation of the 

edge distance (L) results in a transition of the failure mode 

from face failure to a Prandtl-type failure. In the RPFEM 

computation, the ultimate bearing capacity of the strip 

footing closely resembles that observed on horizontal 

sandy soil. Specifically, it reaches approximately V=3170 

kN/m for the rough footing and V=1943 kN/m for the 

smooth footing. The substantial edge distance ensures that 

the slip surface develops within the horizontal sandy soil, 

diminishing the slope's effect. These findings are in 

concordance with research outcomes from [6], [10], 

collectively contributing to a more comprehensive 

understanding of how slope geometry impacts the bearing 

capacity of the rigid strip footing. 

3.2.2. Effect of slope height 

To investigate the influence of slope height, a series of 

analyses were performed, varying the slope height H from 

0.5B to 4.0B. Consistent with previous findings by [6], [10], 

it was observed that the ultimate bearing capacity of the 

footing-slope system remains stable when the slope height 

exceeds the depth of the slip surface. However, it's worth 

noting that a different pattern emerges when dealing with a 

small slope height of H=0.5B combined with a high slope 

angle of β=25°, as shown in Figure 7. This phenomenon 

can be attributed to variations in the strip footing's failure 

zone, where the failure mechanism can encompass either 

toe or base failure modes across all analyzed scenarios. 

 

Figure 7. Effect of slope height H on normalized vertical load 

(V/Vult) in a case study of L=0.0B and sand slope of =30 deg 

Figure 8 illustrates the failure mode of a rigid strip 

footing positioned on the crest slope. This analysis 

considers both rough and smooth footings with a high slope 

angle (β=25°) and a small slope height (H=0.5B). In this 

particular scenario, base failures dominate, characterized 

by the failure slip area extending from the edge of the 

footing to beneath the slope's toe. This type of failure mode 

has the potential to mobilize greater shear resistance 

compared to face or toe failure modes, and the passive 

resistance increases as the slope's influence diminishes. 

The computed ultimate bearing capacity of the strip footing 

in this case is approximately V=1226 kN/m for the rough 

footing and about V=756 kN/m for the smooth footing, 

representing 59% of that observed in the rough footing. 

When comparing Figures 5 and 8 for H=2.0B and H=0.5B, 

it becomes evident that the slope's effect on the bearing 

capacity decreases significantly. This increase in the 

collapse load is attributed to the rise in passive resistance 
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beneath the footing base. The results obtained from 

RPFEM provide valuable insights into how slope height 

impacts the ultimate bearing capacity and failure modes of 

the rigid strip footing. 

 

 
a) In case of rough footing (V=1226 kN/m) 

 

 
b) In case of smooth footing (V=756 kN/m) 

Figure 8. Deformation diagrams of strip footing in case of small 

slope height H=0.5B, and high slope angle of =25o (=30deg) 

4. Conclusions 

Key conclusions drawn from the study are as follows: 

(1) A new constitutive equation for the interface element 

successfully introduced the contact plane between the 

footing base and the ground surface. It was found that the 

solution was positively effective for analyzing the 

interaction between the footing base and the soil surface. The 

model demonstrated its precision in emulating two distinct 

conditions: rough and smooth. The roughness of the footing 

surface proved to be a pivotal factor in influencing various 

failure modes, notably the rigid triangular wedge mode, and 

the two rigid triangular wedges mode. 

(2) The study extensively delved into the impact of slope 

geometry on the ultimate bearing capacity, considering both 

rough and smooth conditions. Across a range of case studies, 

it became evident that the ultimate bearing capacity of the 

footing-slope system exhibited a decline as the slope angle 

increased, regardless of the footing roughness. However, an 

expansion in the edge distance led to an increase in the 

ultimate bearing capacity, up to a critical distance Lcr. The 

specific value of Lcr was contingent upon factors such as the 

slope angle (β), internal friction angle (), and footing 

roughness. Additionally, minor variations were observed 

when altering the slope height (H). The research identified 

four distinct failure modes, each shaped by the interplay of 

slope geometry and footing roughness. 
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