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Abstract - In this paper, we propose a generalized Nesterov 

algorithm for the constrained optimization problems on a closed 

convex set. We prove the convergence as well as the 

convergence rate of the proposed algorithm. First, we present a 

new algorithm based on the generalization of Nesterov’s 

algorithm. Then, we prove the convergence as well as the 

convergence rate of the new algorithm. With a specific choice of 

parameters, the new algorithm becomes Nesterov’s algorithm. 

Therefore, the convergence as well as the convergence rate of 

Nesterov’s algorithm are also followed. We illustrate the 

effectiveness of the new algorithm as well as compare it with 

Nesterov’s algorithm and the gradient descent algorithm through 

a specific example. 
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1. Introduction 

In this paper, we consider a constrained minimization 

problem  

  min
𝑥∈𝑄

𝑓(𝑥),                   (1) 

Where, 𝑓 is a strongly convex function on 𝑄 ⊂ ℝ𝑛 with the 

derivative 𝑓′ being Lipschitz continuous, 𝑄 is a closed 

convex set. We also denote 𝑥∗ and 𝑓∗ as a solution and the 

minimum of problem (1), respectively. 

Constrained minimization problems on simple closed 

convex sets are a fundamental class of optimization 

problems with widespread applications in various fields, 

including engineering, economics, machine learning, and 

many others. The goal is to find the optimal value of a 

function subject to constraints that limit the search space to 

a simple closed convex set. 

Several algorithms have been developed to tackle such 

problems efficiently such that projected gradient descent 

[1], interior point methods [2, 3, 4], sequential quadratic 

programming [5, 6, 7], penalty and augmented Lagrangian 

methods [8, 9] and trust-region methods [10, 11, 12]. 

The choice of an algorithm depends on various factors 

such as the problem’s characteristics (convex or non-

convex), the dimensionality of the variables, the type and 

complexity of the constraints, and the desired trade-off 

between computational efficiency and accuracy. 

Recently, Nesterov proposed an optimal algorithm  

for problem (1), which has the optimal order of 

convergence rate among all algorithms only use values of 

the objective functional and its gradient [13]. The order 

of convergence rate of the method is of 𝑂(𝑞𝑘) with 

𝑞 ∈ (0,1) if problem (1) is strongly convex and is of 

𝑂(
1

𝑘2
) if problem (1) is convex. However, the proof of 

convergence and convergence rate of the method is not 

available in detail. Thus, in this paper, we will generalize 

Nesterov’s algorithm and prove its convergence and 

convergence rate. Note that with special choice of 

parameters, the generalized Nesterov’s algorithm returns 

the original one. Thus, Nesterov’s algorithm is proved as 

well. Note that our proposed algorithm for problem (1) 

with 𝑄 = ℝ𝑛 (unconstained minimization problem) 

return to the generalized Nestrov’s algorithm that has 

investigated in [14]. 

2. Notations and preliminary results 

In this part, we recall some technical terms and 

properties of strongly convex differentiable function. We 

denote 𝒮1(ℝ𝑛) is the set of all differentiable, convex 

function in ℝ𝑛 and 𝒮𝜇,𝐿
1,1(ℝ𝑛) is the set of all differentiable, 

strongly convex function and its derivative 𝑓′ is Lipschitz 

continuous with Lipschitz constant 𝐿 in ℝ𝑛. 

A continuously differentiable function 𝑓 is called 

convex in ℝ𝑛 if and ony if  

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩, ∀𝑥, 𝑦 ∈ ℝ𝑛 . 

A continuously differentiable function 𝑓 is called 

strongly convex in ℝ𝑛 if and ony if there exists a constant 

𝜇 ≥ 0 such that  

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩ +
𝜇

2
‖𝑥 − 𝑦‖2,

∀𝑥, 𝑦 ∈ ℝ𝑛. 

A differentiable function 𝑓 is Lipschitz continuous on 

ℝ𝑛 if and only if there exists 𝐿 > 0 such that  

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ ℝ𝑛 . 

Then, 𝜇 and 𝐿 are respectively called strongly 

convexity constant and Lipschitz constant. 

Note that if 𝑓 is convex and Lipschitz continuously 

differentiable in ℝ𝑛, then for any 𝑥, 𝑦 ∈ ℝ𝑛, 

0 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ⟨𝑓′(𝑥), 𝑦 − 𝑥⟩ ≤
𝐿

2
‖𝑥 − 𝑦‖2, (2) 

and  

0 ≤ ⟨𝑓′(𝑥) − 𝑓′(𝑦), 𝑥 − 𝑦⟩ ≤ 𝐿‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ ℝ𝑛. (3) 

The projection operator is the distance function from 

𝑦 ∈ ℝ𝑛 to the closed convex set 𝑄, defined by  

𝑃𝑄(𝑦) = argmin
𝑥∈𝑄

1

2
‖𝑥 − 𝑦‖2. (4) 

Note that 𝑃𝑄(𝑦) = 𝑦 if and only if 𝑦 ∈ 𝑄. 

Let us fix some 𝛾 > 0 and 𝑦 ∈ ℝ𝑛. We define 𝑥𝑄(𝑦; 𝛾) 

and 𝑔𝑄(𝑦; 𝛾) by  
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𝑥𝑄(𝑦; 𝛾) 

       = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑄 [𝑓(𝑦) + ⟨𝑓
′(𝑦), 𝑥 − 𝑦⟩ +

𝛾

2
‖𝑥 − 𝑦‖2] 

         = 𝑃𝑄 (𝑦 −
1

𝛾
𝑓′(𝑦)), 

and  𝑔𝑄(𝑦; 𝛾) = 𝛾(𝑦 − 𝑥𝑄(𝑦; 𝛾)). 

Theorem 2.1  Let 𝑓 ∈ 𝒮1(ℝ𝑛) and 𝑄 be a closed 

convex set in ℝ𝑛. The point 𝑥∗ is a solution of problem (1) 

if and only if  

〈𝑓′ (𝑥∗), 𝑥 − 𝑥∗ 〉 ≥ 0, ∀𝑥 ∈ 𝑄. (5) 

Proof.  If (5) is true, then  

𝑓(𝑥) ≥ 𝑓(𝑥∗) + 〈𝑓′(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 𝑓(𝑥∗), 

for all 𝑥 ∈ 𝑄. Therefore, 𝑥∗ is the solution of problem (1). 

Now let 𝑥∗ be a solution of problem (1). Assume that 

there exists some 𝑥 ∈ 𝑄 such that  

〈𝑓′(𝑥∗), 𝑥 − 𝑥∗〉 < 0. 

Consider the function 𝜑(𝛼) = 𝑓(𝑥∗ + 𝛼(𝑥 − 𝑥∗)), 

𝛼 ∈ [0; 1]. Since 𝜑(0) = 𝑓(𝑥∗), 𝜑′(0) = ⟨𝑓′(𝑥∗), 

𝑥 − 𝑥∗〉 < 0, 𝑓(𝑥∗ + 𝛼(𝑥 − 𝑥∗)) = 𝜑(𝛼) < 𝜑(0) =

𝑓(𝑥∗) for 𝛼 small enough. That is a contradiction. Thus, 

the theorem is proved.   

Lemma 2.1  Let 𝑓 ∈ 𝒮𝜇,𝐿
1,1(ℝ𝑛), 𝛾 ≥ 𝐿 and 𝑦 ∈ ℝ𝑛. 

Then for any 𝑥 ∈ ℝ𝑛 we have  

𝑓(𝑥) ≥ 𝑓 (𝑥𝑄(𝑦; 𝛾)) +
1

2𝛾
‖𝑔𝑄(𝑦; 𝛾)‖

2

                            +〈𝑔𝑄(𝑦; 𝛾), 𝑥 − 𝑦〉 +
𝜇

2
‖𝑥 − 𝑦‖2.        (6)

 

Proof.  Denote 𝑥𝑄 = 𝑥𝑄(𝑦, 𝛾), 𝑔𝑄 = 𝑔𝑄(𝑦; 𝛾) and let  

𝜙(𝑥) = 𝑓(𝑦) + 〈𝑓′(𝑦), 𝑥 − 𝑦〉 +
𝛾

2
‖𝑥 − 𝑦‖2. 

Then 𝜙′(𝑥) = 𝑓′(𝑦) + 𝛾(𝑥 − 𝑦) and for any 𝑥 ∈ ℝ𝑛 we 

have  

〈𝑓′(𝑦) − 𝑔𝑄, 𝑥 − 𝑥𝑄〉 = 〈𝜙′(𝑥𝑄), 𝑥 − 𝑥𝑄〉 ≥ 0. 

Hence,  

𝑓(𝑥) −
𝜇

2
‖𝑥 − 𝑦‖2 ≥ 𝑓(𝑦) + 〈𝑓′(𝑦), 𝑥 − 𝑦〉 

= 𝑓(𝑥) + 〈𝑓′(𝑦), 𝑥𝑄 − 𝑦〉 + 〈𝑓′(𝑦), 𝑥 − 𝑥𝑄〉 

≥ 𝑓(𝑥) + 〈𝑓′(𝑦), 𝑥𝑄 − 𝑦〉 + 〈𝑔𝑄 , 𝑥 − 𝑥𝑄〉 

= 𝜙(𝑥𝑄) −
𝛾

2
‖𝑥𝑄 − 𝑦‖

2
+ 〈𝑔𝑄 , 𝑥 − 𝑥𝑄〉 

= 𝜙(𝑥𝑄) −
1

2𝛾
‖𝑔𝑄‖

2
+ 〈𝑔𝑄 , 𝑥 − 𝑥𝑄〉. 

Note that since 𝛾 ≥ 𝐿, 𝜙(𝑥𝑄) ≥ 𝑓(𝑥𝑄). Thus, the lemma is 

proved.   

3. Generalized Nesterov’s algorithm 

In order to find an approximate solution to problem (1), 

we introduce the generalized Nesterov’s algorithm that is 

presented in Algorithm 3. Note that if we set 𝛽𝑘 = 𝐿 for all 

𝑘, then the generalized Nesterov’s algorithm returns 

Nesterov’s algorithm in [8]. 

Generalized Nesterov’s algorithm (Algorithm 3) 

[1]  Initial guess Choose 𝑥0 ∈ 𝑄 and 𝛾0 ≥ 𝜇, 𝛽0 ≥ 𝐿. 

Set 𝑣0 = 𝑥0. 

[2] For 𝑘 = 0,1,2, …    

        1. Compute 𝛼𝑘 ∈ (0,1) from equation 

 𝛽𝑘𝛼𝑘
2 = (1 − 𝛼𝑘)𝛾𝑘 + 𝛼𝑘𝜇  .   

        2. Compute 𝛾𝑘+1 = 𝛽𝑘𝛼𝑘
2.   

        3. Compute 𝑦𝑘 =
𝛼𝑘𝛾𝑘

𝛾𝑘+𝛼𝑘𝜇
𝑣𝑘 +

𝛾𝑘+1

𝛾𝑘+𝛼𝑘𝜇
𝑥𝑘 .  

    4. Compute 𝑥𝑘+1 = 𝑥𝑄(𝑦𝑘 ; 𝛽𝑘) and 𝑔𝑄(𝑦𝑘; 𝛽𝑘) 

        5. Compute  

                   𝑣𝑘+1 = 
1

𝛾𝑘+1
[(1 − 𝛼𝑘)𝛾𝑘𝑣𝑘 + 𝛼𝑘𝜇𝑦𝑘 − 𝛼𝑘𝑔𝑄(𝑦𝑘; 𝛽𝑘)].   

        6. Compute 𝛽𝑘+1 ≥ 𝐿     

[3] Output:  {𝑥𝑘} .  

In order to prove the convergence and convergence rate 

of Algorithm 3, we introduce the pair of sequences, 

{𝜙𝑘(𝑥)}𝑘=0
∞ , {𝜆𝑘}𝑘=0

∞ , recursively defined by:  

𝜆0 = 1, 𝜆𝑘+1 = (1 − 𝛼𝑘)𝜆𝑘 , (7) 

𝜙0(𝑥) = 𝑓(𝑥0) +
𝛾0

2
‖𝑥 − 𝑥0‖

2, (8) 

𝜙𝑘+1(𝑥) = (1 − 𝛼𝑘)𝜙𝑘(𝑥) 

               +𝛼𝑘 [𝑓 (𝑥𝑄(𝑦𝑘 ; 𝛽𝑘)) +
1

2𝛽𝑘
‖𝑔𝑄(𝑦𝑘 ; 𝛽𝑘)‖

2
 

        + 〈𝑔𝑄(𝑦𝑘 ; 𝛽𝑘), 𝑥 − 𝑦𝑘〉 +
𝜇

2
‖𝑥 − 𝑦𝑘‖

2]. (9) 

Lemma 3.1  A pair of sequences {𝜙𝑘(𝑥)}𝑘=0
∞  and 

{𝜆𝑘}𝑘=0
∞  satisfies that for any 𝑥 ∈ ℝ𝑛 and all 𝑘 ≥ 0 we 

have  

𝜙𝑘(𝑥) ≤ (1 − 𝜆𝑘)𝑓(𝑥) + 𝜆𝑘𝜙0(𝑥).  (10) 

Proof. We prove by induction method. For 𝑘 = 0, the 

statement is true since 𝜙0(𝑥) ≤ (1 − 𝜆0)𝑓(𝑥) +
𝜆0𝜙0(𝑥) ≡ 𝜙0(𝑥). Further, let (10) holds for some 𝑘 ≥ 0. 

Then, for any 𝑥 ∈ ℝ𝑛 ,  

𝜙𝑘+1(𝑥) ≤ (1 − 𝛼𝑘)𝜙𝑘(𝑥) + 𝛼𝑘𝑓(𝑥) 

=  (1 − (1 − 𝛼𝑘)𝜆𝑘)𝑓(𝑥) + (1 − 𝛼𝑘)(𝜙𝑘(𝑥) 

−(1 − 𝜆𝑘)𝑓(𝑥)) 

≤  (1 − (1 − 𝛼𝑘)𝜆𝑘)𝑓(𝑥) + (1 − 𝛼𝑘)𝜆𝑘𝜙0(𝑥) 

=  (1 − 𝜆𝑘+1)𝑓(𝑥) + 𝜆𝑘+1𝜙0(𝑥). 

Lemma 3.2  Assume that 𝑓 ∈ 𝒮𝜇,𝐿
1,1(ℝ𝑛) and 𝑄 is a 

closed convex set in ℝ𝑛. Let {𝑥𝑘}, {𝑦𝑘}, {𝑣𝑘}, {𝛼𝑘} be 

sequences generated by Algorithm 3. Then,   

(1) For every 𝑘 ∈ ℕ, 𝑣𝑘 is the minimizer of 𝜙𝑘 defined 

by (8) and (9), and the function 𝜙𝑘 has the form  

𝜙𝑘(𝑥) = 𝜙𝑘
∗ +

𝛾𝑘

2
‖𝑥 − 𝑣𝑘‖

2, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ ℝ𝑛, (11) 

where 𝜙0
∗ = 𝑓(𝑥0), 

𝜙𝑘+1
∗ = (1 − 𝛼𝑘)𝜙𝑘

∗ + 𝛼𝑘𝑓 (𝑥𝑄(𝑦𝑘; 𝛽𝑘)) 

+
1

2𝛽𝑘
(𝛼𝑘 − 1)‖𝑔𝑄(𝑦𝑘; 𝛽𝑘)‖

2
+
𝛼𝑘(1 − 𝛼𝑘)𝛾𝑘

𝛾𝑘+1
 

(
𝜇

2
‖𝑦𝑘 − 𝑣𝑘‖

2 + 〈𝑔𝑄(𝑦𝑘; 𝛽𝑘), 𝑣𝑘 − 𝑦𝑘〉). (12) 
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(2) the sequence {𝑥𝑘} satisfies 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) for all 𝑘 ∈ ℕ.  

Proof.  

(1) We prove by the induction method. It is obvious if 

𝑘 = 0. Assume that the statement is true for some 𝑘 ≥ 0, i.e., 

𝜙𝑘 defined by (8) and (9), and the function 𝜙𝑘 has the form  

𝜙𝑘(𝑥) = 𝜙𝑘
∗ +

𝛾𝑘
2
‖𝑥 − 𝑣𝑘‖

2, for any 𝑥 ∈ ℝ𝑛 . 

Then, from (9), for any 𝑥 ∈ ℝ𝑛,  

𝜙𝑘+1(𝑥)   =   (1 − 𝛼𝑘) (𝜙𝑘
∗ +

𝛾𝑘
2
‖𝑥 − 𝑣𝑘‖

2) 

+𝛼𝑘 [𝑓 (𝑥𝑄(𝑦𝑘; 𝛽𝑘)) +
1

2𝛽𝑘
‖𝑔𝑄(𝑦𝑘; 𝛽𝑘)‖

2
 

+ 〈𝑔𝑄(𝑦𝑘 ; 𝛽𝑘), 𝑥 − 𝑦𝑘〉 +
𝜇

2
‖𝑥 − 𝑦𝑘‖

2]. 

By Step 2 and Step 3 in Algorithm 3, we have  

𝜙𝑘+1′(𝑥) 

= (1 − 𝛼𝑘)𝛾𝑘(𝑥 − 𝑣𝑘) + 𝛼𝑘[𝑔𝑄(𝑦𝑘 ; 𝛽𝑘) + 𝜇(𝑥 − 𝑦𝑘)] 

= [(1 − 𝛼𝑘)𝛾𝑘 + 𝛼𝑘𝜇]𝑥 

−[(1 − 𝛼𝑘)𝛾𝑘𝑣𝑘 + 𝛼𝑘𝜇𝑦𝑘 − 𝛼𝑘𝑔𝑄(𝑦𝑘 ; 𝛽𝑘)] 

= 𝛾𝑘+1𝑥 − [(1 − 𝛼𝑘)𝛾𝑘𝑣𝑘 + 𝛼𝑘𝜇𝑦𝑘 − 𝛼𝑘𝑔𝑄(𝑦𝑘; 𝛽𝑘)]. 

From Step 6 in Algorithm 3, we have 𝜙𝑘+1′(𝑣𝑘+1) = 0, i.e., 

𝑣𝑘+1 is the miniminzer of 𝜙𝑘+1. Furthermore, from (9) we have  

𝜙𝑘+1
′′ (𝑥) = (1 − 𝛼𝑘)𝜙𝑘

′′(𝑥) + 𝛼𝑘𝜇𝐼𝑛 = 𝛾𝑘+1𝐼𝑛 , 

∀𝑥 ∈ ℝ𝑛. 

Thus, 𝜙𝑘+1(𝑥) = 𝜙𝑘+1
∗ +

𝛾𝑘+1

2
‖𝑥 − 𝑣𝑘+1‖

2, for any 

𝑥 ∈ ℝ𝑛. Finally, let us compute 𝜙𝑘+1
∗ . We have  

𝜙𝑘+1
∗ +

𝛾𝑘+1
2

‖𝑦𝑘 − 𝑣𝑘+1‖
2 = 𝜙𝑘+1(𝑦𝑘) 

         = (1 − 𝛼𝑘) (𝜙𝑘
∗ +

𝛾𝑘
2
‖𝑦𝑘 − 𝑣𝑘‖

2) 

                    +𝛼𝑘𝑓 (𝑥𝑄(𝑦𝑘; 𝛽𝑘)) +
𝛼𝑘
2𝛽𝑘

‖𝑔𝑄(𝑦𝑘; 𝛽𝑘)‖
2
. (13) 

From Step 6 in Algorithm 3, we have  

𝑣𝑘+1 − 𝑦𝑘 =
1

𝛾𝑘+1
[(1 − 𝛼𝑘)𝛾𝑘(𝑣𝑘 − 𝑦𝑘) − 𝛼𝑘𝑔𝑄(𝑦𝑘; 𝛽𝑘)]. 

Therefore,  

𝛾𝑘+1
2

‖𝑣𝑘+1 − 𝑦𝑘‖
2 =

1

2𝛾𝑘+1
[(1 − 𝛼𝑘)

2𝛾𝑘
2‖𝑣𝑘 − 𝑦𝑘‖

2 

                  −2𝛼𝑘(1 − 𝛼𝑘)𝛾𝑘 ⟨𝑣𝑘 − 𝑦𝑘 , 𝑔𝑄(𝑦𝑘; 𝛽𝑘)⟩ +

𝛼𝑘
2‖𝑔𝑄(𝑦𝑘; 𝛽𝑘)‖

2
]. 

It remains to substitute this relation into (13). 

(2) We now prove 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) for all 𝑘 ∈ ℕ by  

the induction method. For 𝑘 = 0, we have 

𝜙0(𝑥) = 𝑓(𝑥0) +
𝛾0

2
‖𝑥 − 𝑣0‖

2. Thus, 𝑓(𝑥0) = 𝜙0
∗. 

Suppose that 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) is true for some 𝑘 ≥ 0. Then, 

from (1) and Lemma 2.1 we have  

𝜙𝑘+1
∗ ≥ (1 − 𝛼𝑘)𝑓(𝑥𝑘) + 𝛼𝑘𝑓 (𝑥𝑄(𝑦𝑘 ; 𝛽𝑘))  

+
1

2𝛽𝑘
(𝛼𝑘 − 1)‖𝑔𝑄(𝑦𝑘 ; 𝛽𝑘)‖

2
 

+
𝛼𝑘(1 − 𝛼𝑘)𝛾𝑘

𝛾𝑘+1
〈𝑔𝑄(𝑦𝑘; 𝛽𝑘), 𝑣𝑘 − 𝑦𝑘〉 

 ≥ (1 − 𝛼𝑘)[𝑓(𝑥𝑄(𝑦𝑘 ; 𝛽𝑘)) + 〈𝑔𝑄(𝑦𝑘 ; 𝛽𝑘), 𝑥𝑘 − 𝑦𝑘〉 

+
1

2𝛽𝑘
‖𝑔𝑄(𝑦𝑘 ; 𝛽𝑘)‖

2
+
𝜇

2
‖𝑥𝑘 − 𝑦𝑘‖

2] 

+𝛼𝑘𝑓(𝑥𝑄(𝑦𝑘; 𝛽𝑘)) +
1

2𝛽𝑘
(𝛼𝑘 − 1)‖𝑔𝑄(𝑦𝑘 ; 𝛽𝑘)‖

2
 

+
𝛼𝑘(1 − 𝛼𝑘)𝛾𝑘

𝛾𝑘+1
〈𝑔𝑄(𝑦𝑘 ; 𝛽𝑘), 𝑣𝑘 − 𝑦𝑘〉 

= 𝑓(𝑥𝑄(𝑦𝑘 ; 𝛽𝑘)) +
(1 − 𝛼𝑘)𝜇

2
‖𝑥𝑘 − 𝑦𝑘‖

2 

+(1 − 𝛼𝑘) ⟨𝑔𝑄(𝑦𝑘; 𝛽𝑘),
𝛼𝑘𝛾𝑘
𝛾𝑘+1

(𝑣𝑘 − 𝑦𝑘) + 𝑥𝑘 − 𝑦𝑘⟩. 

From Step 4 in Algorithm 3, we have 

〈𝑔𝑄(𝑦𝑘; 𝛽𝑘),
𝛼𝑘𝛾𝑘

𝛾𝑘+1
(𝑣𝑘 − 𝑦𝑘) + 𝑥𝑘 − 𝑦𝑘〉 = 0. Therefore,  

𝜙𝑘+1
∗ ≥ 𝑓 (𝑥𝑄(𝑦𝑘; 𝛽𝑘)) = 𝑓(𝑥𝑘+1). 

Thus, by the induction method, we have 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) for 

all 𝑘 ∈ ℕ.   

Lemma 3.3  Algorithm 3 generates a sequence {𝑥𝑘}𝑘=0
∞  

which satisfies  

𝑓(𝑥𝑘) − 𝑓(𝑥
∗) ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓(𝑥

∗) +
𝛾0
2
‖𝑥0 − 𝑥

∗‖2] ,

∀𝑘 

where 𝜆0 = 1 and 𝜆𝑘 = ∏
𝑘−1
𝑖=0 (1 − 𝛼𝑖).  

Proof.  By Lemma 3.2 (2), we have 𝜙𝑘
∗ ≥ 𝑓(𝑥𝑘) for all 𝑘. 

By Lemma 3.1, we have  

𝑓(𝑥𝑘)   ≤   𝜙𝑘
∗ = min

𝑥∈ℝ𝑛
𝜙𝑘(𝑥)

≤ min
𝑥∈ℝ𝑛

[(1 − 𝜆𝑘)𝑓(𝑥) + 𝜆𝑘𝜙0(𝑥)] 

 ≤  (1 − 𝜆𝑘)𝑓(𝑥
∗) + 𝜆𝑘𝜙0(𝑥

∗). 

Therefore,  

𝑓(𝑥𝑘) − 𝑓(𝑥
∗) ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓(𝑥

∗) +
𝛾0
2
‖𝑥0 − 𝑥

∗‖2] ,

∀𝑘. 

Finally, from (7) we deduce that 𝜆𝑘 = ∏
𝑘−1
𝑖=0 (1 − 𝛼𝑖) with 

𝜆0 = 1.   

To estimate the convergence rate of Algorithm 3, we 

need the following results. 

Lemma 3.4  Let {𝜆𝑘}𝑘=0
∞  be the sequence in Lemma 

3.3. Then,   

(1) If the sequence {𝛽𝑘} is increasing, then  

𝜆𝑘 ≤ 𝑚𝑖𝑛 {(1 − √
𝜇

𝛽𝑘−1
)

𝑘

,
4𝛽𝑘

(2√𝛽𝑘 + 𝑘√𝛾0)
2}. 

(2) If the sequence {𝛽𝑘} is bounded from above by 𝛽, 
then  

𝜆𝑘 ≤ 𝑚𝑖𝑛

{
 
 

 
 

(1 −√
𝜇

𝛽
)

𝑘

,
4𝛽

(2√𝛽 + 𝑘√𝛾0)

2

}
 
 

 
 

. 

Proof.  

We prove that 𝛾𝑘 ≥ 𝜇 for all 𝑘 by the induction method. 

It is easy to show that the inequality is true for 𝑘 = 0. 
Assume that 𝛾𝑘 ≥ 𝜇 for some 𝑘 ≥ 0. Then 𝛾𝑘+1 = 𝛽𝑘𝛼𝑘

2 =
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(1 − 𝛼𝑘)𝛾𝑘 + 𝛼𝑘𝜇 ≥ 𝜇. Therefore, 𝛾𝑘 ≥ 𝜇 for all 𝑘. 

Furthermore, since 𝛽𝑘𝛼𝑘
2 ≥ 𝛼𝑘𝜇, 𝛼𝑘 ≥

𝜇

𝛽𝑘
≥ √𝑑

𝜇

𝛽𝑘
. 

If the sequence {𝛽𝑘} is increasing, then 

𝜆𝑘 = ∏
𝑘−1
𝑖=0 (1 − 𝛼𝑖) ≤ (1 − √

𝜇

𝛽𝑘−1
)

𝑘

 for all 𝑘. Similarly, 

we can prove that if {𝛽𝑘} is bounded from above by 𝛽, then 

𝜆𝑘 = ∏
𝑘−1
𝑖=0 (1 − 𝛼𝑖) ≤ (1 − √

𝜇

𝛽
)

𝑘

. 

On the other hand, we can prove that 𝛾𝑘 ≥ 𝛾0𝜆𝑘 by the 

induction method. With 𝑘 = 0, we have 𝛾0 = 𝛾0𝜆0. Thus, 

the inequality is true with 𝑘 = 0. Assume that the 

inequality is true for some 𝑘 = 𝑚, i.e., 𝛾𝑚 ≥ 𝛾0𝜆𝑚. Then,  

𝛾𝑚+1 = (1 − 𝛼𝑚)𝛾𝑚 + 𝛼𝑘𝜇 ≥ (1 − 𝛼𝑚)𝛾0𝜆𝑚 + 𝛼𝑘𝜇
= 𝛾0𝜆𝑚+1. 

Therefore, 𝛽𝑘𝛼𝑘
2 = 𝛾𝑘+1 ≥ 𝛾0𝜆𝑘+1 for all 𝑘 ∈ ℕ. 

Let 𝑎𝑘 =
1

√𝜆𝑘
 for all 𝑘. Since {𝜆𝑘} is a decreasing 

sequence, we have  

𝑎𝑘+1 − 𝑎𝑘 =
1

√𝜆𝑘+1
−

1

√𝜆𝑘
 

=
√𝜆𝑘 −√𝜆𝑘+1

√𝜆𝑘√𝜆𝑘+1
=

𝜆𝑘 − 𝜆𝑘+1

√𝜆𝑘√𝜆𝑘+1(√𝜆𝑘 + √𝜆𝑘+1)
 

≥
𝜆𝑘 − 𝜆𝑘+1

2𝜆𝑘√𝜆𝑘+1
=

𝛼𝑘𝜆𝑘

2𝜆𝑘√𝜆𝑘+1
=

𝛼𝑘

2√𝜆𝑘+1
. 

 Using 𝛽𝑘𝛼𝑘
2 = 𝛾𝑘+1 ≥ 𝛾0𝜆𝑘+1, we have  

𝑎𝑘+1 − 𝑎𝑘 ≥
𝛼𝑘

2√𝜆𝑘+1
≥
√
𝛾0𝜆𝑘+1

𝛽𝑘

2√𝜆𝑘+1
=
1

2
√
𝛾0
𝛽𝑘
. 

Thus, if the seqsuence {𝛽𝑘} is increasing, then 

𝑎𝑘 ≥ 1 +
𝑘

2
√
𝛾0

𝛽𝑘
 and if the sequence {𝛽𝑘} is bounded from 

above by 𝛽, then 𝑎𝑘 ≥ 1 +
𝑘

2
√
𝛾0

𝛽
. The lemma is proved.   

From Lemma 3.4 we observe that if {𝛽𝑘} is increasing 

and unbounded from above, then the convergence rate of 

{𝜆𝑘} is worse than the case which {𝛽𝑘} is bounded from 

above. Thus, in the following we only consider the case the 

sequence {𝛽𝑘} bounded from above. In this case, the 

convegence and convergence rate of Algorithm 3 is given 

in the following theorem.  

Theorem 3.1  If 𝛾0 ≥ 𝜇 and {𝛽𝑘} ⊂ [𝐿, 𝛽], then the 

sequence {𝑥𝑘}𝑘=0
∞  is generated by Algorithm 3 satisfies  

𝑓(𝑥𝑘) − 𝑓
∗ 

≤
𝛽 + 𝛾0
2

min

{
 
 

 
 

(1 − √
𝜇

𝛽
)

𝑘

,
4𝛽

(2√𝛽 + 𝑘√𝛾0)

2

}
 
 

 
 

‖𝑥0

− 𝑥∗‖2. 

Proof. By Lemma 3.4 and the fact 〈𝑓′(𝑥∗), 𝑥 − 𝑥∗〉 ≥ 0 

for all 𝑥 ∈ 𝑄, we have  

𝑓(𝑥𝑘) − 𝑓
∗ ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓

∗ +
𝛾0
2
‖𝑥0 − 𝑥

∗‖2] 

 ≤ 𝜆𝑘 [𝑓(𝑥0) − 𝑓(𝑥
∗) + 〈𝑓′(𝑥∗), 𝑥0 −

𝑥∗〉 +
𝛾0

2
‖𝑥0 − 𝑥

∗‖2] 

≤ 𝜆𝑘 [
𝛽𝑘
2
‖𝑥0 − 𝑥

∗‖2 +
𝛾0
2
‖𝑥0 − 𝑥

∗‖2 + 2〈𝑓′(𝑥∗), 𝑥0 − 𝑥
∗〉] 

(using (2) and βk ≥ L). 

= 𝜆𝑘 [
𝛽𝑘 + 𝛾0
2

‖𝑥0 − 𝑥
∗‖2 − 2〈𝑓′(𝑥0) − 𝑓′(𝑥

∗), 𝑥0 − 𝑥
∗〉] 

≤
𝜆𝑘(𝛽𝑘 + 𝛾0)

2
‖𝑥0 − 𝑥

∗‖2    (using(2), (3)). 

From the last inequality and Lemma 3.1, we have  

 𝑓(𝑥𝑘) − 𝑓
∗ 

≤
𝛽 + 𝛾0
2

min

{
 
 

 
 

(1 − √
𝜇

𝛽
)

𝑘

,
4𝛽

(2√𝛽 + 𝑘√𝛾0)

2

}
 
 

 
 

‖𝑥0 − 𝑥
∗‖2. 

From Lemma 3.1, the theorem is proved. 

4. Simulation 

In this section we illustrate the performance of the 

proposed algorithm (Generalized Nesterov’s algorithm - 

GNA) and compare it with the projected gradient descent 

(PGD) algorithm with constant stepsizes (equal to the 

Lipschitz constant 𝐿). We consider an specific example 

with a closed-form objective functional given by  

min
𝑥∈𝑄

𝑓(𝑥) ≔
1

16
(𝑥1

2 +∑

𝑁−1

𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)
2 − 2𝑥1) 

                       +
𝜇

2
‖𝑥‖2, (14) 

Where, 𝑥 = (𝑥1, 𝑥2… , 𝑥𝑁) and 𝑁 = 500. It is easy to show 

that 𝑓 is strongly convex with strong convexity parameter 

𝜇 ≤ 𝜇 = 0.1 and 𝑓′ is Lipschitz continuous with the 

Lipschitz constant 𝐿 ≥ 𝐿 = 0.5. 

Firstly, we analyze the performance of PGD and GNA 

with 𝜇 = 𝜇 and 𝜇 = 0 on 𝑁 −dimensional box 

𝑄 = [−50,50]𝑁 and 𝑄 = [20,50]𝑁 ⊂ ℝ𝑁 . For these 

algorithms, we use the same starting point 𝑥0 that is 

generalized randomly by Matlab function 

𝑟𝑎𝑛𝑑𝑜𝑚(40,50, 𝑁). The Lipschitz constant is 𝐿 = 𝐿 = 0.5 

and iterator number 𝑛 = 30. 

The values of objective function at each iteration are 

presented in Figure 1 for two cases of 𝑄. It shows that GNA 

with two different values of 𝜇 has similar convergence rate 

and they converge faster than PGD. 

Secondly, we demonstate the performence of GNA for 

four case of {𝛽𝑘}: 𝛽𝑘 = 𝐿, 0.2𝐿, 2𝐿 for all 𝑘 and 

𝛽𝑘 =
2𝐿(𝑘+

1

3
)

2𝑘+1
. Here, we also set 𝐿 = 0.5, 𝜇 = 0.1 and the 

iterator number 𝑛 = 30. 

For 𝑄 = [20; 50]𝑁, the values of objective function at 

each iteration are presented in Figure 2. It shows that the 
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convergence of GNA for 𝛽𝑘 = 0.2𝐿 is faster than that for 

𝛽𝑘 = 𝐿. It shows that GNA may converge for the sequence 

{𝛽𝑘} with 𝛽𝑘 < 𝐿 in some practical cases, which is not 

proved by the theory. 

For 𝑄 = [−50; 50]𝑁, the values of objective function 

at each iteration are presented in Figure 3. This shows that 

GNA with 𝛽𝑘 = 0.2𝐿 diverges rapidly. This is suitable 

with theoretical result. We have proved the convergence of 

GNA under condition 𝛽𝑘 ≥ 𝐿 for all 𝑘. Note that GNA 

converges very fast for 𝛽𝑘 =
2𝐿(𝑘+

1

3
)

2𝑘+1
. This observation has 

not obtained theoretically. For this situation, 𝛽𝑘 < 𝐿 for all 

𝑘 and 𝛽𝑘 converges to 𝐿 as 𝑘 tend to infinitive. 

 

 

Figure 1. Values of 𝑓(𝑥𝑘) in PGD and GNA with 𝐿 = 0.5, 
𝜇 = 0.1. Here, 𝑥0 = 𝑟𝑎𝑛𝑑𝑜𝑚(40,50,𝑁), 𝑄 = [−50; 50]

500 

(above) and 𝑄 = [20; 50]500 (below) 

 

Figure 2. Values of 𝑓(𝑥𝑘) in GNA with different values of 

𝐿, 𝜇 = 0.1. Here, 𝑄 = [20; 50]𝑁, 𝑥0 = 50 ⋅ 𝑜𝑛𝑒𝑠(𝑁) 

  

Figure 3. Values of 𝑓(𝑥𝑘) in GNA with different values of 

𝐿, 𝜇 = 0.1. Here, At 𝑄 = [−50; 50]𝑁, 𝑥0 = 50 ⋅ 𝑜𝑛𝑒𝑠(𝑁) 

5. Conclusion 

In this paper, we have presented the generalized 

Nesterov’s algorithm for the constrained minimization on 

closed convex sets. The algorithm is presented in detail in 

Algirithm 3 and its convergence and convergence rate are 

given in Theorem 3.1. We have simulated the algrithm by 

one specific numerical example. We have showed that the 

generalized Nesterov’s algorithm is faster than the 

projection gradient descent in both theory and specific 

numerical examples. 
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