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Abstract – The use of fiber-reinforced polymer (FRP) strips as 

an external strengthening method has gained widespread 

acceptance for enhancing the capacity of aging reinforced 

concrete (RC) beams. Despite extensive research and practical 

applications, there exist unresolved issues necessitating further 

investigation, including interface bonding, failure mechanisms, 

and the development of accurate predictive models for shear 

strength, considering diverse parameters. This paper 

systematically reviews shear strength formulas applied in the 

strengthening of RC beams using FRP strips. An extensive 

experimental dataset is compiled from diverse sources to support 

the analysis.  Utilizing this dataset, a novel ensemble learning 

model is developed for predicting the shear strength contributed 

by FRP strips. Following the training of this model, the important 

score of each input parameter is also assessed. The findings 

presented herein contribute to a deeper understanding of the 

strengthening effectiveness of FRP strips on RC beams. 

Keywords – Shears strengthening; RC beam; shear strength; 

assemble learning; FRP strips 

1. Introduction 

The enhancement and augmentation of structural 

capacity, particularly in the case of existing reinforced 

concrete beams (RC), represent a pervasive challenge that 

captivates the focus of both engineers and scientists. 

Ongoing research has spurred the development and 

application of numerous contemporary methods. Among 

these, the external bonding technique for RC beams has 

gained significant traction owing to its simplicity in 

fabrication and construction. In employing this method, the 

reinforcement of RC beams involves encasing the 

weakened sections with wrapping materials. 

As the construction materials industry undergoes swift 

advancements, cutting-edge materials are increasingly 

integrated into various methodologies. Among these, the 

utilization of fiber-reinforced polymer (FRP) strips in the 

wrapping technique has emerged as the foremost choice. 

The widespread adoption of FRP is attributed to its 

exceptional mechanical properties and durability, 

presenting a gateway to refined design optimization and 

enhanced capacity for RC beams. Moreover, the versatility 

of FRP extends beyond RC beams, finding application in 

diverse structures, encompassing both onshore and 

offshore constructions [1-4]. 

FRP, derived from diverse materials like carbon 

(CFRP) or glass (GFRP), exhibits a high flexibility, 

making it adaptable to numerous applications with distinct 

requirements. Its exceptional attributes, including 

lightweight, high tensile strength, and resistance to external 

erosive factors, render it an outstanding choice. 

In comparison to alternative materials for exterior 

wrapping, FRP boasts superior tensile strength, 

outperforming conventional concrete mortar or fiber-

reinforced concrete. Its lightweight and slender structure 

surpasses those of ultra-high-strength concrete (UHPC), 

while its corrosion resistance and resilience to external 

influences surpass steel panels. However, it is essential to 

acknowledge the limitations of FRP. Challenges such as 

bonding issues with RC beams and the imperative 

exploration of long-term durability must be researched. 

To improve and solve the above-mentioned 

disadvantages, research around the world has focused on 

surface treatment methods [5-9] and developing reliable 

models for shear strength predictions of strengthened FRP 

strips [10-12]. Besides, the prediction of failure modes is 

almost important [13], and plays an important role in 

resulting in the effectiveness of strengthening methods. 

Various studies have paid attention to developing shear 

strength formulas of RC beams strengthening with FRP 

strips which were implemented to the codes for practice 

use. Most of them were based on a limited of experimental 

tests; hence, the applicability is expected to some specific 

cases of strengthening. The most commonly used formula 

is in ACI 440.2R [14], where the shear contribution of FRP 

is calculated, considering two different configurations of 

external bonding, i.e., U-wrap and side bonded. CSA-S806 

[15] improved ACI’s formula with the proposal of effective 

strain of FRP for three configurations, i.e., full wrap, U-

wrap, and side bonded. 

Numerous investigations have underscored the 

inadequacies of both ACI and CSA formulas in accurately 

forecasting the shear contribution of FRP [16, 17]. This 

deficiency arises from the formulas being crafted for 

applications, focusing on a specific set of parameters to 

assess model effectiveness. Unfortunately, these 

formulations often overlook alternative applications or a 

broader array of parameters. Consequently, the 

development of a comprehensive model that encompasses 

the diverse parameters and responses of both FRP strips 

and RC beams presents a formidable challenge. 

Over the past few years, there has been a pervasive 

adoption of machine learning techniques, marking a 
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prevailing trend in addressing various engineering 

challenges. In line with this subject, several studies have 

applied machine learning techniques in predicting the shear 

strength of strengthened RC beams with FRP strips as well 

as the shear contribution of FRP [16-20]. In particular, 

various techniques have been used and compared, e.g., 

artificial neural networks, XGBoost, random forest, 

CatBoost, LightGBM, AdaBoost algorithms, etc. 

This study aims to develop a different machine-

learning model from the literature expected to accurately 

predict the shear strength contribution by FRP strips of 

strengthened RC beams. In which, a novel regression 

model named the ensemble learning (EL) model is 

adopted.  The prediction mode is developed and optimized 

based on a comprehensive dataset collected from different 

sources. The dataset of 275 tests is composed of 11 key 

parameters related to wrapping schemes, geometry, and 

material parameters of both RC beams and FRP strips. 

Besides, an LE model-based sensitivity analysis is also 

conducted to investigate the effect of each parameter on the 

shear strength contributed by FRP strips. 

2. Experimental data collection 

The article presents a comprehensive database derived 

from 50 studies, encompassing a total of 275 experimental 

data of RC beams strengthened with FRP strips. The beam 

is a rectangular section and is expected to fail in shear. The 

dataset includes parameters of geometric dimensions, 

effective height, mechanical properties of materials, 

reinforcement methods, failure modes, total shear strength, 

and shear strength contributed by FRP, as outlined in Table 

1, with dimension parameters illustrated in Figure 1. 

 

Figure 1. The dimensional variables used in shear 

strengthening calculations for FRP strips 

 

Figure 2. Wrapping schemes for shear strengthening of  

RC beams using FRP strips 

It is observed that the dataset encompasses experiments 

conducted on the shear reinforcement of RC beams using 

only CFRP. These beams were strengthened with three 

wrapping schemes, as shown in Figure 2, i.e., full wrap 

(25.5%), U-wrap (41.5%), and two sides bonded (33%). The 

orientation of FRP strips was categorized into 45° (14.5%) 

and 90° (85.5%). The analysis yielded four primary forms of 

failure: debonding failure (62.9%), tensile rupture of FRP 

strips (22.2%), partial peeling off of FRP strips (8.4%), and 

other failure modes (6.5%). For other parameters, the range 

of values is presented in Table 1. 

Table 1. Parameters of RC beam and FRP strips of  

the collected dataset 

No Parameter Notation Range 

1 With of beam 𝑏𝑤 70-600 mm 

2 Height of beam ℎ 110-900 mm 

3 Effective height of beam 𝑑 100-800 mm 

4 Shear span ratio 𝜆 0.71-4.88 

5 
Compressive strength of 

concrete 
𝑓𝑐  14-71 MPa 

6 
Volume ratio of transverse 

bar 
𝜌𝑠𝑣 0-0.727 % 

7 FRP wrapping scheme W 1, 2, 3 

8 Height of FRP strip ℎ𝑓 110-900 mm 

9 
Effective height of FRP 

strip 
𝑑𝑓 100-682 mm 

10 Thickness of FRP strips 𝑛𝑡𝑓 0-3 mm 

11 
Width/centroid distance of 

FRP strips 
𝑤𝑓/𝑠𝑓 0.083-1 

12 Angle of FRP strip 𝛼 45, 90 

13 Elastic modulus of FRP strip 𝐸𝑓 105-266 GPa 

14 Tensile strength of FRP strip 𝜎𝑓𝑢 960-5207 MPa 

15 Ultimate strain of FRP strip 𝜀𝑓𝑢 0.006-0.0228 

16 Failure mode F 1, 2, 3, 4 

17 Total shear strength 𝑉𝑢 16-1202 kN 

18 
Shear strength contributed 

by FRP strips 
𝑉𝑓 4-493 kN 

Notes: W: 1-U-wrap, 2-side bonded, 3-full wrap; F: 1-bonding 

failure, 2-tensile rupture of FRP strips, 3-partial peeling off of 

FRP strips, 4-others. 

3. Evaluation of existing formulas 

3.1. Existing formulas 

In this paper, three well-known formulas for the shear 

strength contributed by FRP strips from existing codes, i.e., 

ACI-440.2R [14], CSA-S806 [15], and FIB14 [21]  are 

evaluated with the collected dataset. These formulas are 

widely used for the practice design of RC beams 

strengthened with FRP strips. 

3.1.1. ACI – 440.2R 

𝑉𝑓 =
𝐴𝑓𝑣𝑓𝑓𝑒(𝑠𝑖𝑛 𝛼+𝑐𝑜𝑠 𝛼)𝑑𝑓𝑣

𝑠𝑓
,   (1) 

where 𝐴𝑓𝑣 = 2𝑛𝑡𝑓𝑤𝑓, 𝑓𝑓𝑒 = 𝜀𝑓𝑒𝐸𝑓, for Full wraps: 

𝜀𝑓𝑒 = 0.004 ≤ 0.75𝜀𝑓𝑢, for U-wraps and two sides 

bonded: 

𝜀𝑓𝑒 = 𝐾𝑣𝜀𝑓𝑢 ≤ 0.004, 𝐾𝑣 =
𝑘1𝑘2𝐿𝑒

11900𝜀𝑓𝑢
≤ 0.75, 

 𝐿𝑒 =
23300

(𝑛𝑡𝑓𝐸𝑓)0.58 , 𝑘1 = (
𝑓𝑐

27
)

2

3
, 𝑘2 =

𝑑𝑓−𝐿𝑒

𝑑𝑓
 for U-wraps, 

and 𝑘2 =
𝑑𝑓𝑣−𝐿𝑒

𝑑𝑓𝑣
 for two sides bonded. 
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3.1.2. FIB14 

𝑉𝑓 = 0.9𝜀𝑓𝑒𝐸𝑓𝜌𝑓𝑏𝑤𝑑(𝑠𝑖𝑛 𝜃 + 𝑐𝑜𝑠 𝛼) 𝑠𝑖𝑛 𝛼, (2) 

where 𝜌𝑓 =
2𝑤𝑓𝑡𝑓

𝑏𝑤𝑠𝑓
, 

𝜀𝑓𝑒 = min [0.65 (
𝑓𝑐

2
3

𝐸𝑓𝜌𝑓
)

0.56

10−3, 0.17 (
𝑓𝑐

2
3

𝐸𝑓𝜌𝑓
)

0.3

𝜀𝑓𝑢. 

3.1.3. CSA – S806 

𝑉𝑓 =
𝐴𝑓𝑣𝑓𝑓𝑒𝑑𝑓(𝑠𝑖𝑛 𝛼+𝑐𝑜𝑠 𝛼)

𝑠𝑓
,   (3) 

where 𝐴𝑓𝑣 = 2𝑛𝑡𝑓𝑤𝑓, 𝑓𝑓𝑒 = 𝜀𝑓𝑒𝐸𝑓,  

 𝜀𝑓𝑒 = 0.006 for full wrap, 

𝜀𝑓𝑒 = 𝐾𝑣𝜀𝑓𝑢 ≤ 0.004 for U-Wrap and two sides 

bonded. 

3.2. Evaluation of existing code-based formulas with the 

collected dataset 

The shear strength contributed by FRP strips is 

computed for each case. The regression plot, depicting the 

correlation between the experiment from the collected 

dataset and the calculation obtained by each formula, is 

illustrated in Figure 3. 

Upon scrutiny of the regression plot, a certain deviation 

is evident, which exhibits significant dispersion. This 

observation underscores the diminished accuracy of the 

formulas in computing the increased shear strength 

attributable to FRP strips within the experimental dataset. 

To quantify this discrepancy, the root mean square error 

(RMSE) and R coefficient of the regression model for the 

ACI 440.2R, CSA S-806, and FIB14 formulas are 

calculated, as shown in Table 2. These coefficients further 

substantiate the limited predictive accuracy of the formulas 

in capturing the nuanced variations in shear resistance 

resulting from the incorporation of FRP strips in the 

experimental dataset. 

Table 2. Performance of the shear strength formula in  

the existing codes 

 ACI 440.2R CSA S-806 FIB 14 

RMSE 65.688 71.486 26.554 

R 0.319 0.263 0.526 

Several primary factors contribute to substantial errors 

when employing calculation formulas outlined in these codes: 

- Each formula relies on estimated coefficients and 

assumptions derived from previous experiments. Many of 

these formulas lack considerations for factors specific to 

the geometry and material of RC beam and FRP strips, and 

other crucial parameters associated with wrapping 

schemes. The absence of comprehensive coverage in the 

formulation hampers their applicability and accuracy. 

- The formulas are constructed based on experimental 

data. However, this data is often limited and pertains only 

to specific cases. The narrow scope of the data used in 

formulating the formulas restricts their ability to accurately 

represent a broader range of scenarios, leading to 

inaccuracies in practical applications. 

- The accuracy of the experimental model is 

significantly impacted by the limited scope of 

environmental conditions, testing equipment, and the 

number of samples examined during the formula's 

establishment. These constraints introduce variability and 

limit the generalizability of the formulas to a wider array 

of real-world situations. 

 

(a) ACI-440.2R 

 

(b) CSA-S806 

 

(c) FIB14 

Figure 3. Regression models between experiment and 

calculation from formulas (the unit is in kN) 

Addressing these issues is crucial for improving the 

reliability and accuracy of the calculation formulas, 

necessitating a more comprehensive consideration of FRP-

related parameters and an expanded, diverse dataset to better 

account for the complexities of real-world applications. 
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4. Development of shear strength prediction model 

4.1. Ensemble learning model 

EL is a method that combines predictions from multiple 

models to generate a final prediction that surpasses the 

accuracy of each model. The effectiveness of an ensemble 

lies in the diversity between models, achieved by training 

models on different data subsets or utilizing different 

algorithms. 

Common ensemble methods include: 

- Bagging: This approach employs multiple independent 

models, each trained on a subset of data sampled with 

replacement from the original training dataset. 

- Boosting: This method builds models in a series, with 

each subsequent model aiming to correct the errors of the 

preceding one. 

- Stacking: Stacking combines predictions from 

individual models and employs a final model to predict the 

ultimate result. 

In this study, the ensemble boosting regression model 

is applied to construct a sequence of weak decision trees, 

as shown in Figure 4. Each tree is optimized to minimize 

the prediction error of the previous model. Specifically, 

least square boosting is utilized, following this sequence: 

- Definition of training data: 

+ Input: Training dataset (𝑋, 𝑦), where 𝑋 is the feature 

matrix, and 𝑦 is the result vector. 

+ Output: A regression model capable of predicting 

continuous values. 

- Training process: 

+ Step 1 (Initialization): Commence with a simple 

prediction, usually an average of the entire set of output values. 

+ Step 2 (Iteration): For each iteration, (i) calculate 

pseudo-residuals by subtracting the current prediction from 

the actual value, (ii) train a regression model (typically a 

small decision tree) to predict pseudo-residuals,  

(iii) optimize the new model by incorporating it into the 

current model with a small learning rate to minimize the 

magnitude of the predicted pseudo-residuals. 

 

Figure 4. An example of ensemble ensemble-boosting 

regression model 

- Prediction result: The final prediction is derived by 

aggregating predictions from all the individual trees. 

To construct the model, two crucial parameters 

significantly impact the prediction are: 

- Learning rate: The learning rate adjusts the size of the 

update step at each iteration, influencing the rate at which 

the model learns. It determines the extent to which the 

model adapts to the training data during each iteration. A 

lower learning rate makes the model learn more slowly but 

can enhance overall accuracy. 

- Number of trees: This parameter signifies the total 

number of decision trees that need to be created in the 

ensemble. The number of trees is pivotal in shaping the 

complexity and robustness of the model. An optimal 

balance must be struck to avoid overfitting or underfitting, 

ensuring an effective representation of the underlying 

patterns in the data. 

Fine-tuning these parameters is essential for achieving 

an optimal and accurate ensemble-boosting regression 

model, with the learning rate governing the pace of 

adaptation and the number of trees influencing the model's 

overall complexity and predictive capability. 

4.2. Optimization of parameters for the ensemble 

learning model 

As outlined in Section 4.1, the critical parameters 

influencing the estimation capabilities of the ensemble 

boosting learning model are the learning rate and the number 

of trees. Consequently, it is imperative to determine a final 

estimation model based on optimal parameters. 

Utilizing the collected data, the model is constructed 

using MATLAB software. The initial step involves 

extracting the input variables from Table 1, along with the 

output variable, the shear strength contributed by FRP 

strips (𝑉𝑓). By removing some duplicated and dependent 

features such as the beam and FRP strip heights, the elastic 

modulus of FRP. The final dataset used for training is 

comprised of 11 input features, 𝑏𝑤, 𝜆, 𝑓𝑐, 𝜌𝑠𝑣, 𝑊, ℎ𝑓𝑒, 𝑛𝑡𝑓,  

𝑤𝑓/𝑠𝑓, 𝛼, 𝜎𝑓𝑢, 𝜀𝑓𝑢, and the output 𝑉𝑓. For the training and 

testing stages, the dataset is randomly divided into an 80% 

training set and a 20% testing set. 

A deep decision tree (DDT) is first developed as the 

base for the comparison. To ensure satisfactory predictive 

performance, the complexity of the decision tree is 

adjusted using 5-fold cross-validation. Specifically, default 

values for tree depth controllers for regression trees are set, 

with a maximum of 10 splits, a minimum leaf size of 5, and 

a minimum parent size of 10. 

To determine an optimal tree complexity, the following 

steps of 150 boosted regression trees using 5-fold cross-

validation are conducted: 

- Cross-validate a set of ensembles by exponentially 

increasing the tree complexity level for subsequent 

ensembles from a decision stump (one split) to at most 𝑛 −
 1 splits (20, 21, …, 2𝑚), where 𝑛 is the sample size. Also, 

vary the learning rate for each ensemble between 0.1 and 1. 

- Estimate the cross-validated mean-squared error 

(MSE) for each ensemble. 

- For each tree-complexity level, compare the 

cumulative cross-validated MSE of the ensembles by 

plotting them against the number of learning cycles. 

- Choose the curve that achieves the minimal MSE and 
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note the corresponding learning cycle and learning rate. 

Based on the plots, as shown in Figure 5, the optimal 

parameters for the EL model of 𝑉𝑓 are established as 

follows: 

Num. Trees = 34 

MaxNumSplits = 128 

Learning Rate = 0.30 

Having identified the optimal parameters, the 

subsequent step involves constructing the final decision 

tree model and optimizing the training process. 

 

Figure 5. A comparison of the prediction performance of 

different tree models and learning rates according to 

the number of trees 

4.3. Evaluation of the model 

To assess the performance of the EL model, a test 

dataset is employed, and the regression plot for 𝑉𝑓 is 

depicted in Figure 6. The graph compares the calculation 

results estimated from the EL model with the experimental 

results of the test dataset, constituting 20% of the overall 

dataset. Statistical analysis reveals that the EL model 

exhibits a high prediction performance, demonstrating an 

R-value of 0.834. 

 

Figure 6. Prediction performance of the EL model for the test 

set (the unit is in kN) 

Utilizing the trained EL model, the correlation and 

significance of each input variable on reinforcement 

effectiveness are determined through the unbiased 

predictor importance estimates algorithm. Figure 7 

illustrates that the effective height of FRP strips exerts the 

most significant influence on the shear strength. Notably, 

geometric dimensions such as beam width also exhibit a 

high correlation with the output. Regarding beam 

materials, the compressive strength of concrete shows 

relative importance, and the wrapping method and strip 

thickness gain almost the same score.  

 

Figure 7. Importance score of input variables to  

shear strengthening effectiveness 

On the flip side, although the ratio 𝑤𝑠/𝑡𝑠 and the FRP 

bonding angle are important factors affecting the shear 

strength contributed by FRP strips, as shown in the above 

formulas, however, from the analysis, the shear strength 

appears to be minimally influenced by the ratio 𝑤𝑠/𝑡𝑠 and 

the FRP bonding angle. This limited impact can be 

attributed to the poor data distribution observed for these 

two features in relationship with FRP’s shear strength. 

5. Conclusions 

The paper aimed to evaluate the existing code-based 

formula and propose a novel EL method for the shear 

strength prediction of RC beams strengthened with FRP 

strips based on a comprehensive experimental dataset of 

275 samples. Several noteworthy conclusions arise from 

these investigations: 

The evaluation of shear strength calculations using ACI 

440.2R, CSAS-806, and FIB 14 formulas revealed a 

notable deficiency in accuracy and compatibility with the 

gathered experimental dataset. This inadequacy stems from 

the formulas relying on outdated and constrained 

experimental datasets, failing to fully account for various 

influencing factors such as geometric properties, materials, 

and FRP wrapping schemes. 

The study opted for EL, a machine learning method that 

amalgamates multiple prediction models to enhance 

overall accuracy, mitigating prediction errors. To construct 

optimal EL models and prevent overfitting, the study 

employed a deep decision tree, fine-tuning parameters like 

the number of trees, maximum splits, and learning rate, 

among others. 

The optimized EL model exhibited a high predictive 

performance as compared with the existing formulas, with 

an R coefficient of 0.834. This surpasses the predictive 

accuracy of standard formulas and other machine-learning 
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methods cited in reference materials. 

Leveraging the trained EL model, the study discerned 

the impact of each input variable on reinforcement 

effectiveness. This insight holds significant value as a 

reference for practical applications in the calculation and 

design of reinforced concrete beams employing FRP 

material panels. It offers valuable guidance for engineers 

and practitioners seeking optimal outcomes in real-world 

scenarios. 

While the proposed machine learning model exhibited 

considerable improvements in predictive performance, it 

faces challenges in deriving a concise mathematical 

representation. Unlike traditional formulaic models, its 

complexity can hinder straightforward interpretation. 

However, the ML model's superior predictive accuracy 

often outweighs the need for a readily interpretable 

mathematical model, particularly in complex real-world 

scenarios with intricate and nonlinear data relationships. 
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