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Abstract - This work focuses on a dynamic electrical circuit 

whose dynamics are affine in the control input. Such dynamics 

are considered to be re-expressed in a canonical form, namely 

the port-Hamiltonian (pH) representation with dissipation, 

where the Hamiltonian is a quadratic function and has the unit of 

energy or power. On this basis, it allows revealing the 

transformation of energy (or power) inside the system, including 

the energy supply, storage and dissipation, thereby facilitating 

Lyapunov-based or energy-related control approaches for 

stabilization and optimization purposes. Two pH representations 

are proposed and compared; the first one is established with 

difficult-to-measure states while the second one is obtained with 

easier-to-measure states. 
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1. Introduction 

This paper deals with dynamical systems [1-3] whose 

dynamics are described by a set of Ordinary Differential 

Equations (ODEs) and affine in the input u as follows: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) + 𝑔(𝑥)𝑢; 𝑥(𝑡 = 0) = 𝑥𝑖𝑛𝑖𝑡                   (1) 

where 𝑥 = 𝑥(𝑡) is the state vector contained in the 

operating region 𝐷 ⊂ ℝ𝑛, 𝑓(𝑥) ∈ ℝ𝑛 expresses the smooth 

function with respect to the vector 𝑥. The input-state map 

and the control input are respectively represented by 

𝑔(𝑥) ∈ ℝ𝑛×𝑚 and 𝑢 ∈ ℝ𝑚. Many industrial applications 

in, but not limited to, electrical, electromechanical, power 

and energy systems are governed by Eq. (1) [4-10]. 

For perspectives on passivity-based control, it is 

important to write the dynamics (1) into the port-

Hamiltonian (pH) representation before developing state 

feedback laws for stabilization [11-19]. In other words, 

once a canonical form [20, 21], i.e. the pH formulation of 

the dynamics (1), is a priori derived, the interconnection 

and damping assignment passivity-based control (IDA-

PBC) [11, 12], control by interconnection [13-15], 

energy/power shaping control [16, 17] and setpoint 

tracking control [18, 19], etc. can be advantageously 

applied to show stabilization properties. Hence, how to re-

express the dynamics (1) in the pH representation is a key 

challenge in the port-based modeling research area, and it 

is the main subject of this work.  

Notations: The following notations are considered 

throughout the paper: 

• ℝ is the set of real numbers. 

• 𝑇 is the matrix transpose. 

• 𝑚 and 𝑛 (𝑚 ≤ 𝑛) are positive integers. 

• 𝑥𝑖𝑛𝑖𝑡  is the initial value of the state vector. 

2. An overview of port-Hamiltonian systems 

In this section, we give a brief summary of pH systems, 

which can be used to re-express dynamical systems [20, 

21] (the reader is also referred to [22], and references 

therein, for a preliminary description). Assume that the 

function 𝑓(𝑥) verifies the so-called separability condition 

[9, 23], that is, 𝑓(𝑥) can be decomposed and expressed as 

the product of some (interconnection and damping) 

structure matrices and the gradient of a potential function 

with respect to the state variables, i.e. the co-state 

variables: 

𝑓(𝑥) = [𝐉(𝑥) − 𝐑(𝑥)]
𝜕𝐻(𝑥)

𝜕𝑥
                                  (2) 

where 𝐉(𝑥) and 𝐑(𝑥) are the 𝑛 × 𝑛 skew-symmetric 

interconnection matrix (i.e. 𝐉(𝑥) = −𝐉(𝑥)𝑇) and the 𝑛 × 𝑛   

symmetric damping matrix (i.e. 𝐑(𝑥) = 𝐑(𝑥)𝑇), 

respectively, while 𝐻(𝑥): ℝ𝑛 → ℝ represents the 

Hamiltonian storage function of the system (possibly 

related to the total energy of the system). Furthermore, if 

the damping matrix 𝐑(𝑥) is positive semi-definite, i.e. 

 𝐑(𝑥) ≥ 0,                                                                   (3) 

then the dynamics (1) with (2) is a port-Hamiltonian (pH) 

representation with dissipation [20, 21]. On this basis, Eq. 

(1) is completed with the output and then rewritten as 

follows: 

{

𝑑𝑥

𝑑𝑡
= [𝐉(𝑥) − 𝐑(𝑥)]

𝜕𝐻(𝑥)

𝜕𝑥
+ 𝑔(𝑥)𝑢

𝑦 = 𝑔(𝑥)𝑇
𝜕𝐻(𝑥)

𝜕𝑥
                               

                   (4) 

where 𝑦 is the output. 

It can be clearly seen for the pH model defined by Eqs. 

(3) and (4) that the time derivative of the Hamiltonian 

storage function 𝐻(𝑥) satisfies the energy balance equation 

(EBE) [16] 

𝑑𝐻(𝑥)

𝑑𝑡
= − [

𝜕𝐻(𝑥)

𝜕𝑥
]

𝑇

𝐑(𝑥)
𝜕𝐻(𝑥)

𝜕𝑥⏟              
dissipation

+ 𝑢𝑇𝑦.            (5) 

It can be shown from Eq. (3) that the dissipation term, 

defined by 

𝑑 = − [
𝜕𝐻(𝑥)

𝜕𝑥
]

𝑇

𝐑(𝑥)
𝜕𝐻(𝑥)

𝜕𝑥
≤ 0                           (6) 
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is negative semi-definite. Hence, it represents a loss of 

energy due to resistive elements. The EBE (5) becomes: 

𝑑𝐻(𝑥)

𝑑𝑡⏟  
stored power

≤ 𝑢𝑇𝑦⏟
supplied power

                                        (7) 

From a physical point of view, inequality (7) implies 

that the total amount of energy supplied from external 

source is always greater than the increase in the energy 

stored in the system. Hence, the pH system (4) is said to be 

passive with input 𝑢 and output 𝑦 corresponding to the 

Hamiltonian storage function 𝐻(𝑥) [2, 3]. This is one of 

advantageous features of the pH representation and has 

been applied for the control design. Indeed, under a zero -

state detectability condition and the boundedness from 

below of the Hamiltonian storage function 𝐻(𝑥) by 0, it 

follows that an explicit proportional static output feedback 

law of the form [11, 23]. 

𝑢 = −𝐾𝑝𝑦                                                                (8) 

with 𝐾𝑝 > 0 a so-called damping injection gain, renders 

the controlled pH system (4) dissipative and therefore 

asymptotically stabilized at the origin because 𝐻(𝑥)  
qualifies as a control Lyapunov function (we also refer the 

reader to [19] for further discussion). 

In what follows, a series RLC circuit is used to illustrate 

and show the way to achieve a pH representation from 

given dynamics. For that purpose, the following lemma is 

adopted. 

Lemma 1. Given the matrix 𝐀 = (
𝑎 𝑏
𝑐 𝑑

). It follows 

that: 

i)  𝐀 =
𝐀−𝐀𝑇

2⏟
skew−symmetric

+
𝐀+𝐀𝑇

2⏟
symmetric

 ; 

ii) if  det (𝐀) ≠ 0 then 𝐀−1 =
1

det (𝐀)
(
𝑑 −𝑏
−𝑐 𝑎

). 

3. On the pH formulations of a dynamic electrical 

circuit 

3.1. Circuit description 

To illustrate the concepts introduced in Section 2, we 

consider next a simple electrical system, which is the series 

RLC circuit as sketched in Figure 1. 

 

Figure 1. A series RLC circuit [24] 

Before proceeding further, we remind Kirchhoff's 

voltage law:  

𝑢𝐿 + 𝑢𝑅 + 𝑢𝐶 = 𝑉                                                      (9) 

and constitutive equations considered for three passive 

elements 

 {

the resistor 𝑅: 𝑢𝑅 = 𝑅𝑖𝑅                               

the inductor 𝐿: ∅𝐿 = 𝐿𝑖𝐿  and 𝑢𝐿 =
𝑑∅𝐿

𝑑𝑡
    

the capacitor 𝐶: 𝑖𝐶 =
𝑑𝑞𝐶

𝑑𝑡
 and 𝑞𝐶 = 𝐶𝑢𝐶  

      (10) 

where 𝑞𝐶  and ∅𝐿 are the electric charge stored in the 

capacitor C and the magnetic flux through the inductor L, 

respectively; while 𝑖 is the electric current passing through 

the circuit (𝑖 = 𝑖𝑅 = 𝑖𝐶 = 𝑖𝐿)  and 𝑢𝐿 is the voltage of the 

inductor L (similarly for 𝑢𝑅  and  𝑢𝐶). 

3.2. Port-Hamiltonian formulation with difficult-to-

measure states 

Let 𝑥 ≔ (𝑞𝐶 , ∅𝐿)
𝑇 be the vector consisting of the 

charge 𝑞𝐶  and the magnetic flux through the conductor, that 

is ∅𝐿 = 𝐿
𝑑𝑞𝐶

𝑑𝑡
. From Eqs. (9) and (10), one has [16, 24]: 

𝑑𝑞𝐶
𝑑𝑡

=
1

𝐿
∅𝐿 ,                                                            (11) 

𝑑∅𝐿
𝑑𝑡

= −
1

𝐶
𝑞𝐶 −

𝑅

𝐿
∅𝐿 + 𝑉.                                   (12) 

The following proposition summarizes the related 

results published in [24]. 

Proposition 1. Equations (11) and (12) correspond to a 

pH representation described by (4) with 𝑥 ≔ (𝑞𝐶 , ∅𝐿)
𝑇 and 

 𝐉(𝑥) = (
0 1
−1 0

),                                                   (13) 

 𝐑(𝑥) = (
0 0
0 𝑅

),                                                     (14) 

𝑔(𝑥) = (
0
1
),                                                            (15) 

𝑢 = 𝑉,                                                                       (16) 

𝑦 =
1

𝐿
∅𝐿 .                                                                  (17) 

Furthermore, the system is passive with the 

Hamiltonian defined by 

𝐻(𝑥) =
1

2𝐶
𝑞𝐶
2 +

1

2𝐿
∅𝐿
2.                                         (18) 

Proof. It follows from Eqs. (1), (11) and (12) that 

𝑓(𝑥) = (

1

𝐿
∅𝐿

−
1

𝐶
𝑞𝐶 −

𝑅

𝐿
∅𝐿
), which can be rewritten as 

𝑓(𝑥) = (
0 1
−1 −𝑅

)
⏟      

𝐀

(

1

𝐶
𝑞𝐶

1

𝐿
∅𝐿
) ≡ [𝐉(𝑥) − 𝐑(𝑥)]

𝜕𝐻(𝑥)

𝜕𝑥
  (using 

Lemma 1). This concludes the proof. ∎ 

Remark 1. The Hamiltonian (18) is equal to the total 

energy of the system (i.e., it characterizes the amount of 

energy stored in capacitor and inductor). Hence it has the 

unit of energy [24]. Consequently, the dissipation term is 

strongly and explicitly related to the resistor of the circuit. 

Indeed, it can be shown from Eq. (6) that  

𝑑PROP1 = −
1

𝐿
∅𝐿𝑅

1

𝐿
∅𝐿 = −𝑅 (

1

𝐿
∅𝐿)

2

≤ 0.      (19) 

Remark 2. From a practical point of view, the vector 𝑥 

contains the states 𝑞𝐶(𝑡) and ∅𝐿(𝑡) which are difficult to 

measure due to the lack of appropriate devices or the cost 
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and feasibility of installing sensors. Thus, the design of a 

state-feedback controller may be worse whenever those 

states are unavailable. 

3.3. Port-Hamiltonian formulation with easier-to-

measure states 

From Eqs. (9) and (10), it is possible to write: 

𝑑𝑢𝐶
𝑑𝑡

=
1

𝐶

𝑑𝑞𝐶
𝑑𝑡

=
1

𝐶
𝑖 =

1

𝐶
𝑖𝐿 ,                                  (20) 

𝑑𝑖𝐿
𝑑𝑡

= −
𝑅

𝐿
𝑖𝐿 −

1

𝐿
𝑢𝐶 +

1

𝐿
𝑉.                                   (21) 

Now, let 𝑥 denote the vector consisting of the capacitor 

voltage and inductor current, i.e. 𝑥 ≔ (𝑢𝐶 , 𝑖𝐿)
𝑇 . We state 

the following proposition, which highlights the novelty of 

this work, compared to the previous one [24].  

Proposition 2. Equations (20) and (21) correspond to a 

pH representation described by (4) with 𝑥 ≔ (𝑢𝐶 , 𝑖𝐿)
𝑇,  

𝐉(𝑥) = (
0

𝑅

𝐿

−
𝑅

𝐿
0

),                                                  (22) 

𝐑(𝑥) = (

0 0

0 𝐶 (
𝑅

𝐿
)
2
),                                            (23) 

𝑔(𝑥) =
1

𝐿
(
0
1
),                                                            (24) 

𝑦 =
1

𝑅𝐶
𝑖𝐿 ,                                                                     (25)  

and 𝑢 given in Eq. (16).  

Furthermore, the system is passive with the 

Hamiltonian defined by 

𝐻(𝑥) =
1

2𝑅
𝑢𝐶
2 +

𝐿

2𝑅𝐶
𝑖𝐿
2.                                          (26) 

Proof. It follows from Eqs. (1), (20) and (21) that 

𝑓(𝑥) = (

1

𝐶
𝑖𝐿

−
1

𝐿
𝑢𝐶 −

𝑅

𝐿
𝑖𝐿
). By multiplying both sides of Eq. 

(1) with 𝐐(𝑥) = (
−𝐶 −

𝐿

𝑅
𝐿

𝑅
0
), one has  

𝐐(𝑥)
𝑑𝑥

𝑑𝑡
= 𝐐(𝑥)𝑓(𝑥) + 𝐐(𝑥)𝑔(𝑥)𝑢, 

where 𝐐(𝑥)𝑓(𝑥) = (

1

𝑅
𝑢𝐶
𝐿

𝑅𝐶
𝑖𝐿
). As the matrix 𝐐(𝑥) is 

invertible, one obtains 

𝑑𝑥

𝑑𝑡
= 𝐐−1(𝑥)(

1

𝑅
𝑢𝐶

𝐿

𝑅𝐶
𝑖𝐿

)+ 𝑔(𝑥)𝑢 

with 𝐐−1(𝑥) = (
0

𝑅

𝐿

−
𝑅

𝐿
−𝐶 (

𝑅

𝐿
)
2) ≡ 𝐉(𝑥) − 𝐑(𝑥) (using 

Lemma 1). This completes the proof.  ∎ 

Remark 3. The existence of the matrix 𝐐(𝑥) is  

not unique, that is, any matrix of the form 𝜆𝐐(𝑥), (𝜆 ∈ ℝ+
∗ ) 

is also qualified for the formulation. Note that 𝐐(𝑥) can 

also be used in obtaining the Brayton-Moser form of the 

system [17]. 

Remark 4.  It can be checked that the Hamiltonian (26) 

has the unit of power (note that RC characterizes the time 

constant of the system). Consequently, the dissipation term 

is no longer related to the resistor R of the circuit for the 

obtained pH formulation. Indeed, it can be shown from 

Eq. (6) that  

𝑑PROP2 = −(
𝐿

𝑅𝐶
𝑖𝐿)

2

𝐶 (
𝑅

𝐿
)
2

= −
1

𝐶
𝑖𝐿
2 ≤ 0.      (27) 

Remark 5. The vector 𝑥 contains the states 𝑢𝐶(𝑡) and 

𝑖𝐿(𝑡) which are easy to measure (for example, using an 

oscilloscope or a multimeter). Thus, the design of a state-

feedback controller in this case is of practical interest. On 

the other hand, adopting these easy-to-measure states is 

well suited for the application of machine learning for pH 

realizations in terms of modeling and learning-based 

control [25]. Indeed, as the resulting pH system is linear, 

𝐻(𝑥) (Eq. (26)) can be rewritten as 

𝐻(𝑥) =
1

2
𝑥𝑇𝐌𝑥 ,                                                      (28) 

with 𝐌 = (

1

𝑅
0

0
𝐿

𝑅𝐶

). The Williamson decomposition reads 

𝐌 = 𝐒𝑇𝐃𝐒 ,                                                              (29)  

with 𝐒 = (
(
𝐿

𝐶
)
−1/4

0

0 (
𝐿

𝐶
)
1/4
) and  

𝐃 = (

1

𝑅
(
𝐿

𝐶
)
1/2

0

0
1

𝑅
(
𝐿

𝐶
)
1/2
). Thus, the key idea is to learn 

the parameters defining the pH system associated with 
(𝐒, 𝐃).   

Remark 6. If the matrix 𝐐(𝑥) is chosen as 

𝐐(𝑥) = (−𝑅𝐶
2 −𝐿𝐶

𝐿𝐶 0
), i.e. 𝐐−1(𝑥) = (

0
1

𝐿𝐶

−
1

𝐿𝐶
−𝑅

1

𝐿2

), 

then the results in Proposition 2 become 

𝐉(𝑥) = (
0

1

𝐿𝐶

−
1

𝐿𝐶
0

),                                            (30) 

𝐑(𝑥) = (
0 0

0 𝑅
1

𝐿2
),                                                (31) 

𝑦 = 𝑖𝐿 ,                                                                       (32)  

while 𝑢 and 𝑔(𝑥) remain unchanged as per Eqs. (16) and 

(24), respectively. In addition, the system is passive with 

the Hamiltonian defined by 

𝐻(𝑥) =
𝐶

2
𝑢𝐶
2 +

𝐿

2
𝑖𝐿
2.                                                (33) 

Note that 𝑦 given in Eq. (32) is precisely the output defined 



66 Hoang Ngoc Ha, Ho Phuoc Tien 

in Eq. (17), while the Hamiltonian (33) can be re-expressed 

in terms of 𝑞𝐶  and ∅𝐿 as per Eq. (18) due to Eq. (10),  

i.e. it still has the unit of energy. 

Table 1 summarizes the main features of the two 

proposed pH formulations. 

Table 1. Comparison of the two pH models 

   The pH model with 

difficult-to-measure states 

The pH model with easier-

to-measure states 

𝑥 (𝑞𝐶 , ∅𝐿)
𝑇 

(difficult to measure) 

(𝑢𝐶 , 𝑖𝐿)
𝑇 

(easier-to-measure) 

𝐉(𝑥) given by Eq. (13) given by Eq. (22) 

𝐑(𝑥) given by Eq. (14) given by Eq. (23) 

𝑔(𝑥) given by Eq. (15) given by Eq. (24) 

𝑢 𝑉 𝑉 

𝑦 given by Eq. (17) given by Eq. (25) 

𝐻(𝑥) given by Eq. (18) 

(unit of energy) 

given by Eq. (26) 

(unit of power) 

The advantages of the pH formulation with easier-to-

measure states can be summarized as follows; (i) its pH 

(state-space) model is based on states which are easy to 

measure, thereby supporting the design of state-feedback 

controllers for stabilization, and (ii) the Hamiltonian 

remains a different physical interpretation, that is, it has the 

unit of power. 

4. Conclusion 

In this paper, the pH formulations of a transient series 

RLC circuit are proposed and compared using different 

kinds of states, namely the difficult- or easier-to-measure 

states. The resulting Hamiltonian is a quadratic function, 

which has the unit of either energy or power. 

It remains now to extend the approach to power 

electronic circuits, and adapt the power-shaping control 

[17], setpoint tracking control theory [19] or learning-

based control [25] to stabilize the systems at a desired 

setpoint. 
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