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Abstract - Accurately predicting the compressive strength of 

foamed concrete plays a key role in the wide application of foamed 

concrete in practice. This study investigates the performance of the 

six AI models in estimating the compressive strength of foamed 

concrete. A dataset of 150 samples available in the literature was 

used for training and testing the AI models. The dry density, cement 

and sand content, and water-to-cement ratio were employed as 

input parameters, while the 28-day compressive strength was used 

as the output parameter. Four statistical indicators were utilized to 

evaluate the performance of the AI models. The study results reveal 

that the AI models yield an accurate prediction of the compressive 

strength of foamed concrete. The best performance model in 

estimating the compressive strength of foamed concrete is the 

M5Rules model, while the least accurate model depends on the 

indicators used to measure the accuracy of the AI models. 

 Tóm tắt - Dự đoán chính xác cường độ chịu nén của bê tông bọt 

đóng vai trò quan trọng trong việc áp dụng rộng rãi bê tông bọt 

trong các công trình xây dựng. Nghiên cứu này đánh giá độ 

chính xác của 06 mô hình trí tuệ nhân tạo (MHTTNT) trong dự 

đoán cường độ chịu nén của bê tông bọt. Bộ dữ liệu gồm 150 

mẫu thử được sử dụng để huấn luyện và đánh giá độ chính xác 

dự báo của MHTTNT, trong đó trọng lượng khô của bê tông 

bọt, hàm lượng xi măng, hàm lượng cát và tỉ lệ nước trên xi 

măng là các số liệu đầu vào, cường độ chịu nén ở 28 ngày tuổi 

là số liệu đầu ra. Độ chính xác dự báo của các MHTTNT được 

đánh giá thông qua 04 chỉ số thống kê. Kết quả nghiên cứu cho 

thấy rằng, các MHTTNT dự đoán khá chính xác cường độ chịu 

nén của bê tông bọt. Mô hình có độ chính xác lớn nhất là mô 

hình M5Rules, trong khi mô hình có độ chính xác thấp nhất 

được xác định dựa trên chỉ số thống kê được sử dụng. 

Key words - Compressive strength of foamed concrete; Artificial 

Intelligence models; Prediction of the compressive strength of 

foamed concrete. 
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1. Introduction 

Foamed concrete, which is usually composed of 

cementitious binder, water, foaming agent and fine sand, 

has been recognized as one of the most commonly used 

lightweight materials in the construction industry in recent 

years. The popular use of foamed concrete results from its 

advantages of lightweight, low thermal conductivity, 

acoustic absorption and excellent fire resistance. Foamed 

concrete usually has low density, ranging from 400 to  

1600 kg/m3 [1], which is much lower than traditional 

concrete with a typical density of 2200 to 2500 kg/m3 [2]. 

The low density of foamed concrete is attributed to its pore 

structures created by the foaming agent. Due to the low 

density and high porosity, a low compressive strength is 

inevitable for foamed concrete, which limits the 

application of foamed concrete for non-load-bearing 

structural components such as thermal and acoustic 

insulation systems, lightweight panels and blocks [3]. 

For a wider application of this lightweight concrete in 

practice, especially for load-bearing structures, extensive 

studies have been devoted in attempt to determine the 

mechanical properties (i.e., elastic modulus and compressive 

strength) of foamed concrete [4]. As the compressive 

strength (𝑓𝑐𝑜
′ ) of foamed concrete has been considered as one 

of the most important engineering properties, most of the 

available studies on foamed concrete paid attention to the 

prediction of this engineering property. 

The available studies on foamed concrete have proven 

that the 𝑓𝑐𝑜
′  of foamed concrete was driven by crucial 

factors consisting of sand and cement content [5, 6], dry 

density, binder ratio, water to cement ratio [2], foaming 

volume, type of additives (i.e., fly ash, silica fume and 

superplasticizer) [7], curing conditions [5] and void 

distribution. Some of these studies have been devoted to 

proposing empirical models for estimating the 𝑓𝑐𝑜
′  of 

foamed concrete. Most prediction models were commonly 

developed based on three fundamental models consisting 

of Feret’s, Balshin’s and Power’s models [8]. In Feret’s 

model, the 𝑓𝑐𝑜
′  of foamed concrete was determined based 

on the absolute volume of constitutive materials, while the 

𝑓𝑐𝑜
′  of foamed concrete in Balshin’s model was relied on 

the porosity and the weight of the constitutive materials [8]. 

In the Power’s models, the 𝑓𝑐𝑜
′  of foamed concrete was 

related to the gel-space ratio [8]. It can be observed from 

the fundamental compressive strength models that only 

some parameters were incorporated into the equations used 

to compute the 𝑓𝑐𝑜
′  of foamed concrete [9]. Thus, the 

empirical model may not be able to reflect the influence of 

constitutive materials on the 𝑓𝑐𝑜
′  of foamed concrete. It 

should be mentioned that the empirical models were 

usually calibrated using a test database, resulting in various 

constants adopted in the empirical models of compressive 

strength. Adopting multiple constants in the empirical 

models to describe the nonlinear relationship between the 
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𝑓𝑐𝑜
′  of foamed concrete and its constituents may yield an 

unsatisfactory prediction of the 𝑓𝑐𝑜
′  of foamed concrete. To 

overcome this issue, the Artificial intelligence (AI) 

technique with ability to learn from the experience, adapt 

to new inputs and undertake human-like tasks may be 

suitable for accurately capturing the nonlinear and complex 

correlation between the 𝑓𝑐𝑜
′  of foamed concrete and its 

ingredients. 

The AI technique has been widely applied in the 

construction industry over the last two decades in structural 

engineering [10-13], geotechnical engineering [14-16] and 

material sciences [17-19]. The application of the AI 

technique in prediction problems has been recognized as a 

reliable and robust computational solution [5]. The 

application of the AI technique in estimating the 

engineering properties of foamed concrete has been found 

in some research studies [5]. Ullah, et al. [5] developed AI-

based models for 28-day compressive strength and dry 

density of foamed concrete using gene expression 

programming. The proposed models expressed in 

empirical forms were developed based on a dataset of 191 

points available in the literature in which sand and cement 

content, foam volume and water to cement ratio were used 

as input parameters while 28-day compressive strength and 

dry density of foamed concrete were used as output 

parameters. It was reported that the proposed models 

obtained high accuracy with the square correlation 𝑅2 of 

0.95. Salami, et al. [9] evaluated the accuracy of AI models 

consisting of gene expression programming (GEP), 

gradient boosting tree (GBT) and artificial neural network 

(ANN) in estimating the 𝑓𝑐𝑜
′  of foamed concrete. An AI-

based model expressed in the empirical equation was also 

developed by Salami, et al. [9] using GEP. The AI models 

were developed using a dataset of 232 points in which the 

water to cement ratio, sand to cement ratio and dry density 

were utilized as input parameters. It was found that the 

developed GBT model was superior to the two remaining 

AI models in estimating the 𝑓𝑐𝑜
′  of foamed concrete. Pham, 

et al. [20] developed a hybrid AI model, which integrated 

the grey wolf optimization to the least squares support 

vector regression (LSSVR), to predict the 𝑓𝑐𝑜
′  of foamed 

concrete. The hybrid AI model was trained and tested using 

a dataset of 150 points in which the density of foamed 

concrete, cement and sand content, sand to cement ratio, 

sand size, foaming agent and foam content were used as the 

input parameters, while the 7-day and 28-day compressive 

strength of foamed concrete were utilized as the output 

parameters. The predictive accuracy of the hybrid AI 

model was evaluated by comparing the performance of the 

hybrid AI model with that of single AI model. The study 

results exhibited that the estimated compressive strength 

agreed well with the actual compressive strength. Also, the 

hybrid AI model was superior to other AI models in 

estimating the 𝑓𝑐𝑜
′  of foamed concrete. It is obvious that the 

hybrid model is an advanced computational model, but it 

could be challenging for design engineers in the practical 

application. It is observed from Pham, et al. [20] that the 

cement and sand content were used as input parameters 

while the sand to cement ratio was also considered as an 

input parameter. The consideration of the sand to cement 

ratio may replicate the influence of sand and cement on the 

𝑓𝑐𝑜
′  of foamed concrete, which was not undertaken in 

available studies on the application of the AI model in 

estimating the 𝑓𝑐𝑜
′  of foamed concrete. It is also seen that 

the foam agent was considered in Pham, et al. [20] as an 

input parameter whereas very limited experimental 

database on the effect of foam agent on the compressive 

strength of foam concrete available in the literature, which 

is attributed to the fact that the database of foam agent used 

in Pham, et al. [20] had a very small standard deviation. 

It can be seen from the review of the literature that 

available studies on the application of the AI models in 

estimating the engineering properties of foamed concrete 

are very limited. Thus, further investigations on the 

accuracy of the AI model in estimating the 𝑓𝑐𝑜
′  of foamed 

concrete are needed. Furthermore, the accuracy of the 

single AI model, which is available in many open-source 

software, in estimating the 𝑓𝑐𝑜
′  of foamed concrete should 

be evaluated to provide alternative computational tools for 

engineers in designing a foamed concrete mixture of a 

determined compressive strength. This study investigates 

the predictive accuracy of the different single AI models 

consisting of Artificial Neural Network, Support Vector 

Machine, Random Forest, Random Tree, M5P, M5Rules, 

Gaussian Process and Linear Regression) in estimating the 

𝑓𝑐𝑜
′  of foamed concrete. 

2. Methodology 

2.1. Artificial Neural Networks (ANN) 

The ANN model is inspired by the information 

processing procedure of the human brain, which consists 

of a set of connected nodes called artificial neurons that 

mimic the neurons in a biological brain. These neurons are 

grouped into several layers, the first and last layers being 

referred to as the input and output layers; respectively, 

while the middle layers are referred to as hidden layers. 

The neuron of each layer is connected to other neurons of 

the successive layers by the connections in which each 

connection is assigned a weight. A neuron plays a role as a 

processing unit that performs two functions: collecting the 

inputs and producing an output. A neuron of the hidden 

layers receives the signals from the input neurons and 

computes them using a linear function, as illustrated in Eq. 

(1), and pastes it to the transfer functions expressed in Eq. 

(2) before generating the output signal.  

𝑛𝑒𝑡𝑖 = ∑ 𝑤𝑖,𝑗 𝑥𝑗 + 𝑏𝑖 
(1) 

where 𝑛𝑒𝑡𝑖 represents the value of 𝑖𝑡ℎ net; 𝑤𝑖,𝑗 represents 

the weight of the 𝑗𝑡ℎ input to the 𝑖𝑡ℎ hidden neuron; 𝑥𝑗 

represents the value of the 𝑗𝑡ℎ input neuron; and 𝑏𝑖 

represents the bias coefficient of the 𝑖𝑡ℎ hidden neuron.  

The transfer function is described by the nonlinear 

sigmoid function as follows: 

𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1 + 𝑒𝛾𝑛𝑒𝑡𝑖
 

(2) 

where 𝑦 represents the output signal of the 𝑖𝑡ℎ hidden 
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neuron; and 𝛾 represents the adjustment of the function 

gradient.  

The output signals of the hidden layer neurons were 

sent to all the neurons of the output layer. The neurons of 

the output layer compute the input signals using linear 

functions and generate the output signal using the sigmoid 

function. The training error (𝑒𝑘) at the output 𝑘 was 

determined based on the estimated output (𝑡𝑘) and the 

actual output (𝑜𝑘), as expressed in Eq. (3). 

𝑒𝑘 =
1

2
∑(𝑡𝑘 − 𝑜𝑘

𝑛

𝑘=1

) (3) 

The procedure of computing the output signal at each 

artifical neuron is applied to all the pair of the training data 

and repeated until the training errors obtain the limited 

values, which are determined by a learning algorithm. The 

weights and bias parameters of each neuron are updated 

based on the iterative procedure for minimizing the training 

errors of each pair of the training data. 

2.2. Support Vector Regression (SVR) 

The SVR model is one of the most popularly-utilized 

soft computing tools for regression problems due to its 

reliability, robustness and accuracy. The SVR first 

proposed by Vapnik [18] adopts kernel functions to a 

hyperplane in a high-dimensional space with a maximum 

epsilon distance (𝜀) between the hyperplane and closest 

actual datapoints. The hyperplane in the high-dimentional 

space is achieved by mapping input variables to a high-

dimensional feature space. The hyperplane is expressed as 

a mathematical equation as illustrated in Eq. (4) 

𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏 (4) 

where 𝑤𝑇  is a weight vector in the feature space with 𝑙 
dimension; 𝜑(𝑥) is a function that maps 𝑥 to the feature 

space; and 𝑏 is a constant representing the intercept.  

The SVR problem is formulated by minimizing the 

function as expressed in Eq. (5). 

𝑚𝑖𝑛
𝑤,𝑏,𝑒

𝐽(𝑤, 𝑏, 𝑒) =
1

2
||𝑤||2 +

1

2
𝐶 ∑ (𝜉𝑖

𝑙
𝑘=1 +𝜉𝑖

∗) (5) 

Subjected to  

𝑦𝑖 − 𝑤𝑇𝜑(𝑥𝑖) − 𝑏 − 𝜉𝑖 ≤ 𝜀, 𝑖 = 1, … , 𝑙  

𝑤𝑇𝜑(𝑥𝑖) − 𝑦𝑖 + 𝑏 − 𝜉𝑖
∗ ≤ 𝜀, 𝑖 = 1, … , 𝑙  

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0  

where 𝑏 represents a regulation constant, which is greater 

than 0; 𝑥𝑖 and 𝑦𝑖 , respectively, represent input and output 

variables; 𝜉𝑖  and 𝜉𝑖
∗ both represent slack variables, which 

are nonnegative;  

The final form of the SVR optimization problem 

presented in the dual problem comes out as follows: 

𝑓(𝑥) = ∑ 𝛼𝑘𝐾(𝑥, 𝑥𝑘

𝑙

𝑘=1

) + 𝑏 (6) 

𝐾(𝑥, 𝑥𝑘) = ∑ 𝑔𝑘(𝑥)𝑔𝑘(𝑥𝑘)

𝑙

𝑘=1

 (7) 

𝐾(𝑥, 𝑥𝑘) = 𝑒
−

||𝑥−𝑥𝑘||2

2𝜎2  (8) 

where 𝛼𝑘 represents Lagrange multipliers; 𝑏 represents 

bias value; 𝐾(𝑥, 𝑥𝑘) represents Kenel function; and 𝜎 

represents Gaussian radial basis function width. 

2.3. Gaussian Process Regression (GRP) 

The GPR is a non-parametric and probabilistic method 

for regression problems. In the GPR model, it is assumed 

that a Gaussian process with a mean function of 𝑤(𝑥)  

and covariance function of 𝑘(𝑥, 𝑥′) generate a function 

𝑔(𝑥) that correlates the inputs and outputs, as illustrated in 

Eq. (9). 

𝑔(𝑥) ~ 𝐺𝑃[𝑤(𝑥), 𝑘(𝑥, 𝑥′)], (9) 

It should be noted that the mean and covariance 

functions were determined using kernel functions, which 

are usually employed the squared exponential kernel, as 

illustrated in Eq. (10).  

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒
−

||𝑥−𝑥𝑘||2

2𝜎2  
(10) 

For a given training dataset consisting of 𝑁 pairs of 

(𝑥𝑖 , 𝑦𝑖) with 𝑖 = 1, 2, . . . 𝑁, the GPR model establishs the 

following equations to determine the relationship between 

the given inputs and outputs. 

𝑤𝑗 =  𝑘𝑗
𝑇[𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼]𝑦 (11) 

𝜎𝑗
2 = 𝑘(𝑥𝑗 , 𝑥𝑗) − 𝑘𝑗

𝑇[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑘𝑗 (12) 

where 𝑤𝑗  presents a mean value, 𝐾(𝑋, 𝑋) presents 

convariance matrix, 𝑘𝑗 presents the kernel distance 

between training and testing data, 𝜎𝑛
2 presents the noise 

variance; and 𝑦 presents the training observation.  

For a given input data 𝑥𝑗, the corresponding output data 

𝑓(̅𝑥𝑗) can be determined using the following expression: 

𝑓(̅𝑥𝑗) = ∑[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑦𝑘(𝑥𝑗 , 𝑥𝑗)

𝑠

𝑘=1

 (13) 

2.4. Multiple linear regression (MLR) 

The MLR, which is an extension of linear regression,  

is able to predict the value of one dependent variable based 

on two or more independent variables. The correlation 

between a dependent variable (𝑌) and independent 

variables (𝑋𝑖) is expressed as follows: 

𝑌 = ∑ 𝛽𝑖

𝑛

𝑖=1

𝑋𝑖 + 𝛽0 + 𝜀 (14) 

where 𝛽𝑖 represent a regression coefficient (𝑖 = 1,2, … , 𝑛), 

𝛽0 presents a constant and 𝜀 presents an error term.  

2.5. M5Rules  

M5Rules is a machine learning technique used for 

classification and prediction problems. The M5Rules 

establish rules based on the model tree. In the M5Rules, the 

pruned tree is trained using a tree learner over the training 

data; then, the elite leaf of the pruned tree is made into a 

rule while the remaining parts of a tree are discarded. Next,  

the samples, which are covered by the rule, are removed 



16 Nguyen Thi Loc, Mai Anh Duc, Nguyen Cong Luyen, Vu Huy Cong, Nguyen Van Huong 

 

from the dataset. This iteration is terminated when all the 

instances belong to at least one rule. By employing the best 

leaf to achieve the rule, the M5Rules is able to avoid the 

risk of over-pruning.  

2.6. Decision Tree 

A decision tree, which is a non-parametric supervised 

learning algorithm, is used for classification and regression 

problems. The decision trees has hierarchical structures 

with a root node without incoming edges for the first level, 

internal nodes with outcoming edges for the next levels and 

terminal nodes or leaf nodes without outcoming edges for 

the the last level. The decision tree adopts the internal node 

to divide the instance space into subspaces using a discrete 

function of inputs.  

In the decision tree, the target fields are symbolized 

using the Gini method, while the continuous targets are 

selected using the least-squared deviation method. The 

Gini index 𝑔(𝑡) of the node 𝑡 is defined using Eq. (15) 

𝑔(𝑡) = ∑ 𝑝(𝑗|𝑡)𝑝(𝑖|𝑡)

𝑛

𝑗=1

 (15) 

where 𝑔(𝑡) represents the Gini index; 𝑖 and 𝑗 are targeting 

groups. 

𝑝(𝑗|𝑡) =
𝑝(𝑗, 𝑡)

𝑝(𝑡)
 

(16) 

𝑝(𝑗, 𝑡) =
𝜋(𝑗)𝑁𝑗(𝑡)

𝑁𝑗

 
(17) 

𝑝(𝑡) = ∑ 𝑝(𝑗, 𝑡)

𝑗

 (18) 

where 𝜋(𝑗) represents the prior probability value for  

group 𝑗 

3. Test database 

The test results from an experimental program carried 

out by Abd and Abd [22] were used for training and testing 

the AI models. The foamed concrete tested by Abd and 

Abd [22] was made from four main types of materials 

consisting of Portland cement, sand, water and foam. The 

sand utilized in bd and Abd [22] was fine silica sand with 

three different main sizes of 600 𝜇𝑚, 1.18 and 2 mm. 

Normal tap water was used for making foamed concrete. 

The foam was generated by mixing water with foaming 

agent using a foam generator, which was considered as 

stable bubbles. The water-to-cement ratio used to develop 

the mixture was 0.5, 0.45, 0.4 and 0.3, while the sand to 

cement rato used for the mixture is a constant of 1.0. The 

density of foamed concrete was 1500, 1750 and 1800 

(kg/m3). The 𝑓𝑐𝑜
′  of foamed concrete was measured at seven 

days and 28 days by testing 150 cubes. In this study, only 

the 𝑓𝑐𝑜
′  of foamed concrete at the 28-day was employed as 

an output parameter of the database.  

For the application of the AI models in estimating the 

𝑓𝑐𝑜
′  of foamed concrete, the input of the AI models consists 

of four main parameters, including the density of foamed 

concrete, cement and sand content, water-to-cement ratio, 

while the output is the 28-day compressive strength of 

foamed concrete. The input parameters are symbolized as 

𝑥1 to 𝑥4 while the output parameter is symbolized as 𝑦. A 

brief description of the database used for AI models is 

presented in Table 1.  

Table 1. Descriptive statistics of the input and output 

parameters used for predicting compressive strength 

𝑷𝒂. 𝑺𝒚. Unit 
Statistics 

Min Max Average Std. 

Density of 

foamed 

concrete 

𝑥1 kg m3⁄  1406.81 2009.48 1742.77 171.02 

Cement 

content 
𝑥2 kg 1406.81 992.80 727.45 123.68 

Sand 

content 
𝑥3 kg 1406.81 1098.00 733.45 152.40 

Water/cem

ent ratio 
𝑥4 - 0.30 0.45 1.06 0.05 

28-day 

compressiv

e strength  

𝑦 MPa 3.23 48.88 28.27 11.70 

where 𝑃𝑎. is the abbreviation of parameter and 𝑆𝑦.is the 

abbreviation of the symbols 

4. Evaluation of models 

4.1. Statistical indicators 

The predictive accuracy of the AI models is evaluated 

using four statistical indicators comprising the correlation 

coefficient (𝑅), main absolute percentage error 
(𝑀𝐴𝑃𝐸), root mean square error (𝑅𝑀𝑆𝐸), and the mean 

absolute percentage error (𝑀𝐴𝑃𝐸), which are expressed by 

Eqs. (19) to (22), respectively. 

𝑅 =
𝑛 ∑ 𝑦𝑦′ − (∑ 𝑦)(∑ 𝑦′)

(√𝑛(∑ 𝑦2) − (∑ 𝑦)2 )√𝑛((∑ 𝑦′2) − (∑ 𝑦′)
2

 
(19) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦 − 𝑦′

𝑦
|

𝑛

1

 (20) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦 − 𝑦′)2

𝑛

1

 (21) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦 − 𝑦′|

𝑛

1

 (22) 

where 𝑦 and 𝑦′ represent the given and estimated results of 

each data sample, respectively, and 𝑛 represents the total 

number of the data samples. 

4.2. Accuracy of AI models 

The performance of the AI models is evaluated using a 

10-fold cross-validation method in which the AI models 

are evaluated ten times by dividing the test database into 

10-fold for model evaluation. The 𝑓𝑐𝑜
′  of foamed concrete 

estimated by the AI model compared to the actual results is 

shown in Figure 1. 
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Figure 1. The estimated compressive strength versus the actual compressive strength of foamed concrete

The statistical indicators of the AI models are presented 

in Table 2 and the comparison of these models using three 

statistic indicators of MAPE, RMSE and MAE is plotted in 

Figures 2-4.  

It should be noted that the formulae of RMSE and MAE 

indications used in this study are similar to those employed 

in Nguyen, et al. [8], which estimated the 𝑓𝑐𝑜
′  of foamed 

concrete using deep-neutral network. Thus the values of 

these two indicators obtained in this study are compared to 

those obtained in Nguyen, et al. [8] to examine the 

accuracy of the AI models in estimating the 𝑓𝑐𝑜
′  of foamed 

concrete. It was found that the RMSE and MAE indicators 

of the AI models in this study varied from 4.92 MPa to 6.22 

MPa and from 2.98 MPa to 4.11 MPa, respectively, while 

these indicators of the conventional ANN model employed 

in Nguyen, et al. [8] varied from 2.58 MPa to 12.79 MPa 

and from 2.25 MPa to 11.36 MPa, respectively. The 

smaller RMSE and MAE indicators in this study in 

comparison to the RMSE and MAE indicators in Nguyen, 

et al. [8] indicated that the 𝑓𝑐𝑜
′  of foamed concrete estimated 

by the AI models is in good agreement with the actual 

values, indicating that the AI models predict the 𝑓𝑐𝑜
′  of 

foamed concrete well. Figures 2-4 and Table 2 also show 

that the M5Rules model has the smallest values when three 

indicators of MAPE, RMSE and MAE are used, while the 

M5Rules has the largest value when the indicator of R is 

used. This indicates that the M5Rules model is the most 

accurate model for predicting the 𝑓𝑐𝑜
′  of foamed concrete. 
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It is also observed from the Figs. 2-4 that the SVR and 

Linear Regression models also provide a good correlation 

between the estimated and actual values of the 𝑓𝑐𝑜
′  of 

foamed concrete. However, it is interesting to note that 

using different statistical indicators leads to different 

degrees of accuracy in the AI models. 

Table 2. Performance evaluation of the AI models 

Model 

Indicator 

R 
MAPE 

(%) 

RMSE 

(MPa) 

MAE 

(MPa) 

ANN 0.852 29.9 6.223 4.106 

SVR 0.877 27.6 5.700 3.279 

Gaussian 0.864 31.0 5.992 3.933 

MLR 0.876 27.7 5.639 3.396 

Decision Tree 0.855 27.2 6.090 3.602 

M5Rules 0.908 20.2 4.924 2.980 

As revealed in Table 2, by using R as a statistical 

indicator, the second most accurate model in estimating the 

𝑓𝑐𝑜
′  of foamed concrete is the SVR model, which has 3.5% 

less accuracy than the M5Rules model. The least accurate 

model in estimating the 𝑓𝑐𝑜
′  of foamed concrete is the ANN, 

which is 6.5% less accurate than the M5Rules model. It 

should be noted that for the use of the MAPE indicator, the 

most accurate model is still M5Rules, which is followed by 

the Decision Tree model. The least accurate model is the 

Gaussian model. The Decision Tree and Gaussian models 

are 25.7% and 34.8% less accurate than the best model, 

which is M5Rules. For the use of the RMSE indicator, the 

second most accurate model is the SVR, which is 13.6% 

less accurate than the most accurate model of M5Rules. 

The least accurate model is the Decision Tree, which is 

19.1% less accurate than the M5Rules model. Based on the 

MAE indicator, the second most accurate model is the 

SVR, while the least accurate model is the ANN. The SVR 

and ANN models are, respectively, 9.1% and 27.4% less 

accurate than the M5Rules model. 

Overall, the use of the AI models in estimating the 𝑓𝑐𝑜
′  

of foamed concrete yields a good correlation between the 

estimated and actual values. The R indicator of the AI 

models varies from 0.852 to 0.908, while the MAPE 

indicator of the AI models varies from 20.2% to 31.1%. 

The RMSE and MAE indicators of the AI models vary; 

respectively, from 4.92 MPa to 6.22 MPa and from 

2.98 MPa to 4.11 MPa.  

 

Figure 2. Comparison of the AI models using MAPE indicator 

 

Figure 3. Comparison of the AI models using RMSE indicator 

 

Figure 4. Comparison of the AI models using MAE indicator 

5. Conclusions 

The 𝑓𝑐𝑜
′  of foamed concrete was estimated using six 

single AI models consisting of ANN, SVR, Gaussian, 

Multilinear Regression, Decision Tree and M5Rules. The 

input parameters of the AI models consisted of the dry 

density of foamed concrete, the cement and sand content 

and the water-to-cement ratio, while the output parameter 

was the compressive strength. The AI models were 

evaluated using 10-fold cross-validation. 

The performance of the AI models in estimating the 𝑓𝑐𝑜
′  

of foamed concrete has been examined using four main 

statistical indicators, including the correlation coefficient 
(𝑅), mean absolute percentage error (𝑀𝐴𝑃𝐸), root mean 

square error (𝑅𝑀𝑆𝐸), and the mean absolute percentage 

error (𝑀𝐴𝑃𝐸). Based on the performance of the AI 

models, the following conclusions can be given: 

(1) The AI models have provided a good estimation for 

the 𝑓𝑐𝑜
′  of foamed concrete as the graphical correlation of 

the estimated and actual compressive strength closely 

distributes along the diagonal line.  

(2) Although various indicators were employed to 

evaluate the performance of the AI model in estimating the 

𝑓𝑐𝑜
′  of foamed concrete, the M5Rules model has obtained 

the highest accuracy in estimating the 𝑓𝑐𝑜
′  of foamed 

concrete compared to the other AI models. The M5Rules 

obtains the R of 0.908 and the MAPE of 29.9%. 

(3) Based on the R and MAE indicators, the second 

most accurate model in estimating the 𝑓𝑐𝑜
′  of foamed 

concrete was the SVR, followed by the MLR model, while 

the least accurate model is the ANN model. Based on the 

MAPE indicator, the second most accurate model is the 
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Decision Tree and the least accurate model is the Gaussian. 

Based on the RMSE indicator, the second most accurate 

model is the MLR and the least accurate model is the ANN.  
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