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Abstract - This study evaluates the effectiveness of various 
detection-based object-tracking algorithms to optimize accuracy 
and efficiency in traffic flow monitoring. Due to its high accuracy 
in detecting objects, YOLOv8 was chosen as the vehicle detector 
for this research, where precise and rapid vehicle detection was 
critical. Regarding object tracking, our focus centered on the 
evaluation of five prominent Multiple Object Tracking (MOT) 
algorithms, including BoTSORT, ByteTrack, DeepOCSORT, 
OCSORT, and StrongSORT. We introduce a comprehensive traffic 
urban dataset collected from intricate street networks in Danang 
City. Our experimental results show that the system has practical 
applicability in urban traffic monitoring. Notably, the best model 
achieves a detection accuracy of 0.721 on mAP@0.5-0.95, and the 
High Overlap Tracking Accuracy (HOTA) surpasses 72% for 
tracking performance across diverse traffic scenarios. This shows 
the applicability of MOT algorithms and provides a detailed view 
of traffic flow monitoring, especially in Danang City, Vietnam. 
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1. Introduction 
In recent years, there has been a significant and rapid 

increase in the number of registered vehicles, 
encompassing both motorized and non-motorized types. 
According to data from the Vietnam Register, in 2022, the 
country hosts nearly 5 million cars and over 70 million 
motorcycles [1]. This surge underscores an escalating 
volume of traffic on the roads, which has profound 
implications for Vietnam's socio-economic development. 
It presents a dual-faceted scenario: an opportunity for 
growth in the transport sector and a challenge due to the 
substantial burden placed on traffic infrastructure and the 
complexities in traffic management and supervision. 

For the implementation of an effective traffic 
monitoring system, it is imperative to gain an in-depth 
understanding of vehicular movement patterns and the 
dynamics of traffic flow on various routes. Traditional 
traffic monitoring methods, such as ultrasonic waves, 
radar, or infrared sensors, face numerous operational 
challenges. They are often costly and yield data that is not 
comprehensive. As such, there is a growing need for 
innovative approaches that can overcome these limitations 
and provide a more holistic and efficient solution to the 
evolving demands of traffic management. 

Modern trends in automation and the increasing 
application of Artificial Intelligence (AI) in various life 

aspects have not excluded traffic management and 
monitoring. Several works proposed methods to support 
surveillance cameras installed across major routes and 
key intersections for violation detection [2], [3], [4]. 
These research, employing deep learning techniques, 
notably YOLOv3, for violation detection, demonstrates 
the potential of AI in traffic management. However, it 
also highlights key limitations, such as dependency on 
lighting conditions and challenges with high-speed 
traffic. An AI-powered video surveillance system can 
create an extensive traffic data repository, easily 
accessible for information like vehicle count, directions, 
waiting times, etc., through video devices integrated with 
image processing and analysis systems. Although several 
studies applied traffic monitoring technologies to 
Vietnam conditions [6], [7], [8], however; Vietnam's 
traffic characteristics include diverse terrain, unique 
vehicles, and a distinct traffic culture, such as a variety of 
motorized vehicles, from two-wheeled motorcycles, 
three-wheeled bikes, motorbikes, and cars to trucks. In 
contrast, our study expands on these foundations by 
employing the more advanced YOLOv8 model and a 
comprehensive evaluation of multiple object-tracking 
methods. Our approach not only addresses some of the 
mentioned limitations but also tailors the solution to the 
unique urban traffic context of Danang City. By offering 
a nuanced analysis of different MOT methods, we aim to 
provide a more robust and adaptable framework for traffic 
flow optimization, setting a new benchmark in the field. 

As we explore optimizing traffic flow monitoring, it is 
instructive to consider the advancements and challenges in 
related domains. Our approach aligns with innovative 
research directions [9], particularly in employing the 
Region of Interest (ROI) for identifying and tracking 
vehicles. This dual-module strategy, encompassing object 
detection and monitoring, transcends the drawbacks of 
previous methodologies, as further elaborated in the 
subsequent sections. In this paper, we leverage deep 
learning techniques, a subset of machine learning focused 
on artificial neural networks, to address traffic monitoring 
challenges. Specifically, we have opted for the YOLOv8 
model combined with multi-object tracking methods to 
enable real-time traffic flow monitoring and 
comprehensive analysis. The process is depicted in the 
following diagram: 
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Figure 1. Framework of the Traffic Flow Monitoring System 

The contribution of this research lies in evaluating and 
comparing the performance of various state-of-the-art 
multi-object tracking methods, with the primary objective 
of employing them for the detection, classification, and 
tracking of several types of traffic vehicles in a use case of 
Danang City. This is accomplished through the utilization 
of advanced image and video processing techniques, 
complemented by efficient detection and tracking methods, 
resulting in real-time traffic monitoring and detection 
methods. Specifically, as illustrated in Figure 1, the 
procedural framework includes five steps:  
(1) decomposing the input video sourced from the traffic 
camera system into frames; (2) detecting and classifying 
vehicles into predefined categories (car, motorcycle, bus, 
and truck) within these frames using the YOLOv8 model; 
(3) tracking and assigning unique IDs to monitor the 
information of vehicles presented in the video;  
(4) analyzing the traffic flow such as counting the number 
of vehicles; and (5) giving assessment and visualizing the 
representation of the tracked vehicles and traffic flow. As 
the experimental evaluation and results, the outcomes of 
our research are that we undertake a comprehensive 
analysis and comparison of various object-tracking 
methods for traffic flow monitoring. 

2. Related Works 
While existing studies in traffic vehicle monitoring 

offer valuable insights, limitations persist. In [5], the 
authors focused on the density estimation issue, which 
analyzed specific object characteristics to estimate 
quantity, yet it falled short in identifying precise vehicle 
trajectories, impacting accuracy. In [6], the authors 
integrated the vehicle detection and tracking method for 
improved accuracy, employing techniques like horizontal 
stripes for monitoring vehicles. These, however, these 
proposed methods suffered from the limitation in their 
application to complex intersections and specific road 
types. Additionally, methods utilizing all frames for object 
tracking faced challenges at wide camera angles, leading to 
detection, and tracking inaccuracies. 

Building upon these methodologies, our study takes a 
significant leap forward. We build upon and push beyond 
the boundaries established by previous work, including [7]. 
The previous research, while insightful, was constrained by 
its specific context and the complexity of its algorithms. 
Our current research broadens this perspective, applying 
advanced multi-object tracking methods in a more diverse 
urban setting. By utilizing a robust dataset and algorithms 
fine-tuned for real-time application, we effectively address 
the challenges of data dependency and scalability. This 
methodological evolution not only surmounts earlier 
limitations but also enriches the comparative analysis with 
a broader spectrum of tracking methods, establishing new 
standards in urban traffic flow monitoring. 

2.1. Object Detection 
There are two primary branches of object detection 

methods: single-stage and two-stage, with the latter being 
more dominant in the field of object detection. Single-stage 
methods, such as You Only Look Once (YOLO) [10] and 
Single-shot Detectors (SSD) [11], approach object 
recognition as a regression problem where the coordinates 
of the bounding box and object classes are predicted 
directly. However, two-stage methods, like Region-based 
CNN (R-CNN) [12], utilize a searching approach, initially 
proposing regions of interest (RoI). These proposals are 
then sent for classification and bounding box regression. 
This method achieves higher accuracy than the single-stage 
approach but requires more processing time due to its 
multiple stages. 

Recently, the YOLOv8 model, the latest iteration in the 
YOLO series, emerged as the gold standard in object 
detection. It stands out not only for its rapid detection 
capabilities but also for maintaining high accuracy. It 
demonstrates a higher mean Average Precision (mAP) 
compared to its predecessors with equivalent parameters, 
making it suitable for real-time processing of large 
volumes of image data. Therefore, this paper utilizes the 
YOLOv8 model for detecting traffic objects, ensuring 
effectiveness and accuracy in processing data from traffic 
cameras in Danang City. 
2.2. Object Tracking 

Object tracking has emerged as a crucial tool in deep 
learning and computer vision, enabling us to monitor the 
movements of objects across video sequences. By 
leveraging spatial and temporal information, object 
tracking assigns unique IDs to detected objects and follows 
their trajectories throughout a video. Object tracking can 
be categorized into two types: Single Object Tracking 
(SOT) and Multiple Object Tracking (MOT) [13]. MOT 
can identify and track multiple objects in a single frame and 
then assign and maintain IDs across different frames, 
making it ideal for applications like vehicle monitoring. 

Although many studies and technological solutions 
have been successfully implemented in traffic monitoring 
abroad, adapting these to Vietnam's complex traffic 
context is not straightforward. Vietnamese traffic is 
characterized by diverse terrains, unique vehicles, and a 
distinct traffic culture. This diversity is evident in the range 
of motorized road vehicles, from two-wheeled and three-
wheeled motorcycles to motorbikes, cars, and trucks. 

In this context, the use of MOT becomes essential for 
monitoring traffic flow. There are several strong research 
and development methods, including ByteTrack [14], 
OCSORT [15], Deep-OCSORT [16], BoTSORT [17], and 
StrongSORT [18], however; each tracking method has its 
strengths and limitations. Notably, most previous studies 
have focused on evaluating the performance of these 
methods on pedestrian datasets like MOT16 [19], 
DanceTrack [20], etc. The ranking of methods varies 
across datasets. Therefore, this paper will focus on 
exploring and comparing the effectiveness of MOT 
methods on vehicle traffic in Danang City, Vietnam. The 
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goal is to provide a detailed and insightful view of the 
applicability of MOT methods under specific traffic 
conditions, hoping to expand their application in urban 
traffic monitoring. 

3. The Proposed Methodology 
When processing objects at a distance, the system may 

encounter challenges in recognition, leading to a low 
detection rate and adversely affecting the tracking process. 
To address this issue, we employ the Region of Interest 
(ROI) method to identify and track objects at specific 
locations precisely. This not only addresses recognition 
challenges but also minimizes errors in detecting objects. 

 
Figure 2. Flowchart of the Traffic Vehicle Monitoring Algorithm 

Figure 2 illustrates the algorithm flowchart for 
detecting, recognizing, and tracking traffic vehicles. This 
process initiates with labeling, training the recognition and 
detection model, and exporting the model. Then, the model 
is utilized to detect and identify vehicles on testing input 
video. Subsequently, the process of counting vehicles in 
the video is carried out. The first step involves defining the 
Region of Interest (ROI). Each frame is then separated, and 
the process of identifying vehicles in each frame is 
iteratively performed. The positions of the vehicles are 
continuously updated in each frame. Upon a vehicle 
entering the ROI, the count variable is incremented 
according to the identified class. This iterative process 
continues until the end of the video. 
3.1. Object Detection 
3.1.1. Training YOLOv8 

Figure 3 presents a comparison of the mean Average 
Precision (mAP) on the COCO dataset across various 
YOLOv8 variants [9], along with a comparison of the 
number of parameters in these variants against older 
versions of YOLO. In our study, we specifically employed 
YOLOv8n, the lightest variant of YOLOv8, designed to 
provide high frames per second (FPS) and suitable for real-
time applications. To optimize performance, the data 
underwent pre-processing, resized to 640x640. 
Subsequently, we applied data augmentation techniques 
such as cutout and rotation to enrich the dataset. 

The training process was executed on our dataset for 
300 epochs with a batch size of 16 on a Google Colab V100 
GPU with 51GB RAM. This powerful computing 
environment significantly contributed to expediting the 
training speed, thereby enhancing research efficiency. 

 
Figure 3. Comparison of mAP (mean Average Precision) 

 among YOLO models [9] 
3.1.2. Evaluation of Object Detection Models 

In the problem of object detection, the evaluation of the 
model's accuracy and effectiveness was conducted using 
the following methods: 

• Intersection over Union (IoU): IoU is a metric 
used to measure the overlap between the predicted 
bounding box and the actual (ground truth) bounding box. 
The IoU value is calculated by the ratio of the area of 
overlap between the two bounding boxes to their total area. 
When IoU is equal to 1, it indicates that the predicted 
bounding box perfectly matches the actual bounding box. 
The following image visually illustrates how IoU is 
calculated: 

IoU = Area of Overlap
Area of Union

         (1) 

Regarding this: 
+ “Area of Overlap” is the area of intersection between 

the predicted bounding box and the ground truth. 
+ “Area of Union” includes the combined area of the 

predicted bounding box and the ground truth. 
• A prediction is considered correct if the IoU 

between the predicted and the ground truth bounding boxes 
is greater than a pre-determined threshold value. Based on 
the IoU and this threshold, we can calculate the following 
metrics: 

+ True Positive (TP): The model predicts that a 
bounding box exists at a specific location (Positive) and 
this is correct (True) 

+ False Positive (FP): The model predicts that a 
bounding box exists at a specific location (Positive) but this 
is incorrect (False). 

+ False Negative (FN): The model does not predict a 
bounding box at a specific location (Negative) and this is 
incorrect (False), meaning the actual bounding box does 
exist at that location. 

• Precision and Recall: Precision measures the 
proportion of correct predictions made by the model out of 
all positive predictions, while Recall measures the 
proportion of correct predictions made by the model out of 
all actual positive cases in the data. These are calculated 
using the following two formulas: 

 Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇     (2);  Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹    (3) 
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• Average Precision (AP): As discussed earlier, 
different threshold values result in varying precision. 
Therefore, AP is utilized to provide an objective measure. 

AP = ∫  1
𝑟𝑟=0 𝑝𝑝(𝑟𝑟)𝑑𝑑𝑟𝑟         (4) 

• Mean Average Precision (mAP): This is an 
extension of AP, calculated by averaging the AP across all 
object classes. 

𝑚𝑚𝑚𝑚𝑇𝑇 = 1
𝑘𝑘
∑  𝑘𝑘𝑖𝑖 𝑚𝑚𝑇𝑇𝑖𝑖          (5) 

In recent papers, researchers have employed mAP@0.5 
with an IoU threshold of 0.5 for assessing models in simple 
detection scenarios, and mAP@0.5-0.95 with thresholds 
ranging from 0.5 to 0.95 in steps of 0.05 to provide a 
comprehensive view of the model's performance at various 
levels of detection difficulty. In this paper, we use both 
metrics. 
3.2. Object Tracking 
3.2.1. Tracking Techniques 

The multiple object-tracking methods employed in our 
work are state-of-the-art (SOTA) and have demonstrated 
impressive performance across various benchmarks: 

ByteTrack: Focuses on linking bounding boxes, 
including those with low confidence. This method has 
achieved top results (SOTA) on multiple datasets. 

OCSORT: Improves the traditional Kalman filter to 
enhance tracking performance. It uses an object-centric 
approach to calculate hypothetical trajectories, helping to 
minimize cumulative error and effectively handle non-
linear movements. OCSORT offers real-time performance 
and has achieved top results on several datasets. 

Deep-OCSORT: An upgraded version of OCSORT, it 
utilizes deep appearance attributes, achieving top positions 
on MOT20 and second place on MOT17. 

BoTSORT: Integrates information about movement, 
object characteristics, and camera motion with the Kalman 
filter to create a robust tracking method. It ranks among the 
top on MOT17 and MOT20 datasets. 

StrongSORT [18]: Developed from DeepSORT, it 
improves detection, embedding, and linking to improve 
tracking efficiency. 

In this study, we applied these five different tracking 
methods to the Danang City traffic dataset to provide the 
most comprehensive overview of this dataset. 
3.2.2. Evaluation and Analysis of Tracking Methods 

In recent years, the growing interest and investment in 
the autonomous vehicle industry have significantly 
propelled the development of the Multiple Object Tracking 
(MOT) research community. The autonomous vehicle 
industry demands systems capable of accurately and 
continuously tracking multiple objects, ranging from other 
vehicles to pedestrians. This enhancement not only 
improves the safety and efficiency of autonomous driving 
but also has applications in fields like security surveillance 
and traffic management. 

The growth in MOT research has also led to the 
proposal of several new benchmarks. These benchmarks 

measure how well tracking systems perform by comparing 
the model's predicted outcomes (predictions) with actual 
tracks (ground truth), as illustrated in Figure 4. 

 
Figure 4. Ground-truth and prediction 

Many tracking methods utilize the Multiple Object 
Tracking Accuracy (MOTA) metric for evaluation [21]. 
This metric measures the overall accuracy of both the 
tracking and detection processes. It accounts for the 
outputs from both tracking and detection. The MOTA 
metric reflects the number of errors from missed objects 
(FN), false positives (FP), and mismatches (IDS) in 
predictions. 

𝑀𝑀𝑀𝑀𝑇𝑇𝑚𝑚 = 1 − ∑  𝑡𝑡  𝐹𝐹𝑁𝑁𝑡𝑡+𝐹𝐹𝑃𝑃𝑡𝑡+𝐼𝐼𝐼𝐼𝑆𝑆𝑡𝑡
∑  𝑡𝑡  𝐺𝐺𝑇𝑇𝑡𝑡

      (6) 

The second metric employed is the Identification F1-
Score (IDF1) [22], which reflects the accuracy of object 
association more than object detection. IDF1 calculates a 
one-to-one mapping between actual trajectories and 
predicted trajectories, using ID True Positive (IDTP), ID 
False Negative (IDFN), and ID False Positive (IDFP). 

IDF1 = |IDTP|
|IDTP|+0.5|IDFN|+0.5|IDFP|

      (7) 

A high IDF1 score estimates the number of unique 
objects within a scene rather than providing information 
about the ability to detect or accurately link them. 

Recently, the Higher Order Tracking Accuracy 
(HOTA) metric, which is capable of evaluating all tracking 
aspects, was introduced [23]. It is designed to overcome 
many limitations of previous metrics like MOTA and 
IDF1. This metric assesses all aspects of tracking and 
comprises three main components. 

Accurate Detection (DetA) – measures the accuracy of 
object existence compared to ground truth. 

Det A =  Det-IoU = |TP|
|TP|+|FN|+|FP|

    (8) 

Association Accuracy (AssA) – this metric assesses the 
accuracy based on incorrect associations made by the 
model, such as assigning the same ID to two detections that 
have different ground truths. 

 AssA  = 1
|TP|

∑  𝑐𝑐∈TP  Ass-IoU (c)

 = 1
|TP|

∑  𝑐𝑐∈TP  
|TPA(𝑐𝑐)|

|TPA(𝑐𝑐)|+|FNA(𝑐𝑐)|+|FPA(𝑐𝑐)|

  (9) 

Localization Accuracy (LocA) – measures the 
precision of the detected object's location compared to its 
actual position. 

LocA = 1
|TP|

∑  𝑐𝑐∈TP Loc-IoU (𝑐𝑐)     (10) 

Finally, HOTA is calculated using the following 
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formula: 

HOTA𝛼𝛼 = �
∑  𝑐𝑐∈{TPα} Ass-IoU𝛼𝛼(𝑐𝑐)

|TP𝛼𝛼|+|FN𝛼𝛼|+|FP𝛼𝛼|
      (11) 

HOTA = ∫  0<𝛼𝛼≤1  HOTA𝛼𝛼

 ≈ 1
19
∑  0.95

𝛼𝛼=0.05
𝛼𝛼+=0.05

 HOTA𝛼𝛼
      (12) 

4. Experimental Evaluation and Results 
4.1. Dataset 

Data collection from real scenarios plays an extremely 
crucial role in researching and analyzing object-tracking 
methods in Traffic Flow Monitoring. The data we collected 
is particularly diverse and rich, accurately reflecting the real-
life traffic conditions in Danang. Here are some examples of 
our data with rain conditions and diverse angles (Figure 5): 

• Diverse camera angles: We captured images from 
various perspectives, including front, rear, and diagonal 
angles, to provide a comprehensive view of traffic flow and 
vehicle movement patterns. 

• Varying weather conditions: Data was collected 
under different weather conditions such as overcast, sunny 
with shadows, and even in rain, where road users often 
wear raincoats, creating unique challenges for tracking and 
analysis. 

• Density variation: Data collection occurred in both 
low-traffic areas and traffic hotspots in Danang, such as the 
Dien Bien Phu and Nguyen Tri Phuong streets, reflecting a 

wide range of traffic scenarios and situations. 

Figure 5. Danang Traffic - Diverse Angles View 
Our data was categorized into four types of labels: 

motorcycles, cars, buses, and trucks. After the collection 
process, we obtained 50 videos with diverse traffic 
conditions. Out of these, we selected 43 videos for training 
the YOLOv8 model and 7 videos for evaluating our 
method. Before training data, these videos were labeled. 
Based on the 43 selected videos, we created around 1200 
images and labeled over 22000 objects in this data. The 
results are summarized in Table 1. 

Table 1. Training and Testing Dataset of the System  

  Car Motor-cycles Bus  Truck 
Training 6229 12266 332 695 
Validation 552 1205 37 62 
Testing 269 513 16 30 
Total 22206 

Table 2. Characteristics of the Videos in the Traffic Video Dataset in Danang 

Video 
Descriptions Size 

(pixels) FPS Length 
Frames (Seconds) 

Bounding 
Boxes View Weather Traffic Density 

DN-1 Frontal rear Overcast sky High (14.9) 1920x1080 30 488 (00:16) 7281 
DN-2 45-degree angle Sunny sky Medium (8.9) 1920x1080 30 574 (00:19) 5114 
DN-3 45-degree angle Rainy sky Low (5.0) 1920x1080 30 490 (00:16) 2436 
DN-4 45-degree angle Overcast sky Medium (8.7) 1920x1080 30 618 (00:20) 5372 
DN-5 30-degree rear, intersection Overcast sky High (12.5) 1920x1080 30 608 (00:20) 7624 
DN-6 Frontal Overcast sky High (15.6) 1080x1920 30 619 (00:20) 9666 
DN-7 30-degree rear, two-way road Rainy, Flooded Low (3.6) 1920x1080 30 622 (00:25) 2266 

Total 4019 (136s) 39759 

To evaluate object tracking methods, we selected 7 
manually annotated videos as mentioned in Table 2 as the 
ground truth. To ensure authenticity, we ensured that none 
of these videos had been used to train the YOLOv8 model. 
4.2. Object Detection 

To perform the training process, we utilized the Google 
Colab Pro platform with a Tesla V100 GPU card and 51GB 
of RAM. 

Table 3. Performance of pre-trained YOLOv8n and  
Trained YOLOv8n on Our Dataset  

Model mAP@0.5 mAP@0.5-0.95 
Pre-trained YOLOv8n 

(COCO weight) 0.595 0.377 

YOLOv8n 
(Training on our dataset) 0.952 0.721 

Table 3 compares the performance of two YOLOv8n 
models: a pre-trained model and a model trained on our 

dataset. The pre-trained YOLOv8n model, which was 
trained on the COCO dataset, a large and widely used 
dataset for object detection, achieved mAP@0.5 and 
mAP@0.5-0.95 scores of 0.595 and 0.377, respectively. It 
performed quite well when using an IoU threshold of 50%, 
but its performance significantly dropped when evaluated 
at higher IoU thresholds from 50% to 95%. 

While the pre-trained YOLOv8n model with COCO 
weights demonstrates strong performance, a custom-
trained model for our specific dataset takes object detection 
to another level. Starting with the same network 
architecture, we trained a YOLOv8n model from scratch 
using our data. This targeted approach paid off 
handsomely, as the model achieved a remarkable 
mAP@0.5 of 0.952 and a mAP@0.5-0.95 of 0.721. 

This indicates that the model was well-optimized for 
the new dataset and could detect vehicles with high 
accuracy, even when applying higher IoU thresholds. The 
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YOLOv8n model trained on the new data outperforms the 
pre-trained model, both at the IoU threshold of 50% and in 
the wider range from 50% to 95%. This highlights the 
importance of training models on data that is specific to the 
intended context to achieve optimal performance. 

This substantial improvement highlights the model's 
adeptness at recognizing vehicles, even with stricter IoU 
thresholds. Our custom-trained YOLOv8n outperforms the 
COCO-based model across both the standard 50% IoU and 
the wider range of 50% to 95%. This finding underscores a 
crucial point: for optimal performance, tailoring models to 
your specific data and context is paramount. 
4.3. Object Tracking 

Below are the test results with the following 
configuration: Intel Core i5 13400F CPU, NVIDIA 
GeForce RTX 3060 GPU, and 16 GB RAM. Tables 4, 5, 
6, and 7 below show the performance of five multi-
object tracking methods: ByteTrack, OCSORT, 
DeepOCSORT, BoTSORT, and StrongSORT, and 
applied to 7 selected videos from the dataset we 
collected. Specifically, Table 4 evaluates based on the 
HOTA index, Table 5 on MOTA, Table 6 on IDF1, and 
Table 7 assesses based on FPS. The highest performance 
on each video is marked as bold figures.  

Analyzing the results from Tables 4, 5, and 6, we can 
observe that the BoTSORT and ByteTrack methods 
consistently rank at the top positions on most videos, 
indicating the highest performance. This suggests that both 
methods can track objects accurately and robustly. 
However, there is variability in the metrics across different 
videos, indicating differences in the conditions and 
characteristics of each video.  
Table 4. HOTA Score Results for the Traffic Video Dataset in Danang 

  Byte-
track 

OC-
SORT 

Deep-
OCSORT 

BoT-
SORT 

Strong-
SORT 

DN-1 80.29 80.50 80.63 81.70 78.72 
DN-2 68.36 67.14 65.93 66.62 70.30 
DN-3 67.43 72.31 72.78 64.33 68.90 
DN-4 71.56 71.43 71.07 70.98 70.14 
DN-5 62.20 62.57 61.82 63.46 57.52 
DN-6 86.72 84.00 84.65 85.75 82.51 
DN-7 67.00 61.61 58.70 67.75 59.77 
Com-
bined 74.77 73.96 73.79 74.66 72.30 

Table 5. MOTA Score Results for 
the Traffic Video Dataset in Danang 

  Byte-
track 

OC-
SORT 

Deep-
OCSORT 

BoT-
SORT 

Strong-
SORT 

DN-1 79.96 79.32 80.46 80.64 76.05 
DN-2 66.77 63.10 62.83 60.89 66.00 
DN-3 66.13 66.13 65.35 66.05 67.20 
DN-4 72.86 72.82 72.23 70.14 72.99 
DN-5 63.50 64.21 62.34 63.08 62.33 
DN-6 82.59 82.84 83.11 82.60 81.33 
DN-7 65.36 61.12 62.05 65.23 63.06 
Com-
bined 73.11 72.47 72.27 72.02 71.71 

Table 6. IDF1 Score Results for  
the Traffic Video Dataset in Danang  

  Byte-
track 

OC-
SORT 

Deep-
OCSORT 

BoT-
SORT 

Strong-
SORT 

DN-1 89.60 88.48 88.40 90.35 86.15 
DN-2 73.86 72.03 71.53 75.15 77.60 
DN-3 73.00 77.49 78.83 67.17 72.72 
DN-4 78.88 78.63 78.25 78.35 75.27 
DN-5 74.82 73.53 72.53 76.71 67.98 
DN-6 92.00 87.44 88.30 91.38 86.38 
DN-7 76.53 66.70 67.94 78.34 67.58 
Com-
bined 82.61 80.51 80.58 82.86 80.65 

Table 7. Frame per Second Comparison on  
Trafic Video Dataset 

  Byte-
track 

OC-
SORT 

Deep-
OCSORT 

BoT-
SORT 

Strong-
SORT 

DN-1 14.72 14.69 10.84 9.97 4.06 
DN-2 16.18 16.37 12.69 12.70 9.08 
DN-3 17.74 17.40 12.81 12.56 11.29 
DN-4 15.71 16.04 12.21 11.78 7.32 
DN-5 16.01 16.18 11.60 11.41 5.91 
DN-6 14.76 15.54 10.84 10.42 4.69 
DN-7 17.52 16.97 13.58 12.98 11.45 
Com-
bined 16.09 16.17 12.08 11.69 7.69 

Table 7 provides an in-depth look at the performance of 
object-tracking methods across each video. Notably, 
ByteTrack and OCSORT consistently hold the top 
positions in processing speed (FPS). In contrast, 
BoTSORT and DeepOCSORT show lower performance in 
terms of FPS, and StrongSORT consistently ranks at the 
bottom in terms of FPS on all videos. 

To gain a better understanding of these analyses, let us 
examine the graphs below, which depict the specific results 
of each method after aggregating data from 7 different 
videos. This will help us gain a clearer understanding of the 
performance differences among the methods and elucidate 
their specific strengths and weaknesses in real-world 
scenarios. 

Table 8. Comparison of Algorithms on Different Traffic 
Densities (Metrics: H - HOTA, M - MOTA, I - IDF1) 

  Byte-
track 

OC-
SORT 

Deep-
OCSORT 

BoT-
SORT 

Strong-
SORT 

L
ow

 H 67.25 67.39 66.41 66.02 64.64 
M 65.76 63.72 63.76 65.65 65.21 
I 74.70 72.36 73.64 72.51 70.24 

M
ed

iu  H 70.15 69.52 68.78 69.06 69.36 
M 69.89 68.08 67.64 65.63 69.54 
I 76.58 75.60 75.19 76.90 74.49 

H
ig

h H 77.75 76.77 76.90 78.16 74.31 
M 75.89 76.01 75.88 75.96 73.87 
I 86.26 83.74 83.79 86.84 80.96 

Based on Table 8, we can see that under the condition 
of low traffic density, the research results show that the 
Byte-track algorithm brings high stable performance on all 
evaluation indicators, with high IDF1 score, reflecting the 
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ability to accurately identify and continuously track 
objects. This is especially important for maintaining the ID 
of each object over time in a low traffic density 
environment. OC-SORT, although not completely 
outperforming Byte-track, shows a slight improvement in 
the HOTA indicator, showing a better ability to balance 
target detection and tracking in low density. This is a sign 
that this algorithm handles well situations with little 
overlap and little confusion. 

When the traffic density is medium, the results from 
Table 8 show that the Byte-track algorithm has a slight 
improvement in the HOTA indicator while maintaining a 
good IDF1 score, which proves the algorithm's strong 
ability to handle situations with increased overlap. OC-
SORT, when placed in a condition of increased density, 
shows a slight decrease in all evaluation indicators. This 
proves that the algorithm may have difficulty handling a 
larger number of objects, as well as the increased overlap 
between objects. BoT-SORT, on the other hand, shows a 
significant increase in performance, with high HOTA and 
IDF1 scores, showing that it can handle well in medium 
traffic density conditions. 

Finally, under high traffic density conditions, BoT-
SORT shows its suitability in this condition, leading in 
both HOTA and IDF1 indicators, highlighting its superior 
ability to track in crowded traffic environments. This 
particular effectiveness indicates that BoT-SORT may be 
specifically designed to deal with the challenges of high 
density, where maintaining identity and accurately tracking 
objects becomes more difficult. 

 
Figure 6. Comparison of Evaluation Metrics for Object 

Tracking Methods  
Figure 6 summarizes the average performances of 

different methods with different metrics (Tables 4, 5, 6 and 
7). ByteTrack and OCSORT have shown excellence in the 
MOTA index, with scores of 73.11 and 72.47, respectively. 
The slight difference between these two methods reflects an 
equivalent performance in accurately maintaining object 
identity and position across video frames, demonstrating 
effective error minimization. More notably, in the evaluation 
based on the IDF1 index, BoTSORT and ByteTrack emerge 
as the top-performing methods, achieving impressive scores 
of 82.86 and 82.61, respectively. This indicates that both 
methods possess outstanding capabilities in accurately 
maintaining object identity across multiple consecutive 

frames, a crucial factor reflecting strong data association 
throughout the tracking process. 

When observing the HOTA index, we also find that 
BoTSORT and ByteTrack continue to lead the rankings 
with scores of 74.66 and 74.77, respectively. The 
prominence of these two methods in the HOTA index 
further reinforces the evidence of their ability to accurately 
determine object location and identity while maintaining 
this identity consistently and steadily across frames. 

While the metrics assess tracking quality, FPS 
evaluates computational performance, and in this case, 
OCSORT and ByteTrack lead, indicating that they can 
process frames faster than other methods. Although 
BoTSORT appears to be the method with the highest 
tracking quality performance, ByteTrack and OCSORT 
can be excellent choices when balancing quality and 
processing speed. This can be particularly crucial when 
handling real-time videos or when there are requirements 
for fast processing. StrongSORT, while not the most 
outstanding, still maintains a reliable performance across 
all metrics.  

5. Conclusion 
Our study undertakes a comprehensive analysis and 

comparison of various object-tracking methods for traffic 
flow monitoring. Leveraging the YOLOv8 object detection 
model, trained on a diverse dataset encompassing 
motorcycles, cars, buses, and trucks within the traffic 
landscape of Danang City, this research meticulously 
assesses the performance of five distinct object-tracking 
methods. Analysis highlights BoTSORT and ByteTrack as 
the top-performing methods, demonstrating their superior 
ability to accurately maintain object identities across 
consecutive frames. This strong performance underscores 
the effectiveness of their data association strategies for 
traffic monitoring scenarios. Our findings contribute 
valuable insights for developers and practitioners, aiding in 
the selection of the most suitable object-tracking methods 
tailored to specific traffic monitoring requirements. 

In the scope of further development, we propose 
solutions to enhance object recognition capabilities, 
including the application of automatic Region of Interest 
(ROI) detection methods and integration with Optical 
Character Recognition (OCR) technology to read and 
process information from license plates. This aims to 
support traffic monitoring and violation processing efforts. 
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