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Abstract - This study widely investigated the applicability of the 

ultimate bearing capacity formula from the Architectural Institute 

of Japan (AIJ) while considering the effect of footing width. An 

in-house RPFEM program was developed using a non-linear 

shear strength model that is sensitive to confining stress. The 

research focuses on evaluating how footing width and soil 

properties affect the ultimate bearing capacity of strip footings. 

Coefficients within the AIJ formula were calculated and 

compared to those derived from the RPFEM, considering 

different combinations of cohesive and frictional soil strengths 

across various footing widths. The RPFEM results closely 

matched those obtained from the AIJ formula. This suggests that 

using a non-linear shear strength model can accurately estimate 

the ultimate bearing capacity of strip footings on cohesive-

frictional soils, taking into account the footing width. 

Key words - Rigid plasticity; Non-linear shear strength model; 

Ultimate bearing capacity; Strip footing; RPFEM. 

1. Introduction 

When designing a foundation, it is crucial to evaluate 

the ultimate bearing capacity of shallow foundations. 

While the ultimate bearing capacity has been studied 

extensively [1, 2], and simplified bearing capacity 

equations have been developed, these equations often 

overlook the impact of footing width. However, the 

Architectural Institute of Japan (AIJ) [3] suggests that 

bearing capacity equations for building foundations should 

consider footing width effects, especially since building 

foundations are generally larger than those used in civil 

engineering structures. These equations developed semi-

experimentally with the bearing capacity factors Nq, Nc, 

and Nγ (as detailed in Table 1), have become widely used 

in Japan. The formula for ultimate bearing capacity is 

provided in Equation (1), and these equations have been 

successfully applied in a wide variety of designs. However, 

it should be noted that these equations are semi-empirical, 

and their accuracy is not clearly defined. Advancements in 

bearing capacity equations are crucial for achieving 

economical rationalization in design. 
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where,  and  are shape coefficients for which =1 and 

=0.5 are suggested by De Beer [4]. Parameters of c (kPa), 

 (deg), and 1, 2 (kN/m3) are cohesive strength, frictional 

strength and unit weight of soils, respectively. Coefficients 
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 is the size effect factor, in which, Bo=1 (m) is 

the reference value in the footing width B. 

Table 1. Comparison of various simplified UBC formulas 

Author 
Bearing capacity factor 

Nq N Nc 

Terzaghi 

[1] 
tan 2tan

4 2
e    

+ 
 

 ( ) (3 tan )1.34qN +  ( )1 / tanqN −  

Meyerhof 

[2] 
tan 2tan

4 2
e    

+ 
 

 ( )1 tan 1.4( )qN −  ( )1 / tanqN −  

AIJ 

[3] 

tan 2tan
4 2

e    
+ 

 
 ( )1 tan 1.4( )qN −  ( )1 / tanqN −  

Incorporating the dependency of shear characteristics 

on confining stress, as reported by [5] and [6], into the 

analysis of bearing capacity yields results consistent with 

those obtained using the Architectural Institute of Japan's 

(AIJ) bearing capacity equations for sandy soils. This 

consistency is achieved when applying a non-linear shear 

strength model to Toyoura sand [7]. However, when 

cohesive strength c is added to the shear strength of 

cohesive-frictional soil, it can lead to complex, non-linear 

effects that raise doubts about the reliability of bearing 

capacity equations [5, 6]. Consequently, this non-linear 

interaction introduces uncertainty, suggesting that 

traditional bearing capacity equations may not be sufficient 

to estimate the bearing capacity of strip footing accurately. 

This study aims to estimate the ultimate bearing capacity 

of strip footing using the in-house RPFEM program code 

developed by the author [15 - 27]. The rigid plastic finite 

element method (RPFEM) has been successfully employed 

in geotechnical engineering, as evidenced by works such 

as those by [8 - 23]. In this study, the focus is on the 

influence of footing width on ultimate bearing capacity 

using plastic constitutive equations based on both higher-

order (nonlinear) and Drucker-Prager (linear) yield 

functions, to examine the applicability of the AIJ bearing 

capacity equations for cohesive-frictional soils. 

2. Rigid-plastic constitutive equation considering 

nonlinear shear strength 

2.1. Constitutive equation incorporating nonlinear 

strength properties in rigid-plastic deformation 

For the nonlinearity of soil strength concerning the 

confinement pressure, the higher-order yield function of 

Eq. (2) is introduced. Here, ( )1
I tr=  represents the first 

invariant of the stress tensor σ, and 2

1
:

2
J = s s  represents 

the second invariant of the deviatoric stress tensor s. Here, 
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n, a, and b are coefficients representing material properties, 

with tensile stress defined as positive. 

( ) ( )
n

1 2
0f = aI + J b =−σ     (2) 

Eq. (2) possesses properties that correspond to the 

Mises criterion (a = 0) or the Drucker-Prager criterion  

(n = 1/2), depending on the setting of coefficients n and a. 

The strain rate  is expressed according to the related 

flow rule in Eq. (3). Here, λ is a coefficient representing 

the magnitude of the strain rate, e =    is the 

equivalent strain rate, and I is the unit tensor. 
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Here, the volumetric strain rate 
v
  is related to the 

equivalent strain rate by Eq. (3) as follows. 
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Therefore, the deviatoric stress s and the first invariant 

of stress I1 are expressed as functions of the equivalent 

strain rate and the volumetric strain rate, as defined by the 

strain rate. 
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From the fact that the deviatoric stress s and the first 

invariant of stress I1 are expressed as functions of the strain 

rate, the following constitutive relationship can be 

obtained. 
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The rigid-plastic constitutive equation represents the 

unconstrained flow of the material; thus, the magnitude of 

the strain rate is indefinite. However, for the case of a 

nonlinear yield function (n=1) as shown in Figure 1, the 

stress is uniquely determined by the strain rate in Eq. (7). 

This uniqueness arises from the fact that the direction of 

strain rate determined by the orthogonality rule (dilatancy 

characteristic) varies with stress, leading to a unique 

determination of stress concerning strain rate. The 

dilatancy characteristic continuously changes the 

volumetric expansion properties with stress level, and in 

cases where only tensile stress is applied, simple 

(volumetric) expansion is represented without the 

occurrence of shear strain, facilitating a straightforward 

representation of detachment due to tensile failure. 

However, the constitutive equation (Eq. (7)) poses 

challenges in numerical analysis due to the asymmetry of 

the stiffness matrix, limiting its applicability. 

 

Figure 1. Nonlinear yield function 

2.2. Explicit solution method for dilatancy characteristics 

When aligning higher-order yield functions with the 

Drucker-Prager criterion (n=0.5), as depicted in Figure 2, 

there arises an issue where the yield surface exhibits a 

linear segment, leading to an indeterminate stress response 

concerning strain rate  . Addressing this concern, Tamura 

[8, 9] clarified within rigid-plastic constitutive equations 

the existence of both determinate stresses (equivalent to 

Eq. (5)), which can be determined from material properties, 

and indeterminate stresses, which cannot be solely 

determined from material properties. They proposed 

employing constraint conditions for strain rate representing 

dilatancy characteristics (Eq. (8)) when utilizing the 

Drucker-Prager yield function. For notation simplicity, the 

coefficient  is introduced. 
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The following equation represents a rigid-plastic 

constitutive equation for the Drucker-Prager yield function 

proposed by Hoshina et al. [24, 25]. It incorporates the 

constraint conditions for dilatancy characteristics (Eq. (8)) 

into the equation derived from substituting n=1/2 into Eq. 

(2) using the penalty method (where P is the penalty 

constant). Here, χ is the indeterminate multiplier of stress. 
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The first term of the above equation represents the 

determinate stress according to the constitutive relationship, 

while the second term represents the stress component 

along the yield surface depicted in Figure 2, corresponding 

to the indeterminate stress. The indeterminate stress is 
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determined through force equilibrium equations when 

solving boundary value problems using the constitutive 

equation derived from Eq. (9). 

 

Figure 2. Drucker-Prager (linear) yield function 

As mentioned earlier, due to the numerical challenges 

associated with Eq. (7), this study aimed to reconstruct the 

rigid-plastic constitutive equation using the formulation 

proposed by [24, 25]. The stress of the material is divided 

into determinate stress σ(1), which can be obtained solely 

from the yield function, and indeterminate stress σ(2), which 

cannot be determined solely. The determinate stress σ(1) is 

expressed using the associated flow rule as shown in Eq. 

(10), while the indeterminate stress σ(2) is expressed using 

the constraint conditions for dilatancy characteristics 

represented by Eq. (8) and an indefinite constant η, as shown 

in Eq. (11). Here, I1 is a constant updated during the 

convergence calculation, which implies updating the 

Drucker-Prager criterion with each convergence calculation. 
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From Eqs. (10) and (11), the rigid-plastic constitutive 

equation becomes the following Eq. (12). Furthermore, in this 

study, to accelerate the analysis speed, the constraint 

conditions for dilatancy characteristics (Eq. (8)) are 

incorporated into the constitutive equation as follows using 

the penalty method (where P is the penalty constant) [24, 25]. 
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The above equation allows for the explicit analysis of 

dilatancy characteristics, enabling stable calculations of 

displacement velocity fields even in highly nonlinear 

problems. Furthermore, Eq. (12) benefits from numerical 

analysis due to the symmetry of the stiffness matrix. The 

first invariant of stress is updated using the second 

invariant of deviatoric stress, derived from transforming 

the yield function of Eq. (2), as follows. 

( )( )1 2

1 n

I b J
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= −     (13) 

The rigid-plastic constitutive equation (Eq. (12)) is 

applicable to deforming bodies, thus presenting issues 

when applied to rigid bodies. In limit load analysis, where 

analysis including rigid body regions is necessary, the 

following rigid-plastic constitutive equation (Eq. (14)) is 

applied when the equivalent plastic strain rate e  falls 

below the threshold 
o

e . 
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in case of 
o

1e
e
  

The replacement of the equivalent strain rate by a 

threshold value 
o

e , as shown in the above equation, has 

the effect of discounting the shear strength of the ground 

by 
o

1e
e

 
 

 
. Similar to creating constitutive equations 

where the shear strength appears to decrease, allowing for 

a small strain rate   in rigid body portions prevents 

division by zero in Eq. (12) concerning stress within the 

yield function, thus enabling stable equilibrium equations 

to be solved. Regarding the setting of the threshold, 

numerical experiments with varying thresholds are 

conducted in advance, and in the numerical analysis 

examples in the paper, a value (10-10) is used that does not 

affect the final results. 

3. Effect of footing width on ultimate bearing capacity 

of a strip footing 

3.1. Ultimate bearing capacity of strip footing under 

vertical load 

 

Figure 3. Finite element model and boundary conditions of  

strip footing under uniform vertical load 

This study employs a two-dimensional model RPFEM to 

investigate the ultimate bearing capacity of strip footing 

under a uniform vertical load q. The load is applied along the 

strip footing with width B. This load factor q is defined as 

the ultimate bearing capacity (kPa) in plane strain 

conditions. Using a solid element, the strip footing is 

modeled with a large strength to simulate a rigid footing. 

Figure 3 illustrates the typical finite element mesh and 

boundary conditions utilized for RPFEM. Model dimensions 
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are carefully chosen to prevent the collapse load from 

influencing the development of the failure mechanism. In the 

model-building process, selecting the appropriate mesh size 

significantly enhances computed results and simulation 

accuracy. The number of initial and final meshes is 

determined iteratively by increasing the number of nodes 

and elements. Approximately 4000 final meshes are selected 

to ensure the reliability of the outcomes. 

In RPFEM analysis, integrating nonlinear shear strength 

into bearing capacity assessments results in significant 

deviations from linear shear strength, particularly under low 

and high confining pressures, thereby exerting a substantial 

influence on evaluations of ultimate bearing capacity. This 

study aims to compare with the ultimate bearing capacity 

formula of the Architectural Institute of Japan (AIJ) by 

utilizing the reduction characteristics of internal friction 

angle concerning confining stress for Toyoura sand, creating 

a hypothetical ground with a frictional shear strength of 

=30o. While Table 2 presents the set ground constants, the 

study further conducted trial analyses by varying the 

cohesive strength c to extensively alter the shear strength 

characteristics of the hypothetical ground for comparative 

purposes. Throughout the analysis, the study varied the 

footing width to scrutinize the validity of the bearing 

capacity factor utilized in the formula concerning the 

cohesive strength c and the frictional strength . 

Table 2. Parameters for RPFEM analyses 

 (o) c (kPa) 
Nonlinear material constants 

a b n 

30o 

0 0.20 0.5 0.55 

10 0.21 9.8 0.55 

50 0.22 61.3 0.55 

100 0.24 129.5 0.55 

Figure 4 illustrates the variation in bearing capacity 

when the footing width is varied as B=1, 5, 10, 30, 50, and 

100 (m). The analysis results using the RPFEM based on the 

Drucker-Prager criterion (linear shear strength model) and 

the RPFEM based on the nonlinear yield function (nonlinear 

shear strength model), as well as the results based on [1, 2, 

3] bearing capacity formulas, are compared. While there is 

some variability in the ultimate bearing capacity between the 

solution of Terzaghi [1], Meyerhof [2] and RPFEM (linear) 

due to the magnitude of cohesive strength, largely consistent 

results were obtained, whereas the ultimate bearing capacity 

obtained using the AIJ formula showed significant 

differences. Conversely, the ultimate bearing capacity 

evaluated by RPFEM (nonlinear), considering the 

confinement pressure dependency, showed relatively good 

agreement with the ultimate bearing capacity obtained by 

AIJ, regardless of the magnitude of cohesive strength c. 

From the above observations, it can be concluded that 

the bearing capacity formula provided by the AIJ 

effectively captures the influence of nonlinear shear 

strength and is in good agreement with the RPFEM 

nonlinear model. In this investigation, while examining the 

effect of the cohesive strength c, it was found that despite 

some variability, the AIJ formula largely represents the 

ultimate bearing capacity accurately. 

 
(a) c=0 kPa 

 
(b) c=10 kPa 

 
(c) c=50 kPa 

 
(d) c=100 kPa 

Figure 4. Ultimate bearing capacity with non-linear shear 

strength in case of ϕ=30o 
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3.2. Failure mechanism of strip footing under vertical 

load for linear and non-linear shear strength models 

Figure 5 illustrates the failure mechanism of the ground 

at the limit state, computed by multiplying the arbitrary 

time increment by the velocity field obtained by RPFEM 

(linear and nonlinear models) for a footing width of  

B=10 (m). It is evident that the failure mechanism of the 

ground for both models appears similar. However, in the case 

of the linear shear strength model, the failure area is observed 

to be larger than that of the nonlinear shear strength model, 

particularly around the two footing edges. Additionally, the 

ultimate bearing capacity is generally obtained close to 

q=2034 kPa for the linear shear strength model and close to 

q=1080 kPa for the nonlinear shear strength model. This 

suggests that the results obtained using the nonlinear model 

property are reasonable and demonstrate that the effect of 

footing width on the ultimate bearing capacity can be 

accurately expressed by considering the nonlinear shear 

strength against the confining pressure [5]. 

 

 

(a) Linear shear strength model (q=2034 kPa) 

 

 

(b) Nonlinear shear strength model (q=1080 kPa) 

Figure 5. Failure mechanism of strip footing, by using non-liner 

and linear shear strength model (B=10 m, ϕ=30o, c=10 kPa) 

3.3. Effect of cohesive strength c on failure mechanism 

of strip footing, using nonlinear shear strength model 

For cohesive-frictional soil, the failure mechanism of 

the strip footing depends not only on the footing width B 

but also on soil properties such as cohesive strength c and 

internal friction angle . The question arises as to whether 

cohesive strength c affects the failure zone of the strip 

footing. Figure 6 shows the deformation diagrams of strip 

footing under uniform vertical load, using a nonlinear shear 

strength model. The deformation diagrams are presented 

for variations in the cohesive strength of the soil, with 

values of c=0 - 100 kPa. The strain rate distribution plot 

represents the predominant strain distribution at the limit 

state, which is believed to correspond to the displacement 

at the failure status. The results obtained in the figure are 

similar to the failure mode assumed by [28 - 30]. However, 

it is observed that as the cohesive strength c increases, the 

failure zone becomes larger. Since higher cohesive strength 

leads to greater ultimate bearing capacity of the foundation, 

the confining stress directly beneath the footing increases. 

It is understood that the influence of cohesive strength c 

significantly affects the extent of the failure zone. 

Furthermore, the ultimate bearing capacities of the strip 

footing are typically observed to be q=682 kPa, 1080 kPa, 

2041 kPa, and 3614 kPa for cohesive strengths of 0 kPa, 

10 kPa, 50 kPa, 100 kPa, respectively. It is evident that as 

the cohesive strength c increases, the ultimate bearing 

capacity also increases. 

 

 

(a) ϕ=30o - c=0 kPa (q=682 kPa) 

 

 

(b) ϕ=30o - c=10 kPa (q=1080 kPa) 

 

 

(c) ϕ=30o - c=50 kPa (q=2041 kPa) 

 

 
(d) ϕ=30o - c=100 kPa (q=3614 kPa) 

Figure 6. Deformation diagrams of strip footing using nonlinear 

shear strength model (B=10 m) 

4. Conclusions 

This study investigated the ultimate bearing capacity of 

a strip footing on cohesive-frictional soil, utilizing both 

linear and nonlinear shear strength models, in order to assess 

the AIJ bearing capacity formula. The impact of footing 

width and soil properties on the ultimate bearing capacity 

and failure mechanism was comprehensively analyzed. 

Key conclusions drawn from the study are as follows: 

(1) The study employed a rigid-plastic constitutive 

equation based on nonlinear yield functions to analyze 

ultimate bearing capacity. By incorporating the nonlinear 

strength characteristics of the ground affected by confining 

pressure, the RPFEM analysis results were consistent with 

those obtained using the AIJ bearing capacity formula, 

which considers the effects of footing width. Additionally, 

the investigation into the influence of cohesive strength on 

bearing capacity, alongside the friction angle, showed that 

q 

q 
maxe 

q 

q 

q 

q 

maxe 

maxe 

maxe 

maxe 

maxe 
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the AIJ bearing capacity formula exhibited satisfactory 

agreement with RPFEM analysis findings, thereby 

confirming its reliability. 

(2) The comparison between linear and nonlinear shear 

strength models indicates that the nonlinear model better 

reflects the failure mechanism and ultimate bearing 

capacity of the strip footing, emphasizing the importance 

of considering nonlinear shear strength effects when 

analyzing the effect of footing width on bearing capacity. 

(3) An increase in cohesive strength c, results in the 

extension of the failure zone of the strip footing. This 

phenomenon is attributed to the heightened ultimate 

bearing capacity associated with increased cohesion, 

consequently leading to elevated confining stress directly 

beneath the footing. Overall, it is evident that cohesive 

strength significantly influences the extent of the failure 

zone in the soil. 
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