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Abstract - The Steiner tree problem in graphs (SPG) is one of the 

most studied problems in combinatorial optimization because of 

its theories and applications. It is one of the foundations to 

develop a Wireless Sensor Network (WSNs), such as multicast 

and topology design. SPG is an NP-Hard problem, and many 

heuristic and approximation algorithms have been proposed. 

Thus, this study proposes a Hybrid Genetic algorithm (HGA) to 

solve SPG. This study is the binary string representation for a set 

of chosen edges. To increase the diversity of the population and 

avoid falling into local optimization, we use a 2-longest Distance 

strategy, dynamic crossover rate, and chosen solutions must differ 

by at least 5%. The experiment results show that the HGA 

algorithm's running time equals 153.83% of the GA algorithm's, 

the deviation found by HGA, and the optimal distance only equals 

65% that of GA. 
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1. Introduction 

SPG is a combinatorial optimization problem that has 

received considerable research attention for a long time. 

This problem attracts theoretical research because it 

combines the shortest path and minimum spanning tree. 

In addition, regarding practical applications, many 

problems are modeled into SPG or closely related 

problems in many fields, such as computer science and 

networks. In WSNs, SPG is a base for many problems, 

such as node placement optimization, multicast, and 

topology design [1], [2].  

Given an undirect, weighted graph 𝐺 =  (𝑉, 𝐸) and a 

cost function 𝑐 mapping 𝑐: 𝐸 →  𝑅+. A Steiner Tree for 

(𝐺, 𝑅), in which 𝑅 ⊆ 𝑉  is the set of terminal vertices, is a 

subgraph 𝑇 =  (𝑉 (𝑌 ), 𝑌) that spans 𝑅 (i.e, ∀𝑠, 𝑡 ∈  𝑅, 

there exists a path from 𝑠 to 𝑡 in 𝑇) with 𝑌 ⊆  𝐸 is the 

subset of chosen edges and by 𝑉 (𝑌 ) we denote the set of 

vertices incident to the edge set 𝑌 . The Steiner Minimal 

tree problem asks to find the tree 𝑇 ∗ with minimum sum 

of cost: 𝑇 ∗ =  𝑎𝑟𝑔 𝑚𝑖𝑛 𝑐(𝑇) with 

𝑐(𝑇) = ∑ 𝑐(𝑒)𝑒∈𝑌     (1) 

Traditionally, the set 𝑆 =  𝑉 \ 𝑅 containing additional 

vertices is called the Steiner set, and any 𝑢 ∈  𝑆 is called a 

Steiner node [3]. 

SPG is NP-complete; thus, cracking it demands a 

computational time that grows exponentially with the 

problem size. Therefore, approximation and heuristic 

algorithms have been proposed. The GA algorithm has 

proven to be effective in solving this problem. Therefore, 

this study proposes a HGA [1] for SPG. 

The main contributions of this study are as follows: 

We propose the binary string representation for a set of 

chosen edges instead of vertices. 

We propose using the 2-Longest Distance strategy to 

increase the diversity of the population and avoid falling 

into local optimization. 

We propose using the dynamic crossover rate and the 

solutions chosen for the next generation to increase the 

diversity of the population. 

2. Related Works 

SPG has been of interest in research for a long time. 

The first approximation algorithm was introduced by 

Gilbert and Pollak in 1968 [4]. Over the next twenty years, 

no better approximation algorithm was found than this one 

[5]. A simple greedy algorithm, called 3-Steiner trees, was 

proposed by Zelikovsky [6]. Then, this approach was 

extended by Berman and Ramaiyer using k-Steiner trees. 

Since then, many approximation algorithms to SPG have 

applied  Zelikovsky's idea [5]. In [7], Karpinski and 

Zelikovsky introduced the concept of a Steiner tree's loss. 

They use the general framework with a choice function that 

minimizes the weighted sum of the length and the loss of a 

Steiner tree. Bahiense et al. [8] developed an algorithm 

based on a Lagrangian relaxation of a multi-commodity 

low formulation of the problem. An extension of the 

subgradient algorithm, the volume algorithm, was used to 

receive lower bounds and evaluate primal. Chen [9] 

presents an efficient two-phase with eves an approximation 

ratio of 1.4295. 

In [10], Kapsalis et al. introduced a classical GA to deal 

with STP. It uses a simple bit string representation, where 

a 1 or 0 corresponds to whether or not a node is included in 

the solution tree. In [11], Hesser et al. introduced a GA 

algorithm. The crossover probability is chosen based on the 

Grefenstette study, and the population size is chosen based 

on the Goldberg study. In [12], Nguyen and Nguyen 

introduced a parallel genetic algorithm that uses the 

distance network heuristic to evaluate individuals' fitness, 

which is implemented in parallel using a global population 

model. In [13], Dong et al. introduced a genetic algorithm. 

Because it focuses on narrowing the search range, the 

search speed is faster, and the number of iterations is low. 

In [14], Zhang et al. proposed a new crossover mechanism 

for this problem. This mechanism generates legal offspring 

by exchanging partial parent chromosomes, requiring 

neither global network link information, 

encoding/decoding, nor repair operations. 
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3. Algorithms 

This study proposes using the binary string 

representation for a set of chosen edges instead of a set of 

vertices, as in previous studies. We apply binary string 

encoding. It follows that objective value computation is the 

sum of chosen edges. Thus, the decoding has no ambiguity. 

Time per evaluation is linear to the number of edges. 

Compared to approaches that use binary strings to 

represent the corresponding set of Steiner nodes, as seen in 

[10], [15], the proposed approach cannot omit any part of 

the search space. 

Solutions generated in initialization, hybridization, and 

mutation may not be connected. It is very common that 

many solutions are not connected or have excess edges, so 

they need to be processed. We propose a Self-correction 

strategy for this task. 

For each individual who is not connected, we connect 

its disconnected parts using the shortest path. We use the 

algorithm Algorithm 1 (in Figure 1) to determine the 

shortest spanning subtree in [16].  

 

Figure 1. Pseudocode for determining  

the shortest-spanning subtree 

This often results in excess edges, so we need to trim 

them. Algorithm 2 (Figure 2), introduced in [17], is used 

for this task. 

Thus, Self-correction includes two steps:  

- Step 1: Running Algorithm 1 

- Step 2: Running Algorithm 2 

Note that the output of Algorithm 1 is the input of 

Algorithm 2. 

 

Figure 2. Pseudocode for trimming excess edges 

3.1. Genetic Algorithm (GA) 

This algorithm is the basic genetic algorithm. The GA 

is shown in Figure 3. 

 

Figure 3. Schema of GA 

• Initialization 

An individual is a single solution, and a population is a 

set of individuals. This step is to create individuals for our 

base population. First, the population is created randomly. 

Then, Self-correction strategy is applied to all individuals. 

• Selection (for recombination) 

In this study, the roulette wheel selection chooses 

individuals to be transferred to the next generation. It is a 

well-known approach for the selection step. For an 

individual with a better fitness value, the probability of 

selecting it will also be higher [18]. 

• Crossover  

Crossover, or recombination, is fusing two parents to 

create new offspring. This process exchanges some parts 

of the parents' strings to create a new string that may inherit 

some good traits from both parents. This work uses the 

uniform crossover. Each bit is chosen from either parent 

with a similar probability [19].  

• Mutation 

The bit-flip mutation is chosen. Several positions are 

randomly selected, and their values are flipped. This means 

that if the gene's value is 1 in a selected position, it will 

become 0; if the gene value is 0, it will become 1. 

• Survival 

The best individuals from the parents and children will 

be sorted according to their fitness values. Those with good 

fitness values will be selected to pass on to the next 

generation [19]. 
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3.2. Hybrid Genetic Algorithm (HGA) 

The process of probing new areas of the search space 

is called exploration. Otherwise, concentrating on 

existing spaces to find the optimum is called exploitation. 

The two processes play an essential role in problem-

solving by search. It is trendy that when the diversity of 

the population rises, GAs move into exploration; when 

the diversity of the population reduces, GAs move into 

exploitation [20], [21]. 

The HGA is shown in Figure 4. 

 

Figure 4. Schema of HGA 

Retaining a balance between exploration and 

exploitation is essential to finding the globally optimal 

solution. A diverse population is one way to achieve this 

balance [20]. The Jaccard distance is used to measure 

dissimilarity between sets. 

The stages of Initialization, Selection, Survival, and 

Self-correcting strategy are the same as those in the SGA 

algorithm. 

• Crossover 

We use the dynamic crossover rate. For parent 𝑝1, 𝑝2, 

the crossover rate is computed as follows: 

𝑝𝑚 = max (0.25,
𝛼(𝑝1,𝑝2)

𝛼𝑚𝑎𝑥

𝑒−1

× 0.95)  (2) 

where 𝑝1 and 𝑝2 are parent, and  𝛼(𝑝1, 𝑝2) is 

𝑑𝐽  =  1 − 𝐽(𝑝1, 𝑝2). 

• Survival 

The best individuals from the parents and children will 

be sorted according to their fitness values.  

The individuals with the better fitness value are 

selected. The selection must avoid converging on local 

optima. Therefore, the solutions chosen for the next 

generation must differ by at least 5%. 

Besides, to increase the diversity of the population and 

avoid falling into local optimization, we also use the 

2-Longest Distance strategy that was proposed and 

demonstrated to be effective [22]. 

4. Experiments and Evaluations 

This section evaluates the effectiveness of our HGA. 

We compare the GA and the HGA. The two algorithms are 

compared by the quality of the found solution and the 

running time. 

The test set is from the SteinLib Testdata Library 

(https://steinlib.zib.de/steinlib.php). In this work, we 

choose the significance value alpha is 0.05. 

• Quality of solutions 

The distances determined by GA and HGA are shown 

in Table 1. 

The deviation of the distance between heuristic 

algorithms (GA and HGA) and the optimal distance is 

calculated as follows: 

𝑑𝑒𝑣 =
𝑑−𝑑𝑜𝑝𝑡

𝑑𝑜𝑝𝑡
× 100%    (3) 

Table 1. Distances determined by GA and HGA 

ORD Test Name 
Distance of 

GA 

Distance of 

HGA 

Shortest 

Distance 

1 c01 85 85 85 

2 c02 144 144 144 

3 c03 760.53 754.46 754 

4 c04 1081.69 1080.23 1079 

5 c05 1581.58 1579 1579 

6 c06 55 55 55 

7 c07 102.56 102.08 102 

8 c08 514.11 511.54 509 

9 c09 718.69 709.62 707 

10 c10 1097.5 1094.08 1093 

11 c11 32 32 32 

12 c12 46 46 46 

13 c13 262.61 259.46 258 

14 c14 327.08 325.38 323 

15 c15 557.94 557.23 556 

16 c16 11 11 11 

17 c17 18.03 18 18 

18 c18 117.17 116.15 113 

19 c19 155.08 155.46 146 

20 c20 274.39 274.46 267 

21 d01 106 106 106 

22 d02 220 220 220 

23 d03 1576.69 1569.31 1565 

24 d04 1957.72 1938 1935 

25 d05 3266.92 3255.54 3250 

26 d06 67 67 67 

27 d07 103 103 103 

28 d08 1084.47 1079.69 1072 

29 d09 1462.89 1457.23 1448 

30 d10 2120.67 2116.77 2110 
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Shapiro–Wilk is used to determine the distribution of 

deviations of GA and HGA algorithms. The p-value of 

GA's deviation is 0.002, and the p-value of HGA's 

deviation is 2.871e-09. This means that these distributions 

do not come from normal distributions. 

For comparing the deviations, hypothesis H0 is that the 

deviations of the two algorithms are equal. The Wilcoxon 

test is used, and the p-value is 0.003. Thus, the hypothesis 

H0 is rejected. In other words, the deviations of the two 

algorithms are unequal. Therefore, their means are 

compared. The deviation of the HGA algorithm is only 

equal to 65% of that of GA.   

• The running time 

Table 2 shows the running times of these two 

algorithms. Shapiro–Wilk is used to determine the 

distribution of running times for GA and HGA algorithms. 

The p-value of GA's running time is 0.002, and the p-value 

of HGA's running time is 0.002. This means that these 

distributions are not normal.  

Table 2. Running time of GA and HGA 

ORD Test Name GA HGA 

1 c01 1857.12 3861.61 

2 c02 2169.2 4171.42 

3 c03 4990.13 7410.84 

4 c04 6177.08 8736.18 

5 c05 8894.48 12431.18 

6 c06 1897.15 4288.42 

7 c07 2026.18 4527.61 

8 c08 5029.36 7963.45 

9 c09 6288.11 9481.3 

10 c10 9000.29 12544.92 

11 c11 1903.59 4759.11 

12 c12 2081.35 5169.29 

13 c13 5093.86 8741.28 

14 c14 5932.04 10140.37 

15 c15 8889.02 13218.46 

16 c16 3656.27 13041.55 

17 c17 3690.18 12998.47 

18 c18 6453.35 16844.25 

19 c19 6842.04 17791.47 

20 c20 10269.41 21465.76 

21 d01 2455.99 5411.55 

22 d02 2911.61 6208.13 

23 d03 9194.47 13747.32 

24 d04 11447.03 17598.52 

25 d05 18485.44 24187.25 

26 d06 2656.34 6125.22 

27 d07 2587.16 6382.66 

28 d08 10057.51 14413.54 

29 d09 12696.56 17093.97 

30 d10 17971.66 24352.67 

 

For comparing the deviations, hypothesis H0 is that the 

two algorithms' running times are equal. The Wilcoxon test 

is used, and the p-value is 0.001. Thus, hypothesis H0 is 

rejected. In other words, the two algorithms' running times 

are unequal. Their means are compared. The HGA 

algorithm's running time equals 153.83% of the GA 

algorithm's running time.  

The deviation of the HGA algorithm is only 65% of that 

of GA. The HGA algorithm's running time is 153.83% of 

the GA algorithm's running time. 

5. Conclusions 

In this study, we proposed a new HGA to solve SPG, a 

foundation problem for optimizations in WSNs [23]. We 

use the binary string representation for a set of chosen 

edges. The 2-Longest Distance strategy is proposed to 

increase the diversity of the population and avoid falling 

into local optimization. Besides, we use the dynamic 

crossover rate and the solutions chosen for the next 

generation to increase the diversity of the population. The 

proposed algorithm is better than GA. The deviation of the 

HGA algorithm is only 65% of that of GA, and the HGA 

algorithm's running time is 153,83% of the GA algorithm's 

running time. 
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