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Abstract - In this paper, we propose an optimal algorithm for the 

convex minimax. This is an extension of the Nestrerov algorithm, 

which allows step size parameters to be non-constant and 

determined automatically during algorithm execution. We present 

the algorithm and prove the convergence of this algorithm with 

the optimal order. To calculate the gradient mapping, we apply 

the external point penalty function method. We then propose a 

method of determining the parameters in the algorithm 

automatically. The proposed new algorithm, which is integrated 

with the method of calculating gradient mapping and automatic 

parameter determination, is detailed in Algorithm 6.1. Finally, we 

applied the new algorithm to solve some specific examples and 

compared it with Nesterov's algorithm. 

Key words - Minimax optimal problem; Optimal algorithm; 

Nesterov’s algorithm; Convergence; Optimal convergence rate. 

1. Introduction 

In this paper, we deal with the minimax problem  

1

( ) = ( ) ,maxmin i
x Q i m

f x f x
  

 
  

   (1) 

where if   
1,1

, ( )n
L , =1;i m  and Q  is a closed 

convex set. 

The problem has applications in many domains such as 

mathematics [1], statistics [2] and optimization [3]. There 

are some available methods to solve the problem (1) such 

as Mirror-Prox [4], Nesterov’s Accelerated Gradient 

Descent (AGD) [5] or Efficient Algorithms combining 

Mirror-Prox and AGD [6]. Furthermore, in [7] Nesterov 

introduced an optimal scheme with a constant size step 

1
=kh

L
 where L  is the above-mentioned parameter. Note 

that for = 1m , there are some generalizations of 

Nesterov’s algorithm, one has been published in [8] for 

= nQ  and the other has been published in [9] for 

.nQ   In this paper, we will generalize the scheme of 

Nesterov to solve the problem (1) with > 1m  by allowing 

size steps kh  to be nonconstant. We will prove that the 

proposed algorithm converges with the order of the optimal 

convergence rate. 

2. Preliminary 

We first recall some notations and preliminary results 

of (strongly) convex differentiable functions.  

A continuously differentiable function h  is called 

convex in n  if and only if  

( ) ( ) ( ) , , , .nh y h x h x y x x y + −    

A continuously differentiable function h  is called 

strongly convex in n  if and only if there exists a constant 

0   such that  

( ) ( ) ( ) 2, , , .
2

nh y h x h x y x x y x y


 + − + −  

The parameter   is called to be an strongly convex 

parameter. If = 0  then f  is convex. We denote   the 

largest Lipschitz strongly convex parameter. 

A function h  is called Lipschitz continuous 

differentiable if and only if it is differentiable and there 

exists > 0L  such that  

( ) ( ) , , .nh x h y L x y x y −  −    

Then, L  is called Lipschitz constant. We denote L  the 

smallest Lipschitz constant. Note that if h  is a Lipschitz 

continuous differentiable function with Lipschitz constant 

L  and convex, then  

( ) ( ) ( ) 2, , , .
2

nL
h y h x h x y x x y x y + − + −        

We denote h  
1 ( )n
  if h  is a strongly convex with the 

strongly convex parameter   and h  
1,1

, ( )n
L  if h  is 

a strongly convex differentiable function with the strongly 

convex parameter   and Lipschitz continuous 

differentiable with Lipschitz constant L . Furthermore, if 

1( ) = ( )max i m if x f x  , where if   
1,1

, ( )n
L , =1;i m , 

then we also write f   
1,1

, ( )n
L . 

Theorem 2.1 If 1,1
1 ,

1 1
( )n

L
f


  and 1,1

2 ,
2 2

( )n
L

f


  

then   1,1
1 2 ,max ; = ( )n

Lf f f  , where 

    1 2 1 2= min ; , = max ; .L L L     

Proof. Let    1 2 1 2= min ; , = max ;L L L   . Since 

1,1
1 ,

1 1
( )n

L
f


  and 1,1

2 ,
2 2

( )n
L

f


 , we have  

( ) ( ) ( )21
1 1 1,

2
f x f x y x x y f y


+ − + −   

( ) ( ) 21
1 1 , , , ,

2

nL
f x f x y x x y x y + − + −    
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 ( ) ( ) ( )22
2 2 2,

2
f x f x y x x y f y


+ − + −   

( ) ( ) 22
2 2 , , , .

2

nL
f x f x y x x y x y + − + −    

Therefore,  

( ) ( ) ( )2
1 1 1,

2
f x f x y x x y f y


+ − + −   

( ) ( ) 2
1 1 , , , ,

2

nL
f x f x y x x y x y + − + −    

  ( ) ( ) ( )2
2 2 2,

2
f x f x y x x y f y


+ − + −   

( ) ( ) 2
2 2 , , , .

2

nL
f x f x y x x y x y + − + −    

Hence, 
1

1 2 ,, ( )n
Lf f  . So, we have 1

,

1 ( )
L

nf


 .    

Definition 2.1  Let f  be a max-type function:  

1

( ) = ( ).max i
i m

f x f x
 

                  (2) 

Then, function  

1

( ; ) = [ ( ) ( ), ]max i i
i m

f x x f x f x x x
 

+  −        (3) 

is called the linearization of ( )f x  at x .  

Lemma 2.1  Let 
1,1

1 ,( ) = ( ) ( )max
n

i m i Lf x f x    . 

Then, for any 
nx   we have   

2( ) ( ; ) ,
2

f x f x x x x


 + −          (4) 

2( ) ( ; ) .
2

L
f x f x x x x + −           (5) 

  Proof.  Since f   
1,1

, ( )n
L , we have if   

1,1
, ( )n
L , = 1;i n . Then,  

2( ) ( ) ( ), , = 1, ;
2

i i if x f x f x x x x x i n


 +  −  + −   

2( ) ( ) ( ), , = 1, .
2

i i i

L
f x f x f x x x x x i n +  −  + −   

Therefore,  

2

1 1

( ) ( ) ( ), ;max max
2

i i i
i m i m

f x f x f x x x x x


   

 
 +  −  + −    

 
 

2

1 1

( ) ( ) ( ), .max max
2

i i i
i m i m

L
f x f x f x x x x x

   

 
 +  −  + −    

 
 

Hence, we have (4), (5).   

Theorem 2.2  Let if  be convex and differentiable for 

all =1,2, , .i m  A point 
*x Q  is a solution to problem 

(1) if and only if for any x Q , we have  

* * * *( ; ) ( ; ) = ( ).f x x f x x f x              (6) 

Proof.  If (6) is true, for any x Q , we have:  

* * * *( ) ( ; ) ( ; ) = ( ).f x f x x f x x f x   

Now, let 
*x  be a solution to problem (1). Assume that there 

exists x Q  such that 
* * *( ; ) < ( )f x x f x . Consider the 

functions  

* *( ) = ( ( )), =1; .i if x x x i m  + −  

Note that for all i , 1 i m  , we have  

* * * *

1

( ) ( ), < ( ) = ( ).maxi i i
i m

f x f x x x f x f x
 

+  −   

Therefore, either 
* *(0) ( ) < ( )i if x f x   or  

* * *(0) = ( ); (0) = ( ), < 0.i i i if x f x x x   −   

Thus, for   small enough we have  

( )( )* * *= ( ) < ( ), =1; .i if x x x f x i m  + −   

That is a contradiction.   

Corollary 2.1 Let 
*x  be a minimum of a max-type 

function ( )f x  on the set Q. If f   
1 ( )n
 , then for all 

x Q , we have   

* * 2( ) ( ) .
2

f x f x x x


 + −  

Proof.  Indeed, in view of Lemma 2.1 and Theorem 2.1, 

for any x Q  we have  

* * 2( ) ( ; )
2

f x f x x x x


 + −  

        * * * 2( ; )
2

f x x x x


 + −  

        * * 2= ( ) .
2

f x x x


+ −  

Theorem 2.3 Let max-type function ( )f x  belong to 

1 ( )n
  with 0   and Q be a closed convex set. Then 

there exists an optimal solution 
*x  to the problem (1). If 

> 0 , then the solution is unique.   

Proof.  Let x Q . Then, for any x Q  we have  

2( ) ( ) ( ) ( ), .
2

i i if x f x f x f x x x x x


  +  −  + −  

Thus, f  is coercive. Since f  is continuous and coercive, 

and Q  is a closed set, f  has at least one minimizer 
*x . 

Furthermore, if > 0  and if 
*
1x  is another solution to a 

problem (1), then  

* * * * * * 2
1 1 1( ) = ( ) ( ; )

2
f x f x f x x x x


 + −  

                       
* * * 2

1( ) .
2

f x x x


 + −  

This implies that 
* *
1 =x x  or the minimizer is unique. 
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3. Gradient mapping 

Let us fix some   and 
nx  . We assume that ( )f x  

is a max-type function and denote  

2( ; ) = ( ; )
2

f x x f x x x x


+ −  

Definition 3.1 Let f  be a max-type function. We define  

*( ; ) = ( ; ),min
x Q

f x f x x


 

( ; ) = arg ( ; ),minf
x Q

x x f x x


 

( ; ) = ( ( ; )).f fg x x x x  −  

We call ( ; )fg x   the gradient mapping of max-type 

function f  on Q .  

Note that x  does not necessarily belong to Q . 

Furthermore, it is clear that ( ; )f x x  is a max-type 

function composed by the components  

2 1,1
,( ) ( ), ( ), = 1; .

2

n
i if x f x x x x x i m 


+  −  + −   

Therefore, in view of Theorem 2.2, the gradient 

mapping is well defined. 

Theorem 3.1 Let 
1,1

, ( )n
Lf  . Then, for all x Q , 

we have   

* * 21
( ; ) ( ; ) ( ; ), ( ; ) .

2
f ff x x f x g x x x g x  


 +  −  +

 (7) 

Proof. Denote = ( ; ), = ( ; )f f f fx x x g g x  . Since 

1,1
,( ; ) ( )nf x x    and it is a max-type function, we can 

apply all results of the previous section to f . In view of 

Theorem 2.1 and Corollary 2.1 we have  

2( ; ) = ( ; )
2

f x x f x x x x


− −  

            ( ) ( )2 2;
2

f ff x x x x x x


 + − − −  

            
*( ; ) ,2

2
f ff x x x x x x


 +  − − −   

            
*= ( ; ) ,2( )

2
f ff x x x x x x x


 +  − − + −   

            
* 21

= ( ; ) , .
2

f ff x g x x g


+  −  +  

Corollary 3.1 Let 
1,1

, ( )n
Lf   và L  . Then: 

1. For any x Q  and 
nx   we have   

    ( ) ( ( ; )) ( ; ),f ff x f x x g x x x  +  −   

            
2 21

( ; ) .
2 2

fg x x x





+ + −  (8) 

2. If x Q   then  

     
21

( ( ; )) ( ) ( ; ) .
2

f ff x x f x g x 


 −     (9)  

3. For any 
nx   we have  

* 2 * 21
( ; ); ( ; ) .

2 2
f fg x x x g x x x


 


 −   + −  

 (10) 

Proof. We assume L  . Then, 

*( ; ) ( ( ; ))ff x f x x  . Since  

2( ) ( ; ) ,
2

nf x f x x x x x


 + −    

and in view of Theorem 3.1, we obtain (8). From (8), 

choose =x x , we obtain (9). Furthermore, from (8), 

choose 
*=x x , we obtain (10) since 

( )( ) ( )*; 0ff x x f x −  .   

Next, let us estimate the variation of ( )* ;f x   as a 

function of  .  

Lemma 3.1 For any 1 2, > 0   and 
nx  we have  

* * 22 1
2 1 1

1 2

( ; ) ( ; ) ( ; ) .
2

ff x f x g x
 

  
 

−
 +  

Proof.  Denote 1 1= ( ; ), = ( ; ), =1,2i f i fx x x g g x i  . 

In view of Theorem 3.1 we have  

2 *2
1 1( ; ) ( ; ) ,

2
f x x x x f x g x x


+ −  +  −    

       
2 22

1
1

1

2 2
g x x




+ + −  

for all x Q . In particular, for 2=x x  we obtain  

( )*
2;f x  22

2 2= ( ; )
2

f x x x x


+ −  

 
* 2 22

1 1 2 1 2
1

1
( ; ) ,

2 2
f x g x x g x x





 +  −  + + −  

 
* 2 2

1 1 1 2 2
1 2 2

1 1 1
= ( ; ) ,

2 2
f x g g g g

  
+ −   +  

 
* 2 2

1 1 1
1 2

1 1
( ; ) .

2 2
f x g g

 
 + −     

4. Proposed algorithm 

In this section, we generalize Nesterov’s algorithm to 

solve the problem (1) by introducing the sequence of { }k . 

The proposed algorithm is presented in Algorithm 4.1. 

Algorithm 4.1: Proposed algorithm 

Input: Let =0{ }k k 
 and =0{ }k k 

 be two sequences 

such that k L   and 0 k    for all k . Choose 

0
nx  , 0 , > 0.tol  Set 0 0=v x  
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1: for = 0,1,2, ,k n  do 

2: Compute (0,1)k   from equation 

      
2 = (1 ) .k k k k k k     − +  

3: Compute 
2

1 = .k k k  +      

4: Compute 1k k k k k
k

k k k

v x
y

  

  
++

=
+

    

5: Compute 1 = ( ; ).k f k kx x y +    

6: Compute  

1
1

1
= (1 ) ( ; ) .k k k k k k k k f k k

k

v v y g y     


+
+

 − + −       

7: if 1| ( ) ( ) |

| ( ) |

k k

k

f x f x
tol

f x

+ −
  then 

8: Stop algorithm   

9: end if    

10: end for 

Output: { }kx  

Theorem 4.1  Let 
1,1

, ( )n
Lf   and { },{ }k ky  be 

sequences generated by Algorithm 4. For any 
nx ,  

the pair of sequences , =0 =0{ ( )} ,{ }k k k kx  
 recursively 

defined by:  

0 1= 1, = (1 ) ,k k k   + −  

       20
0 0 0( ) = ( ) ,

2
x f x x x


 + −             (11) 

1( ) = (1 ) ( ) ( ( ; ))k k k k f k kx x f x y    +
− + 

 

2 21
( ; ) ( ; ), .

2 2

k
f k k f k k k kg y g y x y x y

L


 


+ + −  + − 


     

                                                              (12) 

Then,  

(a) the function k  has the form  

* 2( ) = ,
2

k
k k kx x v


  + −          (13) 

where  

*
0 0= ( ),f x                                  (14) 

2
* * 2

1
1

= (1 ) ( ; )
2

k
k k k f k k

k

g y


   


+
+

− −  

21
( ( ; )) ( ; )

2
k f k k f k kf x y g y

L
  

 
+ + 

 
 

( ) 2

1

1
( ; ), .

2

k k k k
k k f k k k k

k

y v g y v y
   


 +

−  
+ − + −  

 
     

                                                              (15) 

(b) the sequence { }kx  satisfies 
* ( )k kf x   for all 

.k   

(c) for all 0,k   * * *
0( ) ( )k kf x f x f  −  −

 
  

Proof. (a) Note that 0 0( ) = nx I  . Let us prove that 

( ) =k kx I   for all 0k  . Indeed, if that is true for some 

k , then  

( )1 ( ) = (1 ) ( ) = (1 )k k k k k n k k k k nx x I I        +
 − + − +   

              1 .k nI +  

This justifies the canonical form of the function ( )k x . 

Further,  

* 2
1( ) = (1 )

2

k
k k k kx x v


  +

 
− + − 

 
 

              21
( ( ; )) ( ; )

2
k f k k f k kf x y g y

L
  


+ +


 

         2( ; ),
2

k
f k k k kg y x y x y





+ −  + − 


 

By the first-order optimality condition for function 

1( )k x + , the equation 1( ) = 0k x + , looks as follows:  

( )( )(1 ) ( ) ( ; )) = 0.k k k k f k k k kx v g y x y    − − + + −

The solution of this equation is 1kv +  given in Step 6 of 

Algorithm 4.1, which is the minimum of the function 

1( ).k x +  

Finally, let us compute 
*

1k + . In view of the recursion 

rule for the sequence { ( )}k x , we have  

* 21
1 1 1= ( )

2

k
k k k k ky v y


 +

+ + ++ −  

             * 2= (1 )
2

k
k k k ky v


 

 
− + − 

 
 

             21
( ( ; )) ( ; ) .

2
k f k k f k kf x y g y

L
  

 
+ + 

 
 

From Step 6 of Algorithm 4.1, we have  

( ) ( )1
1

1
= 1 ( ; ) .k k k k k k k f k k

k

v y v y g y   


+
+

 − − − − 

Thus, ( )
22 2 21

1
1

1
= 1

2 2

k
k k k k k k

k

v y v y


 


+
+

+

− − −


 

                   2 (1 ) , ( ; )k k k k k f k kv y g y   − − −  

                   2 2( ; )k f k kg y  +


 

Therefore,  

( )
2* 2 2

1
1

1
[ 1

2
k k k k k

k

v y  


+
+

+ − −   

2 22 (1 ) , ( ; ) ( ; ) ]k k k k k f k k k f k kv y g y g y     − −  −  +
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* 2= (1 )( )
2

k
k k k ky v


 − + −    

    
21

[ ( ( ; )) ( ; ) ].
2

k f k k f k kf x y g y
L

  + +  

Note that 1 = (1 )k k k k k    + − + , we have the form of 

*
1k +  . 

(b) We prove 
* ( )n nf x   for all n . At = 0n , 

( ) ( )
20

0 0 0=
2

x f x x v


 + − , thus the statement is true for 

= 0.n  Suppose that 
* ( )n nf x   is true at = 0n k  , we 

need to prove that the inequality is still true at = 1n k + . 

We have  

*
1 (1 ) ( ) ( ( ; ))k k k k f k kf x f x y   +

 − + 
 

  
2

2 2

1

1
( ; ) ( ; )

2 2

k
f k k f k k

k

g y g y
L


 

 +


+ −


 

( ) 2

1

1
( ; ), .

2

k k k k
k k f k k k k

k

y v g y v y
   


 +

−  
+ − + −  

 
 

Using the inequality (8) with = , =k kx x x y , we have:  

( ) ( ( ; )) ( ; ),k f k k f k k k kf x f x y g y x y  +  −   

          2 21
( ; ) .

2 2
f k k k kg y x y

L


+ + −  

Therefore,  

( ) ( ) ( )*
1 1 ( ; )k k k k f k kf x f x y   +  − +  

    
2

2

1

( ; )
2 2

k k
f k k

k

g y
L

 


 +

 
+ − 
 
 

 

    
( )

1

1
( ; ),

k k k
f k k k k

k

g y v y
  


 +

−
+ −  

   
2

2

1

1
( ( ; )) ( ; )

2 2

k
f k k f k k

k

f x y g y
L


 

 +

 
 + − 

 
 

 

( ) ( )
1

1 ( ; ), .k k
k f k k k k k k

k

g y v y x y
 

 
 +

+ − − + −  

We also have 1 = ( ; )k f k kx x y + , 
2

1 =k k k  + , 

( )
1

= 0k k
k k k k

k

v y x y
 

 +

− + − . Therefore, 

  
*

1 1( )k kf x + +  +
21 1

( ; )
2 2

f k k
k

g y
L




 
− 

 
. 

Since k L  , we obtain 
*

1 1( )k kf x + + . 

(c) We have  

*
0( ) = ( ) [(1 ) ( ) ( )]min mink k k k k

n nx x

f x x f x x    
 

  − +  

                 
* *

0(1 ) ( ) ( ).k kf x x   − +  

Theorem 4.2  The Algorithm 4.1 generates a sequence 

 
=0k k

x


 such that  

   ( ) ( )
2

* * *0
0 0 ,

2
k kf x f f x f x x




 
−  − + − 

 
 

where 0 = 1  and ( )
1

=0

= 1

k

k i

i

 
−

− .  

Proof.  Since ( ) ( )
20

0 0 0=
2

x f x x x


 + −  and in view 

of Theorem 4.1, we obtain  

( ) ( )* * *
0k kf x f x f  −  −

 
 

                   ( )
2

* *0
0 0 .

2
k f x f x x




 
 − + − 

 
 

Lemma 4.1  If in Algorithm 4.1, 0 00     and 

,k kL       for all 0k  , then  

( )
2

0

4
min 1 , .

2

k

k

k

 



 

 
   

 −   
   +
  

 

Proof.  We prove that k k   for all > 0k . It is clear 

that the inequality is true for = 0.k  Now, we suppose that 

k k   for some 0k  . Then 

( )2
1 = = 1k k k k k k k k       + − +  . 

Hence, k
k

k

 


 
  . 

Therefore, 
1

=0
= (1 ) 1 .

k

k

k i
i


 



−  
 −  −
 
 

  

Further, let us prove that 0k k   . It is clear that the 

inequality is true with = 0k . Assume that the inequality is 

true for some =k m , i.e., 0 .m m    Then,  

1 0 0 1= (1 ) (1 ) .m m m k k m m k k m           + +− +  − + 

Therefore, we obtain 
2

1 0 1=k k k k    + +  for all .k  

Let 
1

=k

k

a


. Since  k  is a decreasing sequence, we 

have  

1
1

1 1

1 1
= =

k k
k k

k k k k

a a
 

   

+
+

+ +

−
− −  

               

( )
1

1 1

= k k

k k k k

 

   

+

+ +

−

+
 

              
1

1 1 1

= = .
2 2 2

k k k k k

k k k k k

    

    

+

+ + +

−
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Using 
2

1 0 1=k k k k    + + , we have  

0 1

0
1

1 1

1
= .

22 2

k

kk
k k

kk k

a a

 

 

 

+

+

+ +

−    

Thus, 
01

2
k

k
a




 +  and the lemma is proved.   

Theorem 4.3  Let the max-type function f  belong to 

1,1
, ( )n
L . If in the algorithm we take 0 00     and 

,k kL       for all 0k  , then  

*( )kf x f−

* 20
0

2
0

4
min 1 ,

2 (2 )

k

x x
k

   

  

  +  
 − −   

+   

 

Proof. Assume that the function ( )f x  is composed by 

components ( ), =1;if x i m . By Lemma 4.3, Theorem 4.2 

and the fact 
* *( ), 0if x x x −    for all 

nx , =1;i m , 

we have  

2
* * *0

0 0( ) ( )
2

i k i k i if x f f x f x x



 

−  − + − 
 

 

   
2

* * * *0
0 0 0( ) ( ) ( ),

2
k i i if x f x f x x x x x




 
 − +  −  + − 

 
 

   
2 2

* * * *0
0 0 02 ( ),

2 2

k
k ix x x x f x x x

 


 
 − + − +  −  

 
 

    
2

* * *0
0 0 0= 2 ( ) ( ),

2

k
k i ix x f x f x x x

 


+ 
 − −  − −  

 
  

    
( ) 20 *

0 .
2

k k
x x

  +
 −  

Note that in the third inequality, we have used the 

inequalities k L   and inequality (2) . Therefore,  

( ) 20* *
0( ) .

2

k k
kf x f x x

  +
−  −  

From the last inequality and Lemma 3.1, we have  

( ) *
kf x f−

( )
2

*0
02

0

4
min 1 , .

2
2

k

x x

k

   


 

 
  +    − − 
    +
  

 

5. Computing gradient mapping 

Recall, this problem of computing gradient mapping is 

as follows:  

2
0 0( , ) .min

2x Q

f x x x x




 
+ − 

 
    (16) 

Introducing the additional variables t  , we can rewrite 

this problem in the following way:                    

                   2
0

2
min t x x

 
+ − 

 
 

0 0 0( ) ( ), , =1, ,i isuch that f x f x x x t i m+  −     (17) 

             , .x Q t   

Lemma 5.1 Two problems (16) and (17) are 

equivalent. It means that if 
*x  is a solution to (16) then 

* *( ; )x t  where 
* *

0= ( ; )t f x x  is a solution to (17) and vice 

versa, if 
* *( ; )x t  is a solution to (17) then 

*x  is a solution 

to (16).  

Proof.  First, we assume that 
*x  is a solution to (16) 

and 
* *

0= ( , )t f x x . Then,  

* *
0 0 0( ) ( ), , =1;i if x f x x x t i m+  −   . 

Furthermore,  

2 * * 2
0 0 0 0( , ) ( , )

2 2
f x x x x f x x x x

 
+ −  + −   

  * * 2
0= .

2
t x x


+ −  

Hence, 
* *( , )x t  is a solution to (17). 

Next, we assume that 
* *( , )x t  is a solution to (17). 

Then, 
* *

0 0 0( ) ( ),i if x f x x x t+  −    for every =1; .i m  

Since 0( , ) = ( , ( ; ))x t x f x x  is a feasible point of (17), we 

have  

2 * * 2
0 0 0( ; )

2 2
f x x x x t x x

 
+ −  + −  

  
* * 2

0 0( ; ) .
2

f x x x x


 + −  

It points out that 
*x  is a solution to (16).   

Note that the problem (17) is a specific case of the 

following minimization problem  

( )

( ) 0

n

min f x

g x

x Q







 

            (18) 

where 1( ) = ( ( ),..., ( ))mg x g x g x and , : ,n
if g →

=1,..., .i m  

To solve this problem, we apply the exterior penalty 

function method [2]. First, we construct the penalty 

function  

 

=1

( ) = ( ( ))

m

i

i

p x g x  

where   is a continuous function on  satisfied 

( ) = 0, 0; ( ) > 0, > 0y y y y    . Such a function used in 
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our paper is 
2( ) = ( {0, })y max y . Then, the algorithm for 

the exterior penalty function method is presented in 

Algorithm 5.1. We denote this algorithm as a function 

1 1( , , , ) =Alg x tol x  , where 1 1( , , , )x tol   is the input of 

the algorithm and x  is its output. 

Algorithm 5.1 Exterior penalty function algorithm 

Input: Let tol > 0 and 1 1, > 0, > 1x Q     

1: for = 0,1,2, ,k n  do 

2:  Start with 1x , find the solution 1kx +  to the 

     problem ( ) ( )min x Q kf x p x +     

3:  If 1( ) <k kp x tol +  then stop. Otherwise, set 

    1 =k k +  

4: end for 

Output: { }kx  

For problem (17), we have 

:= ( , )x x t , 
2

0:= ( ; ) = ,
2

f f x t t x x


+ −  

0 0 0:= ( ) ( ), ,i i ig f x f x x x t+  −  −     

2
0 0 0=1

( ; ) = ( {0, ( ) ( ), })
m

i ii
p x t max f x f x x x t+  −  −  

Since the function ( ; ) ( ; )kf x t p x t+  is convex, we can 

deal with this problem by many different methods such as 

the projected gradient method, the projected Newton 

method and the projected Quasi-Newton method.  

6. Detailed proposed algorithm 

From Theorem 4.3, the proposed algorithm has the best 

convergence rate when =k L  and =k   for all k . In 

many situations, the parameters L  and   are not 

available. To overcome this situation, we propose a way to 

compute the sequence { }k  and { }k  such that they 

respectively converge (or close) to these parameters 

automatically. The detailed algorithm is presented in 

Algorithm 6. 

Algorithm 6.1 Detailed proposed algorithm 

Input: Choose 0 , > 0, > 0,nx tol eps  

    > 0; >1.Maxiter   

1: 0 = 0  

2: while 0 < eps do 

3: 0 0 0= ( ( ))y x rand size x+  

4: ( )0 0 0 0 0= ( ) ( ) *( )max i i if x f y x y  − −  

5: end while 

6:

2
0 0

0
0

( ) ( )
= max

i i
i

f x f y




 −
 

7: 0
0 2

0 0

=
x y




−
 

8: Set 0 0 0 0= , = .v x    

9: for = 0,1,2, ,k Maxiter  do 

10: Compute (0,1)k   from equation 

     
2 = (1 ) .k k k k k k     − +  

11: Compute 
2

1 = .k k k  +    

12: Compute 1= .k k k k k
k

k k k

v x
y

  

  
++

+
 

13: Compute = ( ; )k k kt f y x  and 

     1 0= (( ; ), , , )k k k kx Alg x t tol +  

14:  Compute  

1
1

1
= (1 ) ( ; ) .k k k k k k k f k k

k

v v y g y     


+
+

 − + −   

15: Compute 1 1= ( ) ( ),max ik i k i k k kf x f x x x + +
  − −   

16: if >=k eps then 

17: Compute 

2
1( ) ( )

= max
i k i k

ik
k

f x f x



+

 −
  

      and 
2

1

= k
k

k kx x




+ −
    

18: else 

19: Set =k k   and =k k   

20: end if 

21: if k k  then 

22: 1 =k k +  

23: else 

24: 1 =k k +  

25: end if 

26: if k k   then 

27: 1 = /k k  +  

28: else 

29: 1 =k k +  

30: end if 

31: if 1| ( ) ( ) |

| ( ) |

k k

k

f x f x
tol

f x

+ −
  then 

32: Stop 

33: end if 

34: end for 

Output: { }kx  

7. Numerical examples 

In this section, we apply our algorithm to find a 

numerical approximation to the solution in some specific 

examples. 
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Example 1: Let 
2 2

1 2( ) = , ( ) = ( 2)f x x f x x− . Solve the 

problem:  

 1 2( ) = max ( ), ( ) .min
x

f x f x f x


  
 

Note that the exact solution of this problem is 
* = 1.x  

Here, 
1,1

1 2,2 ( )f   and 
1,1

2 2,2 ( )f   so 
1,1
2,2 ( )f  .  

In Nesterov’s algorithm, we set 0 0= = 4,x v  

0 = 2, = 2k  for all k  and 
6= 10tol −

. In Algorithm 6.1, 

we set 
6

0 = 4, =1.3, =10 .x tol −
 After some iterations, 

two algorithms converge. Their convergence rates are 

comparable. 

 

Figure 1. The objective values, ( )kF x , in Nesterov’s algorithm 

and the proposed algorithm with respect to the number of 

iterations in Example 1 

Now, we not only broaden the dimension of vector x  

but also the number of components of function f . 

Example 2: Solve the problem:  

 1 2 3 4
4

( ) = max ( ), ( ), ( ), ( ) ,min
x

f x f x f x f x f x


    

Where 

2 2 2 2
1 1 2 3 4( ) =f x x x x x+ + + , 

2 2 2 2
2 1 2 3 4( ) = ( 2) ( 1) ( 1) ( 1)f x x x x x− + − + − + − ,

2 2 2 2
3 1 2 3 4( ) = ( 1) ( 2) ( 2) ( 1)f x x x x x− + − + − + − ,

2 2 2 2
4 1 2 3 4( ) = ( 2) ( 1) ( 1) .f x x x x x+ − + − + −  

Here, 
1,1

1 2 3 4 2,2, , , ( )f f f f   so 
1,1
2,2 ( )f  . In 

Nesterov’s algorithm, we set 0 0= = (4;4;4;4),x v

0 = 2, = 2k   for all k  and 
6= 10tol −

. In Algorithm 6.1, 

we set 
6

0 0= = (4;4;4;4), =1.3, =10 .x v tol −
 After some 

iterations, two algorithms converge and their convergence 

rates are almost the same. 

 

Figure 2. The objective values, ( )kF x , in Nesterov’s algorithm 

and the proposed algorithm with respect to the number of 

iterations in Example 2 

8. Conclusion 

In this paper, we have presented the detailed proposed 

algorithm, Algorithm 6.1, for the minimax problem and 

prove its optimal convergence rate in Theorem 4.1. Our 

algorithm is a generalization of Nesterov’s algorithm in 

[7], when step size parameters are non-constants and 

determined automatically during algorithm execution. We 

also applied the new algorithm to solve some specific 

examples and compared it with Nesterov's algorithm in 

Section 7. However, we can see in Example 2, Nesterov 

Algorithm's convergence rate is still faster than Optimal 

Algorithm. So, it raises a new question if we can update for 

parameters in Algorithm 6.1 such that it converges faster 

than Nesterov’s algorithm. It is still an open question and 

motivates us to study in the future. 
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