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Abstract - The task of performing feature extraction from input 

matrices is a well-known problem in biometric recognition. This 

paper aims to develop an effective method for reduction and 

decomposition on large matrices with low required computational 

resources and fast processing times. Our contribution is to design 

a PCA-SVD hybrid method that divides the feature extraction into 

two phases: PCA-based size reduction and SVD-based 

decomposition. In our method, PCA is first applied to a large 

matrix to extract its important components. The size of the 

reduced matrix is defined based on the characteristics of the 

original matrix and the computational capacity of the hardware 

system, which allows SVD to be applied later. As a result, our 

method can effectively handle large matrices, leading to 

significant performance improvements for biometric recognition 

applications on small computers. 

Key words - Feature extraction; biometric recognition; PCA; 

SVD; eigenvalue; Raspberry Pi. 

1. Introduction 

Principal Component Analysis (PCA) [1] and Singular 

Value Decomposition (SVD) [2] are pivotal in processing 

and analyzing biometric data, offering a balance between 

computational efficiency and recognition accuracy. 

Through dimensionality reduction and feature 

enhancement, these techniques play crucial roles in 

developing robust biometric recognition systems capable 

of operating effectively in diverse conditions. 

PCA using eigenvalue decomposition (ED) is a linear 

transformation technique that projects high-dimensional 

data onto a lower-dimensional space while preserving the 

maximum amount of variance. It works by finding the 

principal components of the data, which are the linear 

combinations of the original features that capture the most 

variation in the data. PCA can be applied to a data set 

comprising n vectors x1,…, xn ∈ Rp and in turn returns a 

new basis for Rp whose elements are terms the principal 

components. This process is often referred to as Eigenface 

in facial recognition technologies [3]. It is important that 

the method is completely data-dependent, that is, the new 

basis is only a function of the data. 

SVD, on the other hand, is a more general matrix 

factorization technique that can be used to factorize any 

matrix into three parts: A=UDVT such that D is diagonal 

and U and V are orthogonal. SVD can be used to reduce the 

dimensionality of a dataset by truncating the diagonal 

matrix D, which effectively removes the least important 

singular values and corresponding columns from the 

original data matrix 

PCA complexity involves computing the covariance 

matrix, which is O(np2), and then finding its eigenvectors, 

typically O(p3), so the total cost is O(np2+p3). SVD 

complexity is generally O(min{np2, n2p}), directly 

decomposing the original matrix without first calculating the 

covariance matrix. SVD is also preferred for its numerical 

stability and efficiency, especially when n or p is large.  

Recently, SVD has been preferred over ED, and many 

versions of PCA are based on SVD [4]. Several relevant 

studies have been presented, including various improved 

versions of SVD [5], and the integration of PCA and SVD 

[6] within a unified system for applications ranging from 

medical imaging to speech recognition and pattern 

matching. However, when the matrix A becomes large, 

performing SVD can be very time-consuming, as expected 

on small-scale systems with limited computing resources. 

It has been observed through rigorous experimentation and 

analysis that the efficiency of computational methods is 

closely linked to the nature of the input data and the 

computational capacity of the hardware used. Therefore, 

finding a universally applicable solution across different 

system architectures remains a challenge. 

This paper proposes a hybrid method of PCA and SVD 

to efficiently reduce the size of feature matrices in 

biometric recognition systems on small computers. The 

approach is divided into two steps: using PCA to subtract 

the mean samples from each row of the large feature 

matrices, and then performing SVD on the resulting 

matrices. This strategy retains the useful features for the 

matching process and significantly reduces the 

computational resources required. We rigorously 

investigate the relationship between PCA and SVD, 

analyze important parameters such as accuracy and 

running time, and experimentally demonstrate the 

optimized performance of specific systems. 

2. Related works 

2.1. Principal Component Analysis and Singular Value 

Decomposition 

We begin by formally introducing two computational 

schemes. Let X ∈ Rn×p be a data matrix of interest, consisting 

of n observations x1,…, xn ∈ Rp . In other words, each row 

corresponds to an observation. The goal of PCA is to pro ject 

this high-dimensional data from Rp onto a lower-

dimensional space Rk where k < p, where a low-dimensional 

embedding will be denoted as Y ∈ Rn×k. For the sake of 

simplicity, we will assume that p < n throughout the paper. 
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In this part, we turn our attention to detailing the two 

schemes of PCA mentioned earlier. The first scheme 

involves the use of eigendecomposition of an empirical 

covariance matrix. This approach is likely the most 

straightforward way to both understand the nature of PCA 

and implement the method using modern computing 

platforms. Note that 1n = [1, . . . , 1] ∈ Rn represents a vector 

of length n whose entries are all 1’s, and 𝑥 = ∑𝑛
𝑖=1 𝑥𝑖/𝑛 

denotes a mean vector. 

2.1.1. PCA by eigenvalue decomposition of an empirical 

covariance matrix 

The algorithmic details of this traditional PCA 

algorithm are described below.  

− Step 1: Compute an empirical covariance matrix 

𝐷 ∈ 𝑅𝑝×𝑝, 

𝐷 =
1

𝑛 − 1
(𝑋 − 1𝑛𝑥̄

𝑇)𝑇(𝑋 − 1𝑛𝑥̄
𝑇) 

− Step 2: Apply eigendecomposition to D,  

𝐷𝑉 = 𝑉𝛬    →    𝐷𝑣𝑗 = 𝜆𝑗𝑣𝑗 for 𝑗 = 1,… , 𝑝. 

The eigenvalues are ordered, i.e., λ1 ≥ … ≥ λp and we 

assume the same ordering for eigenvectors v1, …, vp. 

− Step 3: Assemble the projection matrix V1:k by taking 

the first k eigenvectors,  

𝑉1:𝑘 = [𝑣1, … , 𝑣𝑘] ∈ 𝑅𝑝×𝑘 

− Step 4: Compute the low-dimensional embedding  

𝑌 = 𝑋𝑉1:𝑘 ∈ 𝑅𝑛×𝑘 

A major drawback of this scheme is its infeasibility for 

high dimensionality when p is large. Computing the 

empirical covariance matrix becomes impractical. For 

example, in the R programming environment [7], a 

dimensionality of p = 104 results in a covariance matrix 

that consumes approximately 190 MB of memory. If p is 

increased to 5×10, the memory requirement increases to 

18.6 GB in the standard dense matrix format. These 

limitations underscore the need for an efficient and feasible 

alternative, leading to the use of SVD. 

2.1.2. PCA by SVD 

The algorithmic details of this alternative approach are 

described below.  

− Step 1: Center the data matrix, 

𝑋̄ = 𝑋 − 1𝑛𝑥̄
𝑇 

− Step 2: Apply SVD to 𝑋̄ = 𝑈𝐷𝑉𝑇 

Note that left and right singular vectors ui, vj are ordered 

according to the descending order of singular values 

σ1 ≥ ... ≥ σp, respectively. 

− Step 3: Assemble the projection matrix V1:k by taking 

the first k right singular vectors, V1:k = [v1, ... , vk] ∈ Rp×k. 

− Step 4: Compute the low-dimensional embedding 

Y = XV1:k ∈ Rn×k. 

Given that the empirical covariance of centered X is 

XTX/(n − 1), it becomes apparent that the eigenvectors of 

an empirical covariance matrix are equivalent to the right 

singular vectors of the original data matrix.  

 

2.2. Computational capacity of small computers 

Concurrent with technological advancements, Internet 

of Things (IoT) computing devices have been integrated 

extensively across various sectors, including biometric 

recognition systems. These devices are valued for their 

compactness, flexibility, and cost-effectiveness. However, 

IoT devices are often limited by their CPU capacity, RAM, 

and ability to perform Floating-point Operations Per 

Second (FLOPs), which can reduce their data processing 

capabilities for complex tasks [8]. For example, a typical 

IoT device may be equipped with a CPU operating at 

approximately 1 GHz, have between 256 MB to 512 MB 

of RAM, and be capable of performing between 1 to 10 

GFLOPs. This comparison emphasizes the importance of 

optimizing data dimensionality reduction algorithms to 

match the computational capabilities of these devices. 

Table 1. Computational capabilities of CPUs on IoT devices[8] 

CPU 
GFLOPS

/W 
GFLOPS 

Average 

Power 
Max 

Power 
Type 

Raspberry Pi 

Zero 2 W 
1.46 5.10 3.5 4.8 ARMv7 

Raspberry Pi 

4B (4GB) 
1.35 9.69 7.2 8.2 ARMv7/8 

Raspberry Pi 3 0.813 3.62 4.3 4.8 ARMv7/8 

BEagle V 0.68 5.3 8.0 9.0 RISCV64 

Dragonboar D 0.450 2.10 4.7 5.7 ARMv8 

Raspberry Pi 2 0.432 1.47 3.4 3.6 ARMv7 

Raspberry  

Pi Zero 
0.236 0.319 1.3 1.4 ARMv6 

Raspberry 

 Pi A+ 
0.223 0.218 1.0 1.0 ARMv6 

Cubieboard2 0.194 0.861 4.4 4.6 ARMv7 

Pandaboard-ES 0.163 0.951 5.8 6.5 ARMv7 

Raspberry Pi B 0.073 0.213 2.9 3.0 ARMv6 

Efficient decomposition techniques are crucial in the 

era of big data. Li [9] recorded the CPU time for various 

PCA and SVD methods when predicting labels for items 

in the test dataset at different dimensionality reduction 

rates. Figure 1 shows the time consumed by these 

methods with different dimensionality reduction rates p 

when applied to the EEG dataset [10]. The PCA methods 

required less time for classification than the SVD 

methods on large matrices. 

 

Figure 1. CPU time costs of various methods according to 

different dimensionality reduction rates [9] 
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Although there are alternative methods to SVD that 

offer enhanced computational efficiency, such as versions 

of PCA that employ QR decomposition [10] (see Figure 1), 

the implementation of SVD remains imperative in 

biometric recognition systems to ensure accuracy in 

recognition processes (as depicted in Table 2) [11].  

 

Figure 2. A comparison of CPU time from [10] 

Table 2. Performance Comparison of PCA and SVD under 

various noise conditions [11] 

Noise Conditions PCA (%) SVD (%) 

Gauss 96.75 98.5 

Salt and Pepper 63.75 64.75 

Exponential 79.00 82.50 

Weibull 67.00 73.50 

Beta 100 100 

3. PCA-SVD hybrid method 

Both PCA (using eigenvalue decomposition) and SVD 

(using matrix factorisation, which has numerous versions, 

including the PCA eigenvalue decomposition version) can 

assist in the evaluation and ranking (by matrix diagonal) of 

matrix elements according to their importance in the 

recognition process. This enables the elimination of less 

significant components, thus reducing the size of the 

feature matrix, while ensuring the retention of the most 

crucial components, thereby maintaining recognition 

accuracy. 

The proposed method for reducing the dimensionality 

of the feature vector from n to k involves two sequential 

steps. First, an improved PCA method, such as [10], is used 

to reduce the dimensionality of the feature space from n to 

k' (where k’ > k) by leveraging eigenvalue decomposition. 

Then, SVD is applied to obtain the optimal k×k feature 

matrix from the reduced k’-dimensional feature space. This 

approach effectively mitigates the exponential increase in 

FLOPs associated with SVD computations, while 

maintaining the accuracy of the recognition results. 

The advantages of our solution include: 

− The method employs PCA to reduce data dimensions 

from n to k' using an approximate eigenvvalue matrix, 

significantly conserving computational resources. 

− The eigenvectors are selected based on the convergence 

properties of descending eigenvalues to minimize error in 

determining the best components in SVD later. 

− The resulting post-PCA matrix is sparse. 

− SVD is then used to further reduce dimensions from 

k' to k, ensuring an optimal singular matrix. 

− Variants of SVD, such as truncated and randomly 

sampled, are incorporated to enhance processing speed. 

We constructed an iris recognition system using a 

combination of Curvelet transform [12] and the PCA-SVD 

hybrid method to evaluate its performance. The feature 

extraction process consists of the following main steps: 

− Normalization measures are applied to images to 

minimize errors caused by intensity differences between 

two images. This normalization is crucial due to 

discrepancies in light intensity between different images, 

which can introduce errors in direct pixel intensity 

comparisons. 

− The system employs the Fast Discrete Curvelet 

Transform (FDCT) [13] to generate Curvelet coefficient 

layers from 1 to N, which typically correspond to the 

dimensions A and B of the image. Normally, N is computed 

as 𝑁 = [log⁡(𝑚𝑖𝑛{𝐴, 𝐵}) − 3]. The (N-1) layer, also 

known as the fine scale, represents detailed iris image 

features. However, it has been empirically observed that at 

this level, the size of the feature vector is significantly large 

[13]. Therefore, for practicality, only the coefficients from 

the first layer are selected for iris feature extraction. 

− The first layer's coefficients for all images are 

normalized into row vectors, and iris features are 

established. The dimensionality of these features is then 

reduced using the PCA and the important features are 

selected using SVD. This procedure is applied to datasets 

of iris images and those requiring recognition, resulting in 

iris information representation samples. 

− The Hamming distance is used to compare the 

samples. 

4. Experimental Results and Discussion 

4.1. Recognition accuracy 

As previously explained, we select three Curvelet 

coefficient layers after applying FDCT preprocessing to 

the images. The coefficients of the first layer contain low-

frequency information, which is the primary information of 

the image. On the other hand, the coefficients of the (N-1) 

layer represent high-frequency, high-resolution 

information, containing the finer details of the image. 

Empirical evidence suggests that utilizing only the first 

layer's coefficients results in a higher recognition rate 

without significantly altering the size of the iris feature 

vector [13]. For recognition purposes, 270 iris images from 

27 individuals were selected from the CASIA IrisSyn 

dataset [14], with each individual contributing 10 images. 

A random selection of 1 to 9 iris images per individual was 

used for experimental validation. The experimental 

procedure is as follows: 

− First, feature vectors are generated from low-

frequency components and then normalized. Next, features 

are identified, and dimensionality reduction is achieved 

through the combined application of PCA and SVD. 

− We normalize the low-frequency information into 

vectors and then normalize the Curvelet coefficients of the 

second layer to create vectors. 

− We formulate a corresponding feature vector for each 

image. Finally, we perform feature extraction and 

dimensionality reduction using PCA and SVD. 

To evaluate the effectiveness of the recognition 
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process, experiments were conducted using algorithms that 

integrate Curvelet transform with PCA and Curvelet 

transform with SVD, employing the same dataset and 

methodology as described above. The experimental results 

demonstrate that iris feature extraction using our method 

yields a higher recognition rate compared to other methods. 

The same experimental process is repeated for the UBIRIS 

dataset [15]. 

Table 3. Accuracy comparison on UBIRIS and CASIA datasets 

Methods 

UBIRIS dataset CASIA dataset 

FAR 

(%) 

FRR 

(%) 

Accuracy 

(%) 

FAR 

(%) 

FRR 

(%) 

Accuracy 

(%) 

Daugman 

[16] 
8.08 8.37 91.63 6.78 7.07 92.93 

Wavelet 

[17] 
5.21 6.31 93.69 6.54 7.98 92.02 

Curvelet 

[18] 
2.21 2.27 97.73 2.01 2.09 97.81 

Proposed 

method 
1.20 1.33 98.67 1.84 2.13 97.87 

In Table 3, the experiment uses input images from two 

datasets UBIRIS and CASIA. A total of 450 input images 

were randomly selected from the UBIRIS database. Each 

subject designated for recognition is represented by 5 

input images captured under suboptimal conditions. The 

CASIA database included 300 input images, with the first 

5 images for each subject undergoing recognition. 

Preprocessing techniques were not applied to accurately 

assess recognition quality and eliminate artifacts such as 

eyelashes, eyebrows, and areas of image reflection or 

refraction. The identifiable features from the iris images 

were extracted and transformed into rectangular segments 

of 360×64 pixels, corresponding to rotational angles of 

−100°, −50°, 0°, 50°, and 100°. The registration process 

used 2 input images per subject, resulting in a total of 10 

images per subject post-processing. Each subject was left 

with 3 input images for the testing phase. The evidence 

suggests that the proposed method improves the metrics 

used to assess recognition quality. 

4.2. Running time 

The simulation process was conducted using the 

MATLAB programming language on a workstation with a 

2.66 GHz Intel Xeon quad-core CPU and 32 GB of RAM. 

Table 4 presents the average computation time for the 

feature extraction and matching process of 300 iris images. 

PCA and SVD calculations were performed using the 

Eigen library [19], which automatically selects appropriate 

decomposition techniques for the input matrix.  

The results show that the proposed method's 

computation time is equivalent to or lower than that of most 

other methods.  

Table 4. Computational time comparison 

Methods 
Extracting 

(ms) 

Matching 

(ms) 

Total time 

(ms) 

Daugman [16] 302.81 9.45 312.26 

Wavelet [17] 126.48 11.28 138.08 

Curvelet [18] 43.40 6.71 50.11 

Proposed method 27.02 5.21 32.23 

Enhancements in time efficiency for both desktop and 

Raspberry Pi 4B (CPU Cortex A72, 4GB RAM version) 

systems are presented in Table 5. The reference value 

(coefficient equal to 1) for comparison is the computation 

time for PCA on sparse matrices. 

Table 5. Time improvement on workstation and Raspberry Pi 4B 

Scenarios 

Workstation Xeon Raspberry Pi 4B 

Running 

time (s) 
Increasing 

rate 
Running 

time (s) 
Increasing 

rate 

PCA (sparse 

matrix)  
0.005 1.0 0.029 1.000 

PCA (dense 

matrix) 
0.006 1.2 0.035 1.207 

Our method 

(sparse matrix) 
0.007 1.4 0.037 1.276 

Our method 

(dense matrix) 
0.007 1.4 0.039 1.345 

SVD (sparse 

matrix) 
0.014 2.8 0.068 2.345 

SVD (dense 

matrix) 
0.015 3.0 0.068 2.345 

Our method significantly reduces the execution time 

required for dimensionality reduction, particularly when 

processing large feature spaces. 

4.3. Discussion 

It is important to note that determining the optimal 

dimensionality k' when using PCA and SVD together is 

inherently complex due to its dependence on the 

computational performance of the system. 

Table 6. Running time of SVD on Raspberry Pi 4B  

Sigular values Running time (s) 

130 0.018 

280 0.190 

394 0.514 

599 1.388 

675 2.193 

1,000 5.809 

1,200 8.771 

1,810 28.825 

1,960 35.790 

2,560 81.444 

3,887 275.080 

4,000 Out of memory 

For example, Table 6 shows that the Raspberry Pi 4B 

(4GB RAM version) can efficiently perform SVD on 

matrices with dimensions up to k'=4,000. Based on the 

experiments on the Raspberry Pi 4B, we chose k'=130 to 

balance the runtime and accuracy of the matching process. 

The value of k' can be adjusted, depending on the 

characteristics of the input data and the computational 

capacity of the system. 

5. Conclusion 

In this paper, we introduce a PCA-SVD hybrid method 

for feature matrix reduction on small computers, which is 

characterized by both computational cost and time 

efficiency. The PCA-SVD hybrid method employs two 

phases for feature matrix reduction, effectively and flexibly 
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handling large matrices. In the first phase, a PCA algorithm 

is applied to reduce the size of the original matrices so that 

they can be decomposed using SVD in the next phase with 

limited computational resources. The new PCA-SVD 

hybrid method ensures that the large matrices can be 

reduced while still preserving the important features, which 

significantly improves its performance, especially when 

applied to small-scale systems.  
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