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Abstract - Motors play a crucial role in production systems. 

However, not everything always goes smoothly, and motor 

failures are one of the common challenges in the production 

process. Misalignment of the drive shaft is a frequent motor fault 

caused by improper installation or damage to machine 

components. This study proposes the design of a monitoring and 

fault diagnosis model for DC motors, which includes: (i) a PID 

controller for motor speed control; (ii) a vibration signal 

acquisition unit; and (iii) a motor monitoring unit via Blynk and 

signal processing for fault diagnosis. In the model, motor faults 

are classified using a convolutional neural network (CNN) based 

on analog signals that have been transformed to the frequency 

domain and denoised. Experimental results demonstrate that 

classification using the convolutional neural network is highly 

accurate and stable. 

Key words - Drive shaft misalignment; PID controller; motor 
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1. Introduction 

Electric motors are crucial components in industrial 

production systems. Most motors are normally recorded to 

operate reliably and stably. However, there’s a possibility 

that they encounter unforeseen failures when working in 

harsh environments. Common motor failures include 

winding faults, rotor and stator imbalance, broken rotors, air 

gap eccentricity, and bearing faults [1-4]. These faults 

reduce the motor's operational efficiency, leading to 

increased energy consumption and potential breakdowns. In 

practice, early diagnosis of motor faults is essential to make 

appropriate maintenance decisions, in order to minimize 

potential damage. To achieve this, the operating condition of 

motors needs to be monitored regularly or even continuously 

to ensure stable and safe operation. Various sensor 

measurements are utilized for online monitoring of motor 

conditions, and the collected data is subsequently analyzed 

to identify potential motor faults [3]. 

Common measurement signals for diagnosing motor 

faults include stator voltage and current [5-6], air gap 

eccentricity and external flux density [7], rotor position and 

speed [8], temperature [9], sound [10], and vibration [11]. 

Analyzing motor vibration signals to detect faults and 

assess motor health is a method that has been adopted by 

many researchers. Vibration signal analysis is highly effective 

in identifying mechanical faults. Vibrations caused by 

asymmetries can result from the following mechanical faults: 

mechanical imbalance, bearing failures, shaft misalignment, 

and air gap deformation. Additionally, vibrations are also 

produced due to the imbalance of the magnetic field caused 

by electrical factors in the stator windings, such as voltage 

imbalances and short circuits. Since motor vibrations originate 

from mechanical, magnetic, and aerodynamic sources, motor 

fault diagnosis based on motor vibrations is highly 

appropriate. Vibration-based condition monitoring allows for 

the detection of 90% of faults or failures in machinery, as each 

component of the system/equipment has distinct vibration 

signatures that are closely related to the operating conditions 

of the machinery [12].  

With the rapid development and adoption of IoT in 

smart factories, the amount of data collected is increasing 

rapidly. Additionally, the recent groundbreaking 

advancements in artificial intelligence techniques 

contribute to the promotion of knowledge-based motor 

fault diagnosis methods. Knowledge-based approaches, 

also known as data-driven approaches, utilize large 

volumes of historical data to extract motor characteristics. 

Unlike model-based approaches, data-driven approaches 

do not require extensive information about the machine 

structure, thus enabling analysis without requiring 

significant expert knowledge [13]. Data-driven methods 

often employ statistical and probabilistic analysis, as well 

as artificial intelligence techniques, including machine 

learning and deep learning. 

In line with these trends, this study focuses on the 

detection and classification of motor faults based on artificial 

intelligence, with an emphasis on detecting shaft 

misalignment. Causes of misalignment may include 

improper installation, erosion and damage to components 

due to machine vibrations. Misalignment can lead to 

bearing failures, bent or worn-out housing, and worn 

crankshafts and couplings. Therefore, maintaining precise 

connection is crucial to ensure safe and reliable operation. 

Specifically, this research develops an experimental model 

for motor fault diagnosis. The core of this study proposes a 

method for detecting motor shaft misalignment by analyzing 

motor vibration signals using a deep learning approach. 

Experimental results demonstrate that the differences in 

vibration signals can effectively distinguish between normal 

operating motors and those experiencing faults. 

2. Design of the motor fault diagnosis model 

2.1. Experimental motor model 

Figure 1 illustrates the experimental motor model used 

in this study. The model consists of: (A) a DC motor, (B) a 

rotating shaft, (C) two bearings, (D) a weight disk mounted 
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on the shaft, (E) a coupling, (F) proximity sensors 

measuring positional deviations to capture vibration 

signals, and (H) a control and signal acquisition unit. The 

collected signals are sent to a computer via Wifi using the 

TCP/IP protocol. 

 

Figure 1. Experimental model 

(A) Motor; (B) Shaft; (C) Bearing; (D) Weight disk;  

(E) Coupling; (F) Proximity sensors; (H) Control unit 

To create a dynamic imbalance, a weight disk (D) is 

mounted on the shaft (B) between the two bearings (C). 

This weight disk has a diameter of 75 mm and a thickness 

of 25 mm. 

2.2. Methods and process for implementing the motor 

fault diagnosis model 

To simulate shaft misalignment faults at different 

speeds while monitoring the operational state, the system 

is constructed as shown in the diagram in Figure 2. It 

comprises three components: (i) a PID controller for motor 

speed control; (ii) a vibration signal acquisition unit; and 

(iii) a motor monitoring unit via Blynk, including DC 

motor fault signal processing. 

 

Figure 2. Block diagram of the fault diagnosis system  

2.2.1. PID controller 

 

Figure 3. Block diagram of PID speed control system 

The DC motor speed control model is presented in 

Figure 3. Here, 𝜏(𝑡)  is the desired speed, 𝑢(𝑡) is the output 

signal of the PID controller 𝑦(𝑡) is the motor output signal 

(actual motor speed obtained from the encoder), and 𝑒(𝑡) 

is the difference between the desired speed and the actual 

speed. The 𝑒(𝑡) signal is transmitted to the PID control unit 

to stabilize the motor speed. 

The PID controller (Proportional-Integral-Derivative) 

is a common feedback control algorithm used for DC 

motor speed control. The PID controls the output signal 

based on the comparison between the measured (actual) 

value and the target (desired) value. The signal equation 

u(t) is as follows:  

𝑢(𝑡) = 𝐾𝑝 . 𝑒(𝑡) + 𝐾𝑖 . ∫ 𝑒(𝜏). 𝑑𝜏
𝑡

0

+ 𝐾𝑑 .
𝑑𝑒(𝑡)

𝑑(𝑡)
         (1) 

Where: 𝐾𝑝 is the proportional gain, 𝐾𝑖  is the integral gain, 

and 𝐾𝑑  is the derivative gain. 

From equation (1), the transfer function can be inferred 

as follows: 

𝐺(𝑠) =
𝑢(𝑡)

𝑒(𝑡)
= 𝐾𝑝 +

𝐾𝑖

𝑠
+ 𝐾𝑑 . 𝑠                                 (2) 

To implement the PID control unit, we combine an 

Arduino Nano microcontroller with a BTS7960 motor 

driver module. The Arduino Nano serves as the central unit 

of the control system. After receiving the motor speed 

signal from the encoder, the Arduino Nano uses the 

programmed PID controller to process and adjust the motor 

speed. The PID control output is then fed into the BTS7960 

driver to control the motor speed. The connection diagram 

is shown in Figure 4. 

 

Figure 4. Motor control circuit  

2.2.2. Vibration signal collection kit 

Proximity sensors used to collect vibration signals are 

placed 20 cm away from the bearings. In the normal 

operating state, no weights are placed on the weight disk. 

However, to facilitate shaft misalignment during the 

experiment, a heavy object will be placed at positions 

1 through 8 as shown in Figure 5. 

Position 1 is parallel to the sensor, with a relative 

angular deviation of 0° between position 1 and the sensor. 

The subsequent positions are spaced 45° apart. The weight 

of the object will be varied in each specific experiment: 

Experiment 1: No additional weight is placed on the 

weight disk, corresponding to the normal operating 

condition of the motor. 

Experiment 2: A heavy object with a weight of 

m=14 g is placed on the weight disk and moved to positions 

1 through 8. 
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Figure 5. Positions of the heavy object on the weight disk 

The data from the proximity sensors (measuring 

positional deviations to capture vibration signals) will be 

sent to the Arduino Mega microcontroller. The Arduino 

Mega receives analog voltage signals (0-5V) from the 

proximity sensors, and communication between the 

Arduino Mega and Arduino Nano is facilitated via the 

ESP8266 module using UART communication. The data 

collecting circuit is shown in Figure 6. 

 

Figure 6. Vibration signal collecting circuit  

2.2.3. Motor monitoring via Blynk and proposed signal 

processing method for DC motor fault diagnosis 

The ESP8266 module enables Wifi connection and 

communication through the TCP/IP protocol, allowing for 

data transmission and reception over the Internet. The 

signals collected from the system are sent to a server for 

motor control and monitoring. All data is continuously 

transmitted to Blynk via Wi-Fi. This data is then sent to a 

computer for DC motor fault diagnosis processing. 

To diagnose DC motor faults in this study, the analog 

signals collected from the sensors are converted to the 

frequency domain using the Fast Fourier Transform (FFT). 

The data is then denoised using the Fourier K-means 

denoising method based on the paper [14]. 

The denoising process involves four main steps. First, 

each input data sample is forwardly reversed by FFT. The 

transformed signal is now a set of real numbers. Next, the 

frequency spectrum is easily calculated from the previous 

set of real numbers. Following this, from the obtained 

frequency spectrum, noise and original signal need to be 

distinguished based on their amplitudes. A threshold is 

chosen to separate two types of amplitudes representing 

featured signals and noise. In this paper, K-means clustering 

is chosen to act as this threshold to separate the frequency 

spectrum into two classes (K = 2). One class represents 

noise signals, and the other represents the original signals. 

In the final step, the featured signals (original signals) in the 

frequency domain are separated from the noise signals 

through clustering. Once the original signals are converted 

to the frequency type and denoised, the signals are further 

transformed from 1D arrays to 2D arrays (images). 

In the final step, a convolutional neural network (CNN) 

with multiple layers is proposed to perform the task of 

image classification to recognize and classify shaft 

misalignment faults. The proposed CNN model is shown 

in Figure 7. 

 

Figure 7. Proposed CNN Model 

The CNN model includes convolutional layers, pooling 

layers, and fully connected layers. In this CNN 

architecture, we use three convolutional layers. 

The convolutional layer is a crucial component in the 

CNN model, as it helps to learn local features from the 

input images. Each convolutional layer applies a set of 

filters to perform convolution operations on the input 

image. The result of the convolution operation is a feature 

map, where local features are encoded. 

In this CNN model, we use three convolutional layers 

with the following parameters: 

• Convolutional Layer 1: 16 filters, filter size 3x3, 

using ReLU activation function. 

• Convolutional Layer 2: 32 filters, filter size 3x3, 

using ReLU activation function. 

• Convolutional Layer 3: 16 filters, filter size 3x3, 

using ReLU activation function. 

 

Figure 8. Multi-layer Feedforward Neural Network 

Behind the convolutional layers, the data is passed to 

the direct transfer neural network model as shown in  

Figure 8. In this model, the densely connected layers are 

fully connected with each other. For the input signal 𝑥𝑖 and 

the weights connected to the nodes 𝑤𝑖𝑗(1 ≤ 𝑖 ≤ 𝑛; 

1 ≤ 𝑗 ≤ 𝑚), the value 𝑧𝑗 is: 

𝑧𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

                                                               (3) 

The output function of the jth neuron is given by: 

𝑦𝑗 = 𝑓(𝑧𝑗)                                                                    (4) 
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Where 𝑓(𝑧𝑗) is the ReLU activation function for the 

hidden layers, and 𝑓(𝑧𝑗) is the softmax activation function 

for the output layer of the neural network. The ReLU 

function is used to introduce non-linearity to the layers, 

while the softmax function provides a probabilistic 

classification for the output layer. 

3. Results and evaluation 

3.1. PID controller results 

The PID parameters were determined experimentally 

using the Nicole Ziegler method, resulting in 

𝐾𝑝 = 0.003; 𝐾𝑖 = 0.01; 𝐾𝑑 = 0.001. The experimental 

results are shown in Figure 9. Figure 9 illustrates the test 

results with speed increasing from 800 RPM to 1000 RPM. 

When adjusting the speed, the oscillation process is 

minimal, and the oscillation time is less than 0.5 seconds 

before the system reaches and maintains a stable state. 

 

Figure 9. Experimental results of speed increasing from 

800 RPM to 1000 RPM 

3.2. Results from data collecting kit 

The condition without an additional weight on the 

weight disk can be considered the normal operating state 

of the motor. The signal collected when the motor is 

running at a speed of 1000 RPM is shown in Figure 10. 

 

Figure 10. Vibration plot of the motor shaft without additional 

weight on the weight disk 

Clearly, even when the motor operates under normal 

conditions, there is a slight imbalance vibration on the 

motor shaft. There are several reasons for this imbalance, 

such as uneven motor shaft design or unstable motor 

bearings during rotation, leading to increased imbalance 

vibrations. 

In the case where a weight of m =  14 g is placed on 

the weight disk at positions 1 through 8, the signal collected 

when the motor is running at a speed of 1000 RPM is shown 

in Figure 11. It is evident that adding weight significantly 

increases the vibration amplitude, and the vibration 

frequency is higher compared to the normal state. 

 

 

Figure 11. Vibration Plot of the motor shaft when  

a heavy object with a weight of m=14g is placed on 

the weight disk at positions 1 to 8 

3.3. Motor monitoring via Blynk and signal processing 

for fault diagnosis 

3.3.1. Motor monitoring via Blynk 

The signals collected from the system are sent to 

the server to facilitate motor control and monitoring.  

All data is continuously transmitted to Blynk via Wifi. 

The application interface is designed to be user-friendly, 

allowing easy monitoring and control. On the Blynk 

monitoring interface, one can see the values of  

motor vibration parameters and motor speed, as shown in 

Figure 12. 

 

Figure 12. Data displayed on the Blynk Application 

3.3.2. Signal processing for fault diagnosis 

The data, after being denoised, is categorized into the 

following cases: no heavy object on the weight disk, and a 

heavy object placed at each deviation point (8 deviation 

points) with a mass of m=14 g. At each deviation point, 

measurements were taken using specialized equipment, 

resulting in 100,000 analog signals (with vibration 

amplitudes ranging from 50 to 210 mV) with a sampling 

period of 3 ms per signal. After the denoising step, the 

signals were converted into plots for each fault and non-

fault condition of the motor. These plots were then 

segmented into sections with a duration of 192 ms. Finally, 

from the segmented plot frames, we converted them into 

2D images as shown in Figure 13. The result is a dataset 

consisting of 24,000 images of faulty points (3,000 images 

for each fault point, with 1,000 fault images corresponding 

to each weight mass) and 600 images of non-fault points, 

totaling 24,600 images. 

In this proposed model, the dataset is divided into three 
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parts to facilitate the training and validation process.  

The data ratio for training is 70%, validation is 20%, and 

testing is 10%. 

 

Figure 13. Process of converting analog signal to 2D Image  

The process of converting vibration signals into 2D 

images was applied to all samples in the dataset. Figure 

14 displays the images constructed for each fault type at 

different positions of the heavy object. The labels are 

numbered from 0 to 8, corresponding to the labels in 

Table 1. 

 

Figure 14. 2D images for different types of faults 

Table 1. Explanation of the labels used in the model 

Label Description 

0 Fault at deviation point 1 

1 Fault at deviation point 2 

2 Fault at deviation point 3 

3 Fault at deviation point 4 

4 Fault at deviation point 5 

5 Fault at deviation point 6 

6 Fault at deviation point 7 

7 Fault at deviation point 8 

8 No fault 

After training and evaluating the model on the trainning 

and validation datasets with 20 epochs, the results in terms 

of the model's loss and accuracy are illustrated Figure 15. 

The final results are as follows: 

• Loss value on the training dataset: 0.12; 

• Loss value on the validation data set: 0.27; 

• Accuracy on the training dataset: 0.95; 

• Accuracy on the validation dataset: 0.92. 

 

Figure 15. Graph of model accuracy on training and validation 

datasets and loss value 

 

Figure 16. Confusion matrix on the test set  

To test the model's accuracy, we performed 

classification on the test data set. The confusion matrix 

results are shown in Figure 16, with the following metrics: 

• Accuracy (Overall accuracy): 92% 

• Precision (Accuracy for positive classes): 98% 

• Recall (Coverage for predictions of positive classes): 

98% 

• F1-score (Harmonic mean between precision and 

recall): 99%. 

The confusion matrix, shown in Figure 16, illustrates 

the number of predicted labels by the model compared to 
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the true labels. We observe that the model achieves a good 

classification accuracy rate of 92% on the test dataset. The 

most frequent misclassification occurs when the model 

predicts label 3 as label 2, with 42 instances of such errors; 

conversely, label 2 is misclassified as label 3 in 14 

instances.  

From these results, we can see that the trained model 

accuracy exceeds 90%. Although the model's accuracy is 

affected by the motor's speed, the model can still learn the 

features quite well if the training dataset is sufficiently 

large. The denoising and normalization of data during the 

preprocessing stage play a crucial role in model training, 

potentially increasing accuracy by up to 20% compared to 

unprocessed measurement data. 

4. Conclusions 

This study has presented the steps for developing a 

speed monitoring and fault diagnosis model for DC 

motors. The focus of the research is diagnosing shaft 

misalignment faults in DC motors. This diagnostic 

process is based on relatively modern AI technology. The 

model collects vibration data in the form of analog signals 

under two conditions: (i) without adding any heavy object 

to the weight disk, corresponding to normal motor 

operation, and (ii) with a heavy object of m = 14 g placed 

at different positions on the weight disk. This data is then 

transformed into frequency domain plots for each faulty 

and non-faulty condition of the motor. These plots are 

segmented into sections with an equivalent range of  

192 ms. Subsequently, from the segmented plot frames, 

they are converted into 2D images. All data is then trained 

using a convolutional neural network model. The 

imbalances corresponding to different positions are 

labeled to identify motor faults for positions 1 through 8. 

Experimental results show that the CNN-based classifiers 

achieve high accuracy. 

The study is limited by the uneven design of the motor 

shaft and the instability of motor bearings, which lead to 

increased imbalance vibrations when the motor operates at 

high speeds. 
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