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Abstract - Software fault prediction (SFP) is an important 

approach in software engineering that ensures software quality 

and reliability. Prediction of software faults helps developers 

identify faulty components in software systems. Several studies 

focus on software metrics which are input into machine learning 

models to predict faulty components. However, such studies may 

not capture the semantic and structural information of software 

that is necessary for building fault prediction models with better 

performance. Therefore, this paper discusses the effectiveness of 

deep learning models including Deep Belief Networks (DBN), 

Convolutional Neural Networks (CNN), Recurrent Neural 

Networks (RNN), and Long-Short Term Memory (LSTM) that 

are utilized to construct fault prediction models based on the 

contextual information. The experiment, which has been 

conducted on seven Apache datasets, with Precision, Recall, and 

F1-score are performance metrics. The comparison results show 

that LSTM and RNN are potential techniques for building highly 

accurate fault prediction models. 
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1. Introduction 

Software testing is an essential task but a costly action 

in the software development life cycle. Many reports have 

shown that software products contain a high number of 

faults occurring during the testing phase and even post-

deployment of the software system. According to a report 

by Consortium for Information & Software Quality (CISQ) 

[1] published in 2021, identifying and fixing bugs account 

for 50% of the total expenses of software system 

development. Therefore, many software fault prediction 

(SFP) techniques have been proposed to correctly predict 

software faults in the early stage of the software life cycle. 

The software fault prediction process intends to identify 

faulty software components and assist developers in 

allocating their efforts and resources more optimally 

during the software development and testing phases. In the 

traditional software fault prediction models, the historical 

version of software is utilized to train learners and then use 

these models to predict whether new modules are faulty or 

not. The historical dataset contains values of many 

software metrics (e.g., Line of Code -LOC, Depth of 

Inheritance Tree - DIT, Coupling Between Objects - CBO) 

and their labels (faulty or non-faulty). However, the SFP 

models using software metrics cannot capture the syntax 

and semantic features of source code and minimize the 

performance of predictive models [2]. To handle this issue, 

several studies have been reported to leverage deep 

learning techniques to extract semantic and syntax 

information from source code and perform fault prediction. 

A semantic Long Short-Term Memory (LSTM) framework 

was proposed by Liang et al. [3] to leverage token 

sequences extracted from the program’s Abstract Syntax 

Tree (AST) to build and perform fault prediction. They 

concluded that their proposed framework outperformed 

three other state-of-the-art fault prediction models in both 

Within-Project Fault Prediction (WPDP) and Cross-Project 

Fault Prediction (CPDP). Cai et al. [4] presented a tree-

based-embedding convolutional neural network with 

transferable hybrid feature learning (TBCNN-THFL) for 

fault prediction in CPDP. Their experimental results 

showed that their proposed method exhibited better 

performance than the current models. At present, many 

studies used various kinds of deep learning models for 

building software fault prediction models and achieved 

promising results. In this paper, we perform a comparison 

of different deep-learning models including Deep Belief 

Network (DBN), Convolutional Neural Networks (CNN), 

Recurrent Neural Network (RNN), and Long-Short Term 

Memory (LSTM) that are utilized for building software 

fault prediction models by extracting syntactic information 

from the program’s AST. Our experiment was conducted 

on seven Apache projects in WPDP. The results have 

shown that two models Long Short Term Memory and 

Recurrent Neural Network have high accuracy. 

2. Related Work 

2.1. Software Fault Prediction 

In the existing literature, numerous studies have delved 

into software fault prediction, as evidenced in [5], [6]. Fault 

prediction techniques [7], [8] typically construct models 

using software modules and their labels (faulty or non-

faulty), then employ these models to forecast whether new 

modules contain faults. Many fault prediction studies utilize 

software metrics to build machine learning classifiers. 

These metrics often include traditional static code measures 

such as Halstead metrics [9], McCabe metrics [10], CK 

features [11], MOOD features [12], and various others. 

Additionally, other information extracted from software 

projects is utilized for fault prediction purposes. In addition 

to traditional static code metrics, different machine learning 

models have been utilized as fault prediction classifiers, 

including Support Vector Machine (SVM), Naive Bayes 

(NB), Decision Tree (DT), Neural Network (NN), and 

others. Alongside these models, additional information is 

often extracted from software projects to enhance fault 

prediction accuracy. For instance, Loyola et al. [13] utilized 

developer activity data to construct dependency graphs and 

automatically generated features from these graphs for fault 

prediction. Jiang et al. [14] introduced an approach that 
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extracts characteristic vectors, bag-of-words, and metadata 

features, to construct a fault prediction model separately for 

each developer. Furthermore, recent research has also 

delved into change-level fault prediction, focusing on 

features such as change diffusion, change size, change 

purpose, etc. These features are leveraged to predict 

changes that may introduce faults [15], [16], [17]. 

In WPDP, the fault prediction model is constructed by 

using modules from the old version of a program and then 

employed to forecast the faulty modules of the new 

version. There are many traditional models have been 

utilized in prior studies to conduct WPDP. Specifically, 

Wang and Li [8] assessed the Naive Bayes fault prediction 

model across 11 datasets from the PROMISE data 

repository. Jing et al. [18] introduced the dictionary 

learning technique for fault prediction, resulting in 

enhanced WPDP performance. Tong et al. [19] applied 

stacked auto-encoders and ensemble learning to construct 

fault prediction models. Their experimental results on 

NASA datasets suggesting their approach surpassed 

traditional fault prediction classifiers. 

2.2. Deep learning and software engineering 

Software fault prediction has seen the recent 

application of various deep learning algorithms. Wang et 

al. [20] introduced an approach that utilizes a Deep Belief 

Network model to automatically learn semantic features 

using token vectors extracted from the programs’s abstract 

syntax trees. Their evaluation on 10 open-source projects 

demonstrated a superior performance compared to 

traditional techniques based on software metrics. Li et al. 

[21] applied Convolutional Neural Networks (CNN) to 

tokenized source code for fault prediction, arguing CNN’s 

superiority in capturing local patterns over DBN. They 

introduced DP-CNN, a framework combining CNN and 

traditional handcrafted features, showing improved SDP 

performance on average. Besides, Dam et al. [22] 

employed a tree-based Long Short-Term Memory (LSTM) 

model to derive semantic features from programs’ abstract 

syntax trees for fault prediction. 

In the above studies, many deep learning techniques 

have been exploited to enhance the performance of software 

fault prediction models such as CNN, DBN, LSTM, etc. 

Therefore, our paper differs from the existing approaches in 

that we perform a comparative study to examine different 

deep learning model's performance in predicting software 

faults. Particularly, we used Continuous Bag-of-Words to 

convert token vectors extracted from the Abstract Syntax 

Tree into fixed-length numerical vectors. Then, the collected 

vectors are fed to four deep learning models including Deep 

Belief Networks (DBN), Convolutional Neural Networks 

(CNN), Recurrent Neural Networks (RNN), and Long-Short 

Term Memory (LSTM) to perform fault prediction. We 

perform the comparison on these deep learning models used 

for learning hidden semantic information, while the existing 

approaches are usually based on software metrics. 

3. The approach 

Figure 1 illustrates the proposed approach. Initially, it 

retrieves a token sequence from the abstract syntax tree of 

every file in both the training and test sets. Then, this token 

sequence undergoes a transformation into a vector 

sequence, wherein each token is converted into a fixed-

length real-valued vector. The token embedding process 

utilizes a pre-trained mapping table generated with a 

CBOW model. Afterward, the vector sequences produced 

in the training set are utilized as inputs for four deep-

learning models to perform prediction. Finally, the 

performance of these models is evaluated and compared. 

3.1. Parsing source code and extracting features 

To capture the semantic information of a program, we 

utilize the state-of-the-art approach in [20] to extract token 

sequences from its source code. This involves initially 

constructing an Abstract Syntax Tree (AST) for each Java file 

in the dataset. Subsequently, we extract the following three 

types of nodes from the AST: Firstly, for method invocation 

and class instance creation nodes, we extract and annotate 

them based on their method or class names; for example, the 

method search() is extracted and recorded as search. 

Secondly, declaration nodes, including method 

declarations, type declarations, and enum declarations, are 

extracted and annotated with their respective names; 

Control-flow nodes, encompassing statements or clauses 

related to the control flow of a program (such as if 

statements, for loops, while loops, and catch clauses), are 

extracted. These nodes are annotated based on their 

statement types, e.g., an if statement is annotated as if, and 

a catch clause is annotated as catch. We exclude local 

nodes like assignment because they are confined within the 

method scope, and varying methods may assign different 

meanings to variables with identical names. The selected 

AST nodes are shown in Table 1. Finally, the token 

sequence of each Java file includes of three kinds of token. 

 

Figure 1. The proposed approach 
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Table 1. The selected AST nodes 

Node Category Node Type 

Nodes associated with 

class nodes and 

method invocations 

MethodInvocation, SuperMethodInvocation, 

ClassCreator 

Declaration nodes 

PackageDeclaration, InterfaceDeclaration, 

ClassDeclaration, ConstructorDeclaration, 
MethodDeclaration, VariableDeclaration, 

FormalParameter 

Control flow nodes 

IfStatement, ForStatement, WhileStatement, 

DoStatement, AssertStatement, BreakStatement, 

ContinueStatement, ReturnStatement, 
ThrowStatement, TryStatement, 

SynchronizedStatement, SwitchStatement, 

BlockStatement, CatchClauseParameter, TryRe 
source, CatchClause, SwitchStatementCase, 

ForControl, EnhancedForControl 

Other nodes 

BasicType, MemberReference, 

ReferenceType, SuperMemberReference, 

StatementExpression 

3.2. CBOW training 

In this study, we consider tokens within a programming 

language as analogous to words in a natural language. Thus, 

we employ the Continuous Bag-of-Words (CBOW) model 

[23] to acquire vector representations of these program tokens. 

CBOW, commonly used in natural language processing 

(NLP), facilitates the creation of distributed representations for 

words. Its methodology involves initializing word vectors with 

random real numbers, traversing the corpus, and predicting the 

distributed representation of the current word based on the 

contextual window. To effectively illustrate CBOW, it is 

crucial to introduce the concept of word to vector (word2vec). 

In NLP, while machine learning models are indispensable for 

processing natural language data, they face the challenge of 

comprehending human language directly. CBOW [24], [25] 

addresses this challenge by constructing distributed 

representations for words. Word vectors are generated during 

training, the CBOW model’s network structure consists of 

three layers: input, projection, and output. The input layer 

measures the distributed representation of context words by 

reading word vectors from the context, the projection layer 

sums these vectors, and the output layer predicts the target 

word using hierarchical softmax. All word vectors in the 

training vocabulary are initialized randomly and optimized 

alongside the model parameters using algorithms like 

stochastic gradient descent. After the CBOW pre-training, the 

mapping table between tokens and token vectors are obtained. 

In the training and test dataset, tokens are replaced by token 

vectors through the mapping table. The CBOW model is 

described as follows. 

In a given text, let's denote the t-th word as wt. We'll be 

using the fundamental CBOW model architecture to learn 

word embeddings. The model predicts the output word wt 

based on the surrounding input words within a specified 

window. For instance, with a window size of 2, the input 

words are wt−2, wt−1, wt+1, wt+2, ... The input and output 

embeddings of a word wt are denoted as 𝑥𝑡⃗⃗  ⃗ and 𝑜𝑡⃗⃗  ⃗, 
respectively. The CBOW model calculates the hidden 

representation as follows: 

ℎ⃗ =
1

2𝑐
 ∑ 𝑥 𝑡+𝑖

𝑐
𝑖=−𝑐,𝑖≠0     (1) 

Where c is the window size. The negative sampling 

[31] is used to train CBOW model maximizing the given 

objective function: 

𝑙𝑜𝑔𝜎(ℎ
𝑇
 𝑂⃗ 𝑡) + ∑ 𝑙𝑜𝑔𝜎(−ℎ⃗ 𝑇  𝑜 𝑗)𝑘

𝑗=1   (2) 

Where k indicates the size of negative sample, 

𝑜 𝑗 indicates the j-th noise word embedding and 𝜎 indicates 

the sigmoid function. 

3.3. Building deep learning models for fault prediction 

and performing comparative performance analysis 

The collected token vector sequences for each file in both 

training datasets are the input of deep learning models to 

predict fault. In this study, four different deep learning models 

are examined for performing comparative performance. We 

choose the standard architecture of each deep learning model 

as a fault prediction model. Particularly, the LSTM model 

includes a fully connected input layer, a LSTM layer, a mean-

pooling layer, and an output layer. For CNN, the architecture 

consists of an embedding layer, a convolution layer, a max-

pooling layer, a fully-connected layer, and an output layer 

working as a Logistic Regression classifier. The RNN model 

contains an input layer, a recurrent connection, a hidden state, 

and an output layer. Finally, the DBN model consists of an 

input layer, a hidden layer, and an output layer. Tensorflow 

[26] is employed to implement the fault prediction models. 

Afterward, we use the test dataset to evaluate the performance 

of four deep-learning models. 

4. Experiment 

4.1. Experimental Design 

Deep learning models have been utilized for fault 

prediction in recent years. In this study, we make an empirical 

comparison of four deep learning models when they 

performed fault prediction based on semantic features 

extracted from the program’s ASTs. We evaluate the 

performance of four deep learning models, namely DBN, 

CNN, RNN and LSTM on seven Apache datasets (Camel, 

Jedit, Log4j, Xalan, Synapse, Lucence, Xerces). During 

training process, the model optimizes its parameters to 

minimize the loss function, which quantifies the difference 

between the predicted fault probabilities and the actual ground 

truth labels. Finally, the performance the software fault 

prediction models based on above deep learning techniques is 

evaluated on a separate test set. The output of predictive 

models indicates either 0 (non-faulty) or 1 (faulty). 

4.1.1. Datasets 

In this experiment, seven Java open-source datasets with 

description details such as the name of each project, the 

release versions, the average number of files and the average 

faulty rate are presented in Table 2. Based on the version 

numbers and class names, we obtained the source code of 

each file from Github [27]. The corresponding fault 

prediction datasets include 20 static features and fault labels 

(faulty or non-faulty) come from PROMISE [28]. The 

datasets were collected from many projects that have various 

sizes (ranging from 150 to 792 files) and fault proportions (a 

minimum value of 15.7% and a maximum value of 62.49%). 

For within-projects, two versions of the same project are 

selected for the training data and the test data (e.g. using 

Camel v1.2 as the training set and Camel v1.4 as the test set). 
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Table 2. The used Apache projects 

Project Versions Avg. Files Fault Rate 

Camel 1.2, 1.4, 1.6 792 23.76 

Jedit 4.0, 4.1, 4.2 296 27.63 

Log4j 1.0, 1.1, 1.2 150 50.44 

Xalan  2.4, 2.5 780 36.53 

Synapse 1.1, 1.2 211 23.37 

Lucence 2.0, 2.2 258 54.89 

Xerces 1.2, 1.3 447 15.7 

4.1.2. Hyperparameter setting 

Optimizing hyperparameters is an important task for 

maximizing performance outcomes. Within this 

investigation, we conduct various experiments aimed at 

identifying optimal parameter configurations. The list of 

hyperparameters includes the following: 

- Epoch: epoch is a single iteration through the entire 

training dataset. We specifically explored epochs spanning 

from 50 to 500. In the case of four models, 200 epochs 

emerged as optimal, enabling effective learning from the 

data while averting overfitting. 

- Batch-size: To find the best balance between training 

stability and how efficiently our computer could use its 

memory, we experimented with batch sizes between 16 and 

64. Considering both our dataset size and memory limitations, 

a batch size of 32 emerged as the most suitable choice. 

- Drop-out: Our experimentation involves dropout ratios 

ranging from 0.2 to 0.7 in increments of 0.1. For our 

experiment, a higher dropout ratio of 0.5 is employed in four 

models, reflecting its susceptibility to overfitting due to the 

intricate temporal dependencies inherent in sequential data. 

- Learning Rate: The learning rate regulates the extent to 

which the model's weights adapt in response to the loss 

gradient. A well-tuned learning rate facilitates steady and 

effective convergence. In our findings, a learning rate of four 

models is 0.001 which demonstrates superior effectiveness. 

- Optimizer Function: The selection of optimizer plays a 

key activity in shaping the training dynamics. We opt for the 

Adam optimizer, a variant of stochastic gradient descent, for 

four models. Adam stands out for its ability to dynamically 

estimate pertinent statistics from the data, offering adaptive 

learning rate features alongside computational efficiency. 

4.1.3. Performance measures 

In this study, we choose three evaluation measures 

Precision (P), Recall (R) and F1- score (F1) to compare the 

performance of deep learning models which are utilized for 

fault prediction based on semantic features. All the above 

performance metrics are calculated by true positive (TP), 

false positive (FP), and false negative (FN). Here is a brief 

description of these metrics: 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅/(𝑃 + 𝑅) 

- True positive is the number of faulty instances 

predicted correctly as faulty instances; 

- False positive is the number of non-faulty instances is 

predicted as faulty instances; 

- False negative is the number of faulty instances that is 

predicted as non-faulty instances. 

4.2. Experimental results 

This section illustrates the experimental results on 

seven fault datasets to compare the performance of four 

deep learning models that are applied for predicting faults 

based on semantic features. For each project, the old 

version with a small-size dataset is used as the training 

data, and the new version with a large-size dataset is used 

as the test data. The versions are described as Ps -> Pt 

where Ps and Pt are defined as the source and target project, 

respectively. Table 3 shows the precision, recall and  

F1-score values for four deep learning models. The 

significant values are highlighted in bold. Overall, LSTM 

reaches F1-score values of 48.68%, 64.29%, 72.63%, 

72.65% and 46.23% on Camel, Jedit, Log4j, Xalan and 

Xerces, respectively. Additionally, the second highest  

F1-scores are indicated by RNN with values of 70.18%, 

69.42%, 48.91% and 39.29% on the Log4j, Xalan, Synapse 

and Xerces datasets. While CNN and DBN achieve the 

highest F1-score values of 71.10% and 65.61% on the 

Lucence and Synapse datasets, respectively. The above 

results show that LSTM outperforms the other models on 

4 of 7 datasets of the experiments. On average, LSTM 

achieves a F1-score value, which is 7.5% higher than the 

other ones. The combination of CBOW and LSTM aims to 

capitalize on the unique strengths of each model: LSTM's 

proficiency in contextual understanding and sequential 

modeling, complemented by CBOW's efficient embedding 

capabilities. LSTM outperforms traditional RNNs due to 

its ability to mitigate issues such as vanishing and 

exploding gradients, which hinder RNNs in capturing 

long-term dependencies [29], [30]. Moreover, CNNs excel 

in image recognition tasks, especially with high-

dimensional data, as they are adept at capturing local 

patterns. 

Table 3. Performance comparison of DBN, CNN, RNN and LSTM 

Project Version 
DBN CNN RNN LSTM 

P R F1 P R F1 P R F1 P R F1 

Camel 1.4->1.6 26.77 57.64 35.30 42.35 61.71 50.05 46.14 50.00 47.99 71.16 50.32 48.68 

Jedit 4.0->4.1 54.05 71.85 61.30 74.30 58.96 62.27 51.09 71.48 59.59 59.75 67.23 64.29 

Log4j 1.0->1.1 53.89 86.55 68.20 71.16 50.32 49.23 60.22 75.61 70.18 65.77 81.10 72.63 

Xalan  2.4->2.5 58.31 56.27 57.80 59.15 77.81 67.60 74.21 51.16 69.42 67.77 78.19 72.65 

Synapse 1.1->1.2 53.57 71.26 65.61 40.08 51.74 44.59 46.91 50.60 48.91 46.66 51.50 47.18 

Lucence 2.0->2.2 64.35 60.45 63.70 64.95 80.34 71.10 61.40 74.50 67.40 60.84 78.02 68.36 

Xerces 1.2->1.3 74.23 35.66 46.23 50.12 28.86 36.60 50.23 64.87 39.29 43.77 50.62 46.23 

Average 69.29 48.05 54.96 57.53 54.60 53.85 55.81 69.68 53.34 52.30 64.32 57.25 
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5. Conclusions 

Recently, deep learning techniques have been exploited 

to generate the syntax and semantic information that is 

important capability for constructing high accuracy 

prediction models. In this study, we conducted an empirical 

comparison of the performance of four deep learning 

models. We employed a word embedding call CBOW to 

convert token sequences into fixed-length numerical 

vectors that could be fed to deep learning models for 

performing prediction. The experiment was carried out on 

seven public datasets. From the experimental results, 

LSTM shows a better performance in precision, recall and 

F1-score compared with other deep learning models in 

fault prediction. In the future, more deep learning models 

such as Transformer and CodeBert may be employed to 

build predictive models that able to capture both semantic 

and syntactic information in source code. 
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