
ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 6B, 2024 1

A COMPARATIVE STUDY OF DEEP LEARNING TECHNIQUES IN

SOFTWARE FAULT PREDICTION

Ha Thi Minh Phuong, Dang Thi Kim Ngan, Nguyen Thanh Binh*

The University of Danang - Vietnam-Korea University of Information and Communication Technology, Vietnam

*Corresponding author: ntbinh@vku.udn.vn

(Received: May 15, 2024; Revised: June 09, 2024; Accepted: June 11, 2024)

Abstract - Software fault prediction (SFP) is an important

approach in software engineering that ensures software quality

and reliability. Prediction of software faults helps developers

identify faulty components in software systems. Several studies

focus on software metrics which are input into machine learning

models to predict faulty components. However, such studies may

not capture the semantic and structural information of software

that is necessary for building fault prediction models with better

performance. Therefore, this paper discusses the effectiveness of

deep learning models including Deep Belief Networks (DBN),

Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN), and Long-Short Term Memory (LSTM) that

are utilized to construct fault prediction models based on the

contextual information. The experiment, which has been

conducted on seven Apache datasets, with Precision, Recall, and

F1-score are performance metrics. The comparison results show

that LSTM and RNN are potential techniques for building highly

accurate fault prediction models.

Key words - Software engineering; deep learning; software fault

prediction; abstract syntax tree; software faults

1. Introduction

Software testing is an essential task but a costly action

in the software development life cycle. Many reports have

shown that software products contain a high number of

faults occurring during the testing phase and even post-

deployment of the software system. According to a report

by Consortium for Information & Software Quality (CISQ)

[1] published in 2021, identifying and fixing bugs account

for 50% of the total expenses of software system

development. Therefore, many software fault prediction

(SFP) techniques have been proposed to correctly predict

software faults in the early stage of the software life cycle.

The software fault prediction process intends to identify

faulty software components and assist developers in

allocating their efforts and resources more optimally

during the software development and testing phases. In the

traditional software fault prediction models, the historical

version of software is utilized to train learners and then use

these models to predict whether new modules are faulty or

not. The historical dataset contains values of many

software metrics (e.g., Line of Code -LOC, Depth of

Inheritance Tree - DIT, Coupling Between Objects - CBO)

and their labels (faulty or non-faulty). However, the SFP

models using software metrics cannot capture the syntax

and semantic features of source code and minimize the

performance of predictive models [2]. To handle this issue,

several studies have been reported to leverage deep

learning techniques to extract semantic and syntax

information from source code and perform fault prediction.

A semantic Long Short-Term Memory (LSTM) framework

was proposed by Liang et al. [3] to leverage token

sequences extracted from the program’s Abstract Syntax

Tree (AST) to build and perform fault prediction. They

concluded that their proposed framework outperformed

three other state-of-the-art fault prediction models in both

Within-Project Fault Prediction (WPDP) and Cross-Project

Fault Prediction (CPDP). Cai et al. [4] presented a tree-

based-embedding convolutional neural network with

transferable hybrid feature learning (TBCNN-THFL) for

fault prediction in CPDP. Their experimental results

showed that their proposed method exhibited better

performance than the current models. At present, many

studies used various kinds of deep learning models for

building software fault prediction models and achieved

promising results. In this paper, we perform a comparison

of different deep-learning models including Deep Belief

Network (DBN), Convolutional Neural Networks (CNN),

Recurrent Neural Network (RNN), and Long-Short Term

Memory (LSTM) that are utilized for building software

fault prediction models by extracting syntactic information

from the program’s AST. Our experiment was conducted

on seven Apache projects in WPDP. The results have

shown that two models Long Short Term Memory and

Recurrent Neural Network have high accuracy.

2. Related Work

2.1. Software Fault Prediction

In the existing literature, numerous studies have delved

into software fault prediction, as evidenced in [5], [6]. Fault

prediction techniques [7], [8] typically construct models

using software modules and their labels (faulty or non-

faulty), then employ these models to forecast whether new

modules contain faults. Many fault prediction studies utilize

software metrics to build machine learning classifiers.

These metrics often include traditional static code measures

such as Halstead metrics [9], McCabe metrics [10], CK

features [11], MOOD features [12], and various others.

Additionally, other information extracted from software

projects is utilized for fault prediction purposes. In addition

to traditional static code metrics, different machine learning

models have been utilized as fault prediction classifiers,

including Support Vector Machine (SVM), Naive Bayes

(NB), Decision Tree (DT), Neural Network (NN), and

others. Alongside these models, additional information is

often extracted from software projects to enhance fault

prediction accuracy. For instance, Loyola et al. [13] utilized

developer activity data to construct dependency graphs and

automatically generated features from these graphs for fault

prediction. Jiang et al. [14] introduced an approach that

2 Ha Thi Minh Phuong, Dang Thi Kim Ngan, Nguyen Thanh Binh

extracts characteristic vectors, bag-of-words, and metadata

features, to construct a fault prediction model separately for

each developer. Furthermore, recent research has also

delved into change-level fault prediction, focusing on

features such as change diffusion, change size, change

purpose, etc. These features are leveraged to predict

changes that may introduce faults [15], [16], [17].

In WPDP, the fault prediction model is constructed by

using modules from the old version of a program and then

employed to forecast the faulty modules of the new

version. There are many traditional models have been

utilized in prior studies to conduct WPDP. Specifically,

Wang and Li [8] assessed the Naive Bayes fault prediction

model across 11 datasets from the PROMISE data

repository. Jing et al. [18] introduced the dictionary

learning technique for fault prediction, resulting in

enhanced WPDP performance. Tong et al. [19] applied

stacked auto-encoders and ensemble learning to construct

fault prediction models. Their experimental results on

NASA datasets suggesting their approach surpassed

traditional fault prediction classifiers.

2.2. Deep learning and software engineering

Software fault prediction has seen the recent

application of various deep learning algorithms. Wang et

al. [20] introduced an approach that utilizes a Deep Belief

Network model to automatically learn semantic features

using token vectors extracted from the programs’s abstract

syntax trees. Their evaluation on 10 open-source projects

demonstrated a superior performance compared to

traditional techniques based on software metrics. Li et al.

[21] applied Convolutional Neural Networks (CNN) to

tokenized source code for fault prediction, arguing CNN’s

superiority in capturing local patterns over DBN. They

introduced DP-CNN, a framework combining CNN and

traditional handcrafted features, showing improved SDP

performance on average. Besides, Dam et al. [22]

employed a tree-based Long Short-Term Memory (LSTM)

model to derive semantic features from programs’ abstract

syntax trees for fault prediction.

In the above studies, many deep learning techniques

have been exploited to enhance the performance of software

fault prediction models such as CNN, DBN, LSTM, etc.

Therefore, our paper differs from the existing approaches in

that we perform a comparative study to examine different

deep learning model's performance in predicting software

faults. Particularly, we used Continuous Bag-of-Words to

convert token vectors extracted from the Abstract Syntax

Tree into fixed-length numerical vectors. Then, the collected

vectors are fed to four deep learning models including Deep

Belief Networks (DBN), Convolutional Neural Networks

(CNN), Recurrent Neural Networks (RNN), and Long-Short

Term Memory (LSTM) to perform fault prediction. We

perform the comparison on these deep learning models used

for learning hidden semantic information, while the existing

approaches are usually based on software metrics.

3. The approach

Figure 1 illustrates the proposed approach. Initially, it

retrieves a token sequence from the abstract syntax tree of

every file in both the training and test sets. Then, this token

sequence undergoes a transformation into a vector

sequence, wherein each token is converted into a fixed-

length real-valued vector. The token embedding process

utilizes a pre-trained mapping table generated with a

CBOW model. Afterward, the vector sequences produced

in the training set are utilized as inputs for four deep-

learning models to perform prediction. Finally, the

performance of these models is evaluated and compared.

3.1. Parsing source code and extracting features

To capture the semantic information of a program, we

utilize the state-of-the-art approach in [20] to extract token

sequences from its source code. This involves initially

constructing an Abstract Syntax Tree (AST) for each Java file

in the dataset. Subsequently, we extract the following three

types of nodes from the AST: Firstly, for method invocation

and class instance creation nodes, we extract and annotate

them based on their method or class names; for example, the

method search() is extracted and recorded as search.

Secondly, declaration nodes, including method

declarations, type declarations, and enum declarations, are

extracted and annotated with their respective names;

Control-flow nodes, encompassing statements or clauses

related to the control flow of a program (such as if

statements, for loops, while loops, and catch clauses), are

extracted. These nodes are annotated based on their

statement types, e.g., an if statement is annotated as if, and

a catch clause is annotated as catch. We exclude local

nodes like assignment because they are confined within the

method scope, and varying methods may assign different

meanings to variables with identical names. The selected

AST nodes are shown in Table 1. Finally, the token

sequence of each Java file includes of three kinds of token.

Figure 1. The proposed approach

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 6B, 2024 3

Table 1. The selected AST nodes

Node Category Node Type

Nodes associated with

class nodes and

method invocations

MethodInvocation, SuperMethodInvocation,

ClassCreator

Declaration nodes

PackageDeclaration, InterfaceDeclaration,

ClassDeclaration, ConstructorDeclaration,
MethodDeclaration, VariableDeclaration,

FormalParameter

Control flow nodes

IfStatement, ForStatement, WhileStatement,

DoStatement, AssertStatement, BreakStatement,

ContinueStatement, ReturnStatement,
ThrowStatement, TryStatement,

SynchronizedStatement, SwitchStatement,

BlockStatement, CatchClauseParameter, TryRe
source, CatchClause, SwitchStatementCase,

ForControl, EnhancedForControl

Other nodes

BasicType, MemberReference,

ReferenceType, SuperMemberReference,

StatementExpression

3.2. CBOW training

In this study, we consider tokens within a programming

language as analogous to words in a natural language. Thus,

we employ the Continuous Bag-of-Words (CBOW) model

[23] to acquire vector representations of these program tokens.

CBOW, commonly used in natural language processing

(NLP), facilitates the creation of distributed representations for

words. Its methodology involves initializing word vectors with

random real numbers, traversing the corpus, and predicting the

distributed representation of the current word based on the

contextual window. To effectively illustrate CBOW, it is

crucial to introduce the concept of word to vector (word2vec).

In NLP, while machine learning models are indispensable for

processing natural language data, they face the challenge of

comprehending human language directly. CBOW [24], [25]

addresses this challenge by constructing distributed

representations for words. Word vectors are generated during

training, the CBOW model’s network structure consists of

three layers: input, projection, and output. The input layer

measures the distributed representation of context words by

reading word vectors from the context, the projection layer

sums these vectors, and the output layer predicts the target

word using hierarchical softmax. All word vectors in the

training vocabulary are initialized randomly and optimized

alongside the model parameters using algorithms like

stochastic gradient descent. After the CBOW pre-training, the

mapping table between tokens and token vectors are obtained.

In the training and test dataset, tokens are replaced by token

vectors through the mapping table. The CBOW model is

described as follows.

In a given text, let's denote the t-th word as wt. We'll be

using the fundamental CBOW model architecture to learn

word embeddings. The model predicts the output word wt

based on the surrounding input words within a specified

window. For instance, with a window size of 2, the input

words are wt−2, wt−1, wt+1, wt+2, ... The input and output

embeddings of a word wt are denoted as 𝑥𝑡⃗⃗ ⃗ and 𝑜𝑡⃗⃗ ⃗,
respectively. The CBOW model calculates the hidden

representation as follows:

ℎ⃗ =
1

2𝑐
 ∑ 𝑥 𝑡+𝑖

𝑐
𝑖=−𝑐,𝑖≠0 (1)

Where c is the window size. The negative sampling

[31] is used to train CBOW model maximizing the given

objective function:

𝑙𝑜𝑔𝜎(ℎ
𝑇
 𝑂⃗ 𝑡) + ∑ 𝑙𝑜𝑔𝜎(−ℎ⃗ 𝑇 𝑜 𝑗)𝑘

𝑗=1 (2)

Where k indicates the size of negative sample,

𝑜 𝑗 indicates the j-th noise word embedding and 𝜎 indicates

the sigmoid function.

3.3. Building deep learning models for fault prediction

and performing comparative performance analysis

The collected token vector sequences for each file in both

training datasets are the input of deep learning models to

predict fault. In this study, four different deep learning models

are examined for performing comparative performance. We

choose the standard architecture of each deep learning model

as a fault prediction model. Particularly, the LSTM model

includes a fully connected input layer, a LSTM layer, a mean-

pooling layer, and an output layer. For CNN, the architecture

consists of an embedding layer, a convolution layer, a max-

pooling layer, a fully-connected layer, and an output layer

working as a Logistic Regression classifier. The RNN model

contains an input layer, a recurrent connection, a hidden state,

and an output layer. Finally, the DBN model consists of an

input layer, a hidden layer, and an output layer. Tensorflow

[26] is employed to implement the fault prediction models.

Afterward, we use the test dataset to evaluate the performance

of four deep-learning models.

4. Experiment

4.1. Experimental Design

Deep learning models have been utilized for fault

prediction in recent years. In this study, we make an empirical

comparison of four deep learning models when they

performed fault prediction based on semantic features

extracted from the program’s ASTs. We evaluate the

performance of four deep learning models, namely DBN,

CNN, RNN and LSTM on seven Apache datasets (Camel,

Jedit, Log4j, Xalan, Synapse, Lucence, Xerces). During

training process, the model optimizes its parameters to

minimize the loss function, which quantifies the difference

between the predicted fault probabilities and the actual ground

truth labels. Finally, the performance the software fault

prediction models based on above deep learning techniques is

evaluated on a separate test set. The output of predictive

models indicates either 0 (non-faulty) or 1 (faulty).

4.1.1. Datasets

In this experiment, seven Java open-source datasets with

description details such as the name of each project, the

release versions, the average number of files and the average

faulty rate are presented in Table 2. Based on the version

numbers and class names, we obtained the source code of

each file from Github [27]. The corresponding fault

prediction datasets include 20 static features and fault labels

(faulty or non-faulty) come from PROMISE [28]. The

datasets were collected from many projects that have various

sizes (ranging from 150 to 792 files) and fault proportions (a

minimum value of 15.7% and a maximum value of 62.49%).

For within-projects, two versions of the same project are

selected for the training data and the test data (e.g. using

Camel v1.2 as the training set and Camel v1.4 as the test set).

4 Ha Thi Minh Phuong, Dang Thi Kim Ngan, Nguyen Thanh Binh

Table 2. The used Apache projects

Project Versions Avg. Files Fault Rate

Camel 1.2, 1.4, 1.6 792 23.76

Jedit 4.0, 4.1, 4.2 296 27.63

Log4j 1.0, 1.1, 1.2 150 50.44

Xalan 2.4, 2.5 780 36.53

Synapse 1.1, 1.2 211 23.37

Lucence 2.0, 2.2 258 54.89

Xerces 1.2, 1.3 447 15.7

4.1.2. Hyperparameter setting

Optimizing hyperparameters is an important task for

maximizing performance outcomes. Within this

investigation, we conduct various experiments aimed at

identifying optimal parameter configurations. The list of

hyperparameters includes the following:

- Epoch: epoch is a single iteration through the entire

training dataset. We specifically explored epochs spanning

from 50 to 500. In the case of four models, 200 epochs

emerged as optimal, enabling effective learning from the

data while averting overfitting.

- Batch-size: To find the best balance between training

stability and how efficiently our computer could use its

memory, we experimented with batch sizes between 16 and

64. Considering both our dataset size and memory limitations,

a batch size of 32 emerged as the most suitable choice.

- Drop-out: Our experimentation involves dropout ratios

ranging from 0.2 to 0.7 in increments of 0.1. For our

experiment, a higher dropout ratio of 0.5 is employed in four

models, reflecting its susceptibility to overfitting due to the

intricate temporal dependencies inherent in sequential data.

- Learning Rate: The learning rate regulates the extent to

which the model's weights adapt in response to the loss

gradient. A well-tuned learning rate facilitates steady and

effective convergence. In our findings, a learning rate of four

models is 0.001 which demonstrates superior effectiveness.

- Optimizer Function: The selection of optimizer plays a

key activity in shaping the training dynamics. We opt for the

Adam optimizer, a variant of stochastic gradient descent, for

four models. Adam stands out for its ability to dynamically

estimate pertinent statistics from the data, offering adaptive

learning rate features alongside computational efficiency.

4.1.3. Performance measures

In this study, we choose three evaluation measures

Precision (P), Recall (R) and F1- score (F1) to compare the

performance of deep learning models which are utilized for

fault prediction based on semantic features. All the above

performance metrics are calculated by true positive (TP),

false positive (FP), and false negative (FN). Here is a brief

description of these metrics:

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅/(𝑃 + 𝑅)

- True positive is the number of faulty instances

predicted correctly as faulty instances;

- False positive is the number of non-faulty instances is

predicted as faulty instances;

- False negative is the number of faulty instances that is

predicted as non-faulty instances.

4.2. Experimental results

This section illustrates the experimental results on

seven fault datasets to compare the performance of four

deep learning models that are applied for predicting faults

based on semantic features. For each project, the old

version with a small-size dataset is used as the training

data, and the new version with a large-size dataset is used

as the test data. The versions are described as Ps -> Pt

where Ps and Pt are defined as the source and target project,

respectively. Table 3 shows the precision, recall and

F1-score values for four deep learning models. The

significant values are highlighted in bold. Overall, LSTM

reaches F1-score values of 48.68%, 64.29%, 72.63%,

72.65% and 46.23% on Camel, Jedit, Log4j, Xalan and

Xerces, respectively. Additionally, the second highest

F1-scores are indicated by RNN with values of 70.18%,

69.42%, 48.91% and 39.29% on the Log4j, Xalan, Synapse

and Xerces datasets. While CNN and DBN achieve the

highest F1-score values of 71.10% and 65.61% on the

Lucence and Synapse datasets, respectively. The above

results show that LSTM outperforms the other models on

4 of 7 datasets of the experiments. On average, LSTM

achieves a F1-score value, which is 7.5% higher than the

other ones. The combination of CBOW and LSTM aims to

capitalize on the unique strengths of each model: LSTM's

proficiency in contextual understanding and sequential

modeling, complemented by CBOW's efficient embedding

capabilities. LSTM outperforms traditional RNNs due to

its ability to mitigate issues such as vanishing and

exploding gradients, which hinder RNNs in capturing

long-term dependencies [29], [30]. Moreover, CNNs excel

in image recognition tasks, especially with high-

dimensional data, as they are adept at capturing local

patterns.

Table 3. Performance comparison of DBN, CNN, RNN and LSTM

Project Version
DBN CNN RNN LSTM

P R F1 P R F1 P R F1 P R F1

Camel 1.4->1.6 26.77 57.64 35.30 42.35 61.71 50.05 46.14 50.00 47.99 71.16 50.32 48.68

Jedit 4.0->4.1 54.05 71.85 61.30 74.30 58.96 62.27 51.09 71.48 59.59 59.75 67.23 64.29

Log4j 1.0->1.1 53.89 86.55 68.20 71.16 50.32 49.23 60.22 75.61 70.18 65.77 81.10 72.63

Xalan 2.4->2.5 58.31 56.27 57.80 59.15 77.81 67.60 74.21 51.16 69.42 67.77 78.19 72.65

Synapse 1.1->1.2 53.57 71.26 65.61 40.08 51.74 44.59 46.91 50.60 48.91 46.66 51.50 47.18

Lucence 2.0->2.2 64.35 60.45 63.70 64.95 80.34 71.10 61.40 74.50 67.40 60.84 78.02 68.36

Xerces 1.2->1.3 74.23 35.66 46.23 50.12 28.86 36.60 50.23 64.87 39.29 43.77 50.62 46.23

Average 69.29 48.05 54.96 57.53 54.60 53.85 55.81 69.68 53.34 52.30 64.32 57.25

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 6B, 2024 5

5. Conclusions

Recently, deep learning techniques have been exploited

to generate the syntax and semantic information that is

important capability for constructing high accuracy

prediction models. In this study, we conducted an empirical

comparison of the performance of four deep learning

models. We employed a word embedding call CBOW to

convert token sequences into fixed-length numerical

vectors that could be fed to deep learning models for

performing prediction. The experiment was carried out on

seven public datasets. From the experimental results,

LSTM shows a better performance in precision, recall and

F1-score compared with other deep learning models in

fault prediction. In the future, more deep learning models

such as Transformer and CodeBert may be employed to

build predictive models that able to capture both semantic

and syntactic information in source code.

Acknowledgments: This research is funded by Funds for

Science and Technology Development of the University of

Danang under project number B2022-DN07-02.

REFERENCES

[1] H. Krasner, “The Cost of Poor Software Quality in the US: A 2020

Report”, Consortium for Information & Software Quality, January
2021.

[2] X. Zhou and L. Lu, “Fault prediction via lstm based on sequence and

tree structure”, in 2020 IEEE 20th International Conference on

Software Quality, Reliability and Security (QRS). IEEE, 2020, pp.

366–373.

[3] H. Liang, Y. Yu, L. Jiang, and Z. Xie, “Seml: A semantic lstm model

for software fault prediction”, IEEE Access, vol. 7, pp. 83 812–83
824, 2019.

[4] Z. Cai, L. Lu, and S. Qiu, “An abstract syntax tree encoding method

for cross-project fault prediction”, IEEE Access, vol. 7, pp. 170 844–

170 853, 2019.

[5] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software

fault prediction”, IET Software, vol. 12, no. 3, pp. 161–175, 2018.

[6] J. Nam, S. J. Pan, and S. Kim, “Transfer fault learning”, in 2013 35th

International Conference on Software Engineering (ICSE). IEEE,

2013, pp. 382–391.

[7] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, “Using

the support vector machine as a classification method for software

fault prediction with static code metrics”, in Engineering

Applications of Neural Networks: 11th International Conference,

EANN 2009, London, UK, August 27-29, 2009. Proceedings 11.
Springer, 2009, pp. 223–234.

[8] T. Wang and W.-h. Li, “Naive Bayes software fault prediction

model”, in 2010 International conference on computational

intelligence and software engineering. Ieee, 2010, pp. 1–4.

[9] M. H. Halstead, Elements of Software Science (Operating and

programming systems series). Elsevier Science Inc., 1977.

[10] T. J. McCabe, “A complexity measure”, IEEE Transactions on

Software Engineering, no. 4, pp. 308–320, 1976.

[11] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object-

oriented design”, IEEE Transactions on Software Engineering, vol.

20, no. 6, pp. 476–493, 1994.

[12] R. Harrison, S. J. Counsell, and R. V. Nithi, “An evaluation of the

mood set of object-oriented software metrics”, IEEE Transactions
on Software Engineering, vol. 24, no. 6, pp. 491–496, 1998.

[13] P. Loyola and Y. Matsuo, “Learning feature representations from

change dependency graphs for fault prediction”, in 2017 IEEE 28th

International Symposium on Software Reliability Engineering

(ISSRE). IEEE, 2017, pp. 361–372.

[14] T. Jiang, L. Tan, and S. Kim, “Personalized fault prediction”, in

2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Ieee, 2013, pp. 279–289.

[15] J. Liu, Y. Zhou, Y. Yang, H. Lu, and B. Xu, “Code churn: A

neglected metric in effort-aware just-in-time fault prediction”, in

2017 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM). IEEE, 2017, pp. 11–19.

[16] X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, “Multi: Multi-objective

effortaware just-in-time software fault prediction”, Information and
Software Technology, vol. 93, pp. 1–13, 2018.

[17] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-

time fault prediction”, Journal of Systems and Software, vol. 150,

pp. 22–36, 2019.

[18] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionary

learning based software fault prediction”, in Proceedings of the 36th
international conference on software engineering, 2014, pp. 414–

423.

[19] H. Tong, B. Liu, and S. Wang, “Software fault prediction using

stacked denoising autoencoders and two-stage ensemble learning”,

Information and Software Technology, vol. 96, pp. 94–111, 2018.

[20] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic

features for fault prediction”, in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 297–308.

[21] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software fault prediction via

convolutional neural network”, in 2017 IEEE international

conference on software quality, reliability and security (QRS).

IEEE, 2017, pp. 318–328.

[22] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose,

“Automatic feature learning for vulnerability prediction”, arXiv
preprint arXiv:1708.02368, 2017.

[23] K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo,

“Multicategory classification by soft-max combination of binary

classifiers”, in Multiple Classifier Systems: 4th International

Workshop, MCS 2003 Guildford, UK, June 11–13, 2003
Proceedings 4. Springer, 2003, pp. 125–134.

[24] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their

compositionality”, Advances in neural information processing

systems, vol. 26, 2013.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation

of word representations in vector space”, arXiv preprint
arXiv:1301.3781, 2013.

[26] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine

Learning”, in the Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI ’16),

Savannah, GA, USA.

[27] “The Apache software foundation”, github.com. [Online].

Available: https://github.com/apache [Accessed June 03, 2024].

[28] M. Jureczko and L. Madeyski, “Towards identifying software

project clusters with regard to fault prediction”, in Proceedings of
the 6th international conference on predictive models in software

engineering, PROMISE ’10. Association for Computing Machinery,

New York, NY, USA, 2010.

[29] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction

based on gated hierarchical LSTMs”, IEEE Transactions on
Reliability, vol. 70, pp. 711–727, 2021.

[30] T. Y. Yu, C. Y. Huang, and N. C. Fang, “Use of Deep Learning

Model with Attention Mechanism for Software Fault Prediction,” in

Proceedings of 8th International Conference on Dependable

Systems and Their Applications (DSA), China, 2021, pp. 161-171.

[31] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed Representations of Words and Phrases and Their
Compositionality”, in Proceedings of the 26th International

Conference on Neural Information Processing Systems, 2013, pp.
3111–3119.

