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Abstract - This study presents a novel neural network (NN) 

framework for developing force fields specific to graphene 

monolayers, utilizing data obtained from first-principles 

calculations. The authors analyze three primary force 

components, force magnitude and the cosines of two angles 

across different configurations of surrounding carbon atoms. 

Initially, the NN applied to the three nearest neighbors, achieving 

average absolute testing errors of 0.375 eV/Å, 0.092, and 0.085 

for the respective components. Then, expanding the input 

variables to nine surrounding atoms, which significantly 

enhances the precision of the force field models, reducing the 

error in force magnitude to approximately 1%. This improvement 

represents a 33% to 59% increase in accuracy over the initial 

method. The results demonstrate the potential of NNs to generate 

highly accurate force fields for graphene. 

 Tóm tắt - Nghiên cứu này giới thiệu một mô hình mạng nơ-ron 

(NN) mới để phát triển trường lực được thiết kế cho các lớp đơn 

graphene, sử dụng dữ liệu được tính toán từ nguyên lý thứ nhất. 

Ba thành phần lực chính được phân tích gồm: độ lớn của lực và 

cosin của hai góc được đo trên các cấu hình khác nhau của các 

nguyên tử carbon xung quanh. Ban đầu, áp dụng NN cho ba 

nguyên tử lân cận gần nhất, với các sai số kiểm tra tuyệt đối trung 

bình lần lượt là 0,375 eV/Å, 0,092 và 0,085 cho các thành phần 

tương ứng. Sau đó, mở rộng các biến đầu vào bao gồm chín 

nguyên tử xung quanh, điều này đã cải thiện đáng kể độ chính xác 

của mô hình trường lực, giảm sai số độ lớn lực xuống còn khoảng 

1%. Sự cải thiện này tương đương với mức tăng độ chính xác từ 

33% đến 59% so với phương pháp ban đầu. Kết quả cho thấy, 

tiềm năng của NN trong việc tạo ra các trường lực có độ chính 

xác cao cho graphene. 
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1. Introduction 

In the past decade, significant interest has been devoted 

to study two-dimensional materials, especially graphene [1]. 

Such material continues to highly attract attention due to its 

unique thermodynamic and electronic properties. In this 

honeycomb structure, carbon atoms are linked together by 

sp2-hybridized bonds, which provide remarkable 

mechanical stability and unusually high thermal 

conductivity at the nanoscale [2, 3]. Therefore, investigating 

the thermal properties of graphene is considered an 

important and challenging task, which has been addressed 

using various experimental and theoretical approaches. In 

this study, our objective is to develop a force-field (FF) 

acting on a C atom infinite graphene monolayer by adopting 

an efficient numerical fitting strategy. 

Density Functional Theory (DFT) has been extensively 

utilized to calculate electronic structure and properties of 

materials due to its balance between accuracy and 

computational efficiency. DFT allows for the 

determination of total energies, electronic densities, and 

forces acting on atoms, which are crucial for developing 

reliable force fields. By employing DFT calculations, the 

authors can accurately capture the interactions within the 

graphene monolayer, providing a solid foundation for 

constructing precise neural network-based force fields. 

In reality, graphene is hardly found in its equilibrium 

ground state, and the force acting on each C atom is 

different from case to case, which highly depends on the 

environment of interactions with other surrounding C 

atoms. In order to clearly understand the heat spreading 

process in graphene, molecular dynamics simulations 

should be executed with a reliable FF. However, using ab 

initio FF in direct Born-Oppenheimer dynamics is too 

computationally demanding and thus unrealistic. 

Significant efforts have been made to construct FFs for 

graphene using empirical approaches, such as using 

Tersoff's valence force model to describe sp2 interactions 

[4], followed by Monte Carlo simulations to estimate 

important thermodynamic quantities such as Young's 

modulus and molar heat capacity [5]. Recently, efforts 

have been made to construct an in-plane FF for graphene 

based on first-principles calculation data [6]. In this study, 

the authors present a new approach to interpolate FFs for 

graphene by employing the neural network (NN) technique 

[7] for direct force fitting. 

As a powerful and robust tool for function fitting with 

high accuracy, for years, artificial NN has been widely 

applied to develop Potential Energy Surfaces (PES) by 

fitting electronic structure data [8, 9, 10]. The most obvious 

disadvantage of the NN method is the requirement of large 

dataset for fitting processes. Recently, there have been 

contributions to reduce the amount of required data by 

developing a function-gradient simultaneous fitting 

procedure, which is termed combined-function-derivative 
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approximation [11]. Also, the NN architecture was 

modified to allow the direct permutation of atoms of 

similar identity in a molecular system [12]. Depending 

upon the complexity of molecular systems, the algorithm 

for NN symmetry adaptation may vary. 

The graphene monolayer investigated herein is quite 

complex, and the development of a global many-body 

PES would be very computational demanding and may be 

an unrealistic task. In fact, not the total energy, but  

the force acting on each C in the graphene network is 

realized as the major concerning quantities in molecular 

dynamics simulations. Therefore, a reliable FF of 

graphene is crucial and should be considered as a priority 

task in investigating the thermal property of graphene. In 

this study, the authors employ feed-forward NNs to 

develop a direct FF for graphene monolayer. Three 

strategies of fitting with ascending NN size are presented 

in order to evaluate the influence of C atoms on the FF. 

Such approach is necessary to understand the role of force 

acting on each C atom in a graphene monolayer.  

The present result is useful for quickly and accurately 

building the PES, which play an important role in 

graphene studies. 

2. FF developing procedure 

2.1. Description of geometry representation 

In a large-scale graphene monolayer with thousands 

of C atoms, it is more beneficial to approximate the force 

acting on each individual C atom directly rather than to 

develop a full PES for the whole graphene sheet, which 

only allows indirect extractions of forces. The force 

acting on each C atom can be approximated by 

performing NN fitting, in which the internal variables 

defining relative positions of the surrounding atoms are 

used as input variables and the force components are used 

as targeted output. 

As illustrated in Figure 1, the currently-considered C 

atom has direct interactions via sp2 bonds with three 

surrounding atoms, which are denoted as C1, C2, and C3. 

For convenience of NN fitting, C1 is chosen in such a way 

that it establishes the shortest C-C bond with C0 among 

three nearest neighbor atoms, while C3 gives the longest  

C-C bond distance with C0. To describe the relative 

positions of C1, C2, and C3 with respect to C0, the authors 

employ the internal coordinate system (bond distances, 

bending and dihedral angles) as given in Table 1. 

The completeness of long-range interaction may be 

enhanced by further expanding the surrounding 

environment and extending the set of FF input 

parameters. By doing this, the authors consider the long-

range interaction effects on the center C atom, and 

supposingly add more correction terms to FF function. 

Specifically, this is done by further considering the 

relative positions of six additional C atoms, which are 

denoted as C4,..., C9 in Figure 1. In our model, C4 and C5 

have direct interactions with C1, C6 and C7 have direct 

interactions with C2, while C4 and C5 bond directly to C3. 

The internal-coordinate descriptions of those following C 

atoms are given in Table 1. 

Table 1. Internal variables (bond distances (Å) and angles (o)) 

that define the relative positions of nine surrounding C atoms 

Input variable Description Minimum Maximum 

r1 C0-C1 1.219 1.526 

r2 C0-C2 1.271 1.594 

r3 C0-C3 1.349 1.737 

r4 C1-C4 1.219 1.588 

r5 C1-C5 1.289 1.737 

r6 C2-C6 1.219 1.594 

r7 C2-C7 1.271 1.737 

r8 C3-C8 1.219 1.576 

r9 C3-C9 1.297 1.737 

Θ1 C2-C0-C1 101.799 139.372 

Θ2 C3-C0-C1 101.818 137.031 

Θ3 C4-C1-C0 101.799 139.168 

Θ4 C5-C1-C0 100.778 141.919 

Θ5 C6-C2-C0 101.799 139.372 

Θ6 C7-C2-C0 101.682 142.127 

Θ7 C8-C3-C0 100.778 142.127 

Θ8 C9-C3-C0 101.818 140.479 

Φ1 C3-C0-C1-C2 123.828 180.000 

Φ2 C4-C1-C0-C2 0.000 180.000 

Φ3 C5-C1-C0-C2 0.000 180.000 

Φ4 C6-C2-C0-C1 0.000 180.000 

Φ5 C7-C2-C0-C1 0.000 180.000 

Φ6 C8-C3-C0-C1 0.000 180.000 

Φ7 C9-C3-C0-C1 0.000 180.000 

 

Figure 1. The geometry configuration for FF construction: one 

center and nine surrounding C atoms. The force vector |𝐹⃗| is 

decomposed into three major components: force magnitude 

(|𝐹⃗|), Θ and Φ. For the uniqueness of a configuration, the order 

of (C1, C2, C3) is chosen in such a way that C0C1 is the shortest, 

while C0C3 is the longest bond 

In the conventional PES development with NN fitting, 

the output is a single quantity, which solely represents the 

total energy. In this study, the NN method is employed to 

predict the force vector |𝐹⃗| acting on a particular C atom 

instead of energy. The force vector, however, cannot be 

represented by a single quantity; in fact, it must be 

fragmented into three components which precisely reveal 

the magnitude and orientation of |𝐹⃗|: force magnitude 

(|𝐹⃗|), cosine of the bending angle between vectors |𝐹⃗| and 

C0C1 (cos(Θ)), and cosine of the dihedral angle defined by 

vectors |𝐹⃗|, C0C1, and C1C2 (denoted as cos(Φ)). A precise 
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pictorial illustration of |𝐹⃗|, cos(Θ) and cos(Φ) is presented 

in Figure 1. 

In our developing procedure, it is necessary to build a 

database which describes the orientations of atoms (inputs) 

and forces (targeted outputs) based on electronic structure 

calculations. Subsequently, the numerical NN fitting 

method is employed to fit the database and produce an 

approximate force field. 

2.2. Electronic structure calculations 

The electronic structure calculations in this study for 

force-field sampling are executed by first-principles 

calculations based on density functional theory (DFT) [13, 

14], as implemented in the Quantum Espresso package 

[15]. In particular, the Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional [16, 17] within the 

generalized gradient approximation is employed to 

calculate total energies of the graphene supercell with the 

Vanderbilt ultrasoft pseudopotential for C atoms [18, 19]. 

Structural data are obtained by performing sample Born-

Oppenheimer molecular dynamics with one restriction that 

the Brillouin zone is only represented by the  point. The 

kinetic-energy cut-off of 45 Rydberg (612 eV) is chosen 

for plane-wave expansions. 

To sample data points for fitting purposes, the authors 

perform Born-Oppenheimer molecular dynamics at 1500 

K for a graphene supercell consisting of 32 C atoms. Due 

to periodicity of the graphene sheet, in each step during the 

MD trajectory, the authors are able to extract 32 

configurations by considering each C atom as the center 

atom. In total, after nearly 5,000 MD steps, the database is 

constructed with 157,792 configurations. 

 

Figure 2. Data distributions of three force components (|𝐹⃗|, 

cos(Θ) and cos(Φ)). N represents the number of configurations 

in a particular range 

For reducing computational feasibility and attaining 

higher efficiency in NN training, it is necessary to reduce 

the database by making a random selection of 55,726 

configurations from the initial database. Hence, in most of 

the NN fits discussed below, the training set is constituted 

by 55,726 configurations, while an independent set of 

2,786 configurations is randomly chosen to construct the 

testing set for validation purposes. The ranges of three 

output components in the training set consisting of 55,726 

data points are given in Table 2. In Figure 2, the statistical 

distributions of three force components are shown. It can 

be seen clearly that forces with low magnitude (near 

equilibrium region, from 0 to 3 eV/Å) dominates. Since 

C0C1 is chosen as the shortest C-C bond around C0, |𝐹⃗| has 

a higher tendency to be opposite to the C0C1 vector. As a 

result, more values around the -180o region are obtained for 

Θ. Overall, the authors believe that a sufficient number of 

configurations has been sampled to explicitly describe 

three output components. 

Table 2. Minimum and maximum values of three output 

components 

Output components Minimum Maximum 

|𝐹⃗| (eV/Å) 0.081 14.508 

cos(Θ) -1.000 1.000 

cos(Φ) -1.000 1.000 

2.3. Neural network fitting method 

Two-layer feed-forward NNs, which can be consulted 

from Hagan et al. [7], are employed to approximate the FF 

data in this study. As mentioned earlier, such an NN 

architecture is widely utilized in constructing PES for gas-

phase molecular as well as condensed-matter systems. 

Initially, the input and target data are scaled from -1 to 1 to 

enhance the training effectiveness. For convenience, the 

authors generally denote input as p and targeted output as 

t. The scaling technique is done as following. 

𝑝 =  
2(𝑝𝑖−𝑝𝑖

𝑚𝑖𝑛)

𝑝𝑖
𝑚𝑎𝑥−𝑝𝑖

𝑚𝑖𝑛 − 1 for i = 1,…,24     (1) 

𝑡𝑖
𝑠𝑐𝑎𝑙𝑒𝑑 =  

2(𝑡𝑖−𝑡𝑖
𝑚𝑖𝑛)

𝑡𝑖
𝑚𝑎𝑥−𝑡𝑖

𝑚𝑖𝑛 − 1 for i = 1, 2, 3    (2) 

where 𝑝𝑖
𝑚𝑖𝑛 and 𝑝𝑖

𝑚𝑎𝑥  respectively represent the minimum 

and maximum values of the 𝑖𝑡ℎ input parameter, while 𝑡𝑖
𝑚𝑖𝑛 

and 𝑡𝑖
𝑚𝑎𝑥 denote the minimum and maximum values of the 

𝑖𝑡ℎ output parameter. Mathematically, this scaling 

technique is meaningful because it helps to reduce input 

and output data ranges for numerical fitting; moreover, it 

should be noticed that such a technique also makes 

physical units vanish. As can be seen from Table 1, the 

ranges of the second and third output parameters (cos(Θ)) 

and third (cos(Φ)), respectively are almost [-1; 1]. 

Therefore, the above scaling technique does not have 

significant impacts on those values; however, for 

consistency of the overall procedure, scaling is still applied 

to those two output quantities. 

Subsequently to scaling, the n scaled inputs are 

introduced into the first (input) layer and processed by the 

hidden layer, then finally m outputs in the last layer are 

produced. An illustration for the operating principle of a 

typical feed-forward NN is introduced in Figure 3. n scaled 

inputs are processed by M hidden neurons in the first layer 

to produce M intermediate values using the following 

equation: 

𝑥𝑖 = 𝑓 (∑ 𝑤1𝑖,𝑗
𝑝𝑗

𝑠𝑐𝑎𝑙𝑒𝑑 + 𝑏1𝑗

𝑛
𝑗=1 ) for i = 1,…,M 

where 𝑤1 is an M×n matrix identified as the first weight 

matrix, 𝑏1 is an M×1 column vector representing the bias 

values of the first layer, and f is the transfer function. In 

this study, the authors employ the hyperbolic tangent 

function as the transfer function in the first layer. Hornik et 
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al. [20] showed that the utilization of a sigmoid function in 

the hidden layer could make a NN an universal 

approximator for analytic functions. 

The final output quantities T are subsequently 

calculated by employing a linear function to combine all x 

values as: 

𝑇𝑙 = ∑ 𝑤2𝑘,𝑙
𝑥𝑘 + 𝑏2𝑙

𝑀
𝑘=1  for l = 1,…,m 

In the above equation, 𝑤2 is an m×M matrix, 𝑏2 is an m×1 

vector, which represent the weight and bias values of the 

second layer, respectively. In our case, T consists of three 

quantities, which represent the scaled force components 

(targeted outputs). 

 

Figure 3. The feed-forward NN model for FF fitting 

3. Results and discussions 

Traditionally, the NN output for PES fitting consists of 

one single value; however, the description for a force 

vector requires that at least three parameters get involved 

as stated in Figure 1. As a result, the fitting process in this 

study is more complicated. In fact, the authors suggest 

three strategies to obtain well-fitted FFs using the NN 

method. In the first strategy, (1) the authors only consider 

three surrounding C atoms to have impacts on the force 

acting on C0; in other words, six input variables (r1, r2, r3, 

1, 2 and 1), which fully describe the relative positions of 

(C1, C0, C3), will be taken into account. Hence, a feed-

forward NN with six input signals will be employed to 

predict three components of the force. In the second 

approach, (2) the authors consider nine surrounding C 

atoms to have impacts on the magnitude of the force acting 

on C0 (|𝐹⃗|) and cos(Θ), while the prediction of cos(Φ) is 

attributed by considering three nearest neighbors. 

Therefore, two different NNs need to be constructed: one 

NN reading all 24 input signals will be employed to fit |𝐹⃗| 

and cos(Θ), while another NN reading 6 input signals will 

be employed to predict the last output quantity, cos(Φ). In 

the last approach, (3) a highly-complex NN operating on 

24 input signals will be employed to fit the three outputs 

simultaneously. 

3.1. NN FF with six input signals 

As mentioned earlier, three components of a force 

vector (|𝐹⃗|) are predicted by considering the influence of 

only three surrounding carbon atoms. Potentially, there is 

an advantage when this strategy is used, i.e. the number of 

involving variables in the FF function will be highly 

reduced. Compared to the full utilization of nine 

surrounding C atoms (which results in a total number of  

24 input variables), in this case, only six input variables are 

introduced into the first layer of a feed forward NN. 

Because of lower numbers of input variables, the size of 

NN parameters (weight and bias values) in this case would 

be significantly smaller. As a result, the training process 

consumes less computational time. In addition, it is also 

more advantageous to extract the force from the NN 

function. 

The FF is fitted with NNs that have various numbers of 

hidden neurons (from 10 to 35 neurons). At this point, the 

root-mean-squared error (rmse) and average-absolute error 

(aae) are determined for the training and testing sets for 

statistical accuracy evaluation. As shown in Table 2, with 

only 10 neurons in the hidden layer, the testing rmse and 

aae for |𝐹⃗| of the training set are 0.480 and 0.381 eV/Å, 

respectively. Compared to the maximum of |𝐹⃗| in the 

database (14.51 eV/Å), the ratio of 𝑎𝑎𝑒/|𝐹⃗| is about 

2.63%. For convenience, the rmse and aae of three outputs 

given by six different NN FFs are summarized in Table 3. 

It can be observed that the training rmse and aae for cos(Θ) 

and cos(Φ) are relatively large compared to their maximum 

values (1.00) when the NN is constructed with 10 neurons. 

Table 3. Training (and testing) rmse and aae of  

the fitted NN FFs which process six input signals 

Number of 

neurons 
10 15 20 25 30 35 

rmse 

|𝐹⃗| 

(eV/Å) 

0.480 0.476 0.475 0.474 0.473 0.472 

(0.480) (0.471) (0.473) (0.472) (0.477) (0.470) 

cos (Θ) 
0.161 0.156 0.155 0.153 0.153 0.153 

(0.161) (0.152) (0.152) (0.151) (0.153) (0.147) 

cos (Φ) 
0.179 0.178 0.176 0.176 0.175 0.175 

(0.177) (0.161) (0.171) (0.169) (0.184) (0.167) 

aae 

|𝐹⃗| 

(eV/Å) 

0.381 0.378 0.377 0.376 0.376 0.376 

(0.381) (0.375) (0.378) (0.375) (0.380) (0.375) 

cos (Θ) 
0.104 0.100 0.099 0.097 0.097 0.096 

(0.106) (0.100) (0.098) (0.096) (0.099) (0.092) 

cos (Φ) 
0.093 0.092 0.091 0.090 0.090 0.089 

(0.093) (0.088) (0.088) (0.089) (0.093) (0.085) 

 
Figure 4. Training errors (rmse and aae) vs. number of 

hidden neurons from NN fitting with six input variables 

In Figure 4, the authors show the fitting performance of 

|𝐹⃗|, which is revealed by the rmse and aae of training and 

testing data, with respect to the number of hidden neurons. 
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As the number of hidden neurons increases from 10 to 35, 

it is statistically observed that the fitting quality of both 

training and testing sets is not significantly improved. For 

cos(Θ) and cos(Φ) fitting, it is also the case as the 

utilization of 35 hidden neurons does not result in 

significant change in the overall accuracy. Therefore, the 

authors believe that the FF is not well interpolated if only 

six input variables are considered in NN constructions. In 

other words, the physical picture of C-C interactions is not 

well described when the authors only consider the 

influence of three surrounding C atoms. Hence, NN fitting 

attains its fitting limit regardless of hidden neuron 

numbers. 

3.2. The combination of two feed-forward NNs to fit the FF 

In this approach, the authors combine two feed-forward 

NNs to represent the FF. All 24 input parameters 

describing relative positions of nine surrounding C atoms 

are used as the input layer for the first NN, which is 

employed to handle two force components (|𝐹⃗| and 

cos(Θ)). The number of hidden neurons for this NN ranges 

from 50 to 125. In the second NN to fit the last force 

component (cos(Φ)), the input layer only consists of six 

variables. For convenience, the statistical fitting errors of 

the first and second NNs are shown in Table 4. 

Table 4. Training (and testing) rmse and aae of the combination 

of two feed-forward NNs 

Number of neurons 50 75 100 125 

rmse 

|𝐹⃗| (eV/Å) 
0.206 

(0.208) 

0.200 

(0.202) 

0.195 

(0.196) 

0.193 

(0.192) 

cos(Θ) 
0.087 

(0.086) 

0.085 

(0.085) 

0.082 

(0.083) 

0.082 

(0.080) 

cos(Φ) 
0.173 

(0.174) 

0.173 

(0.163) 

0.173 

(0.182) 

0.173 

(0.171) 

aae 

|𝐹⃗| (eV/Å) 
0.162 

(0.163) 

0.156 

(0.160) 

0.153 

(0.154) 

0.151 

(0.151) 

cos(Θ) 
0.055 

(0.055) 

0.054 

(0.053) 

0.053 

(0.052) 

0.052 

(0.052) 

Number of neurons 25 30 45 50 

rmse 

cos(Φ) 

0.173 

(0.174) 

0.173 

(0.163) 

0.173 

(0.182) 

0.173 

(0.171) 

aae 
0.087 

(0.086) 

0.087 

(0.086) 

0.087 

(0.090) 

0.088 

(0.086) 

Recall that in the first approach, when the number of 

hidden neurons increases from 50 to 125, training and 

testing rmse and aae drop slowly. Compared to the rmse 

and aae in the previous stage, it can be seen that the fitting 

quality of |𝐹⃗| and cos(Θ) is improved. As shown in Table 

4, when the FF is fitted with 125 hidden neurons, the 

authors obtain the best rmse and aae for both training and 

testing sets. The third force component fitting is executed 

using NNs with 25-50 hidden neuron, and no significant 

improvements can be observed in the second NN for 

cos(Φ) prediction. Compared to the results using the first 

fitting strategy presented above, the current aae produced 

by a 30-hidden-neuron NN is improved by 3%. When the 

NN size increases to 45-50 neurons, the aae does not drop 

as expected. 

By performing such fitting trials, the authors are able to 

interpret the physical characteristics of the dihedral angle 

in the system. Even when cos(Φ) is treated separately with 

a feed-forward NN, the fitting accuracy does not 

significantly increase. Thus, the six chosen input variables 

are still not sufficient to describe the true behavior of the 

third force component. This means that it highly depends 

on the interaction environment, as will be proved in the 

third approach to fit the FF shown below. 

3.3. NN FF with 24 input signals 

In the last approaching strategy, all 24 input parameters 

which describe the relative positions of nine surrounding C 

with respect to the center C atom jointly constitute the input 

layer of the NN FF. At this stage, the number of hidden 

neurons ranges from 50 to 125. As the authors evaluate the 

training and testing errors (both rmse and aae), this approach 

possesses the most promising fitting ability because of its 

best accuracy compared to the previous NN fits. With 50 

hidden neurons, the aae in force magnitude prediction for 

the testing set is 0.164 eV/Å. Recall that when the NN FF is 

constructed with six input variables and 35 hidden neurons, 

the training aae only reaches 0.376 eV/Å, which is almost 

2.3 times larger than the current error obtained in this case. 

Also, the aae for cos(Θ) and cos(Φ) fitting are 0.055 and 

0.061, respectively. Further increasing the number of hidden 

neurons to 75 or 100 to fit the current training dataset 

(55,726 configurations), the fitting accuracy for three output 

quantities is slightly improved (see Table 5). When the 100-

hidden-neuron NN is employed, at the termination of 

training, the distribution of training errors is close to a 

Gaussian function with a domination of small training errors 

around 0 as shown in Figure 5. 

 

Figure 5. Distribution of training error when a 100-hidden-

neuron NN is employed to fit 24 input variables 

The utilization of 125 hidden neurons, however, does not 

even give any rises to the fitting accuracy. In fact, the testing 

aae for such a fit is almost similar to that of the 100-hidden-

neuron fit. It seems that the precision limit has been attained 

when a 100-hidden-neuron NN is employed to process 24 

input parameters. As seen in Figure 6, the outputs predicted 

by the 100-neuron NN FF and (real) target points of three 

force components are very close to others, which show that 

excellent accuracy has been obtained in the NN fit with  

100 hidden neurons. 
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Table 5. Training (and testing) rmse and aae of  

the fitted NN FFs which process 24 input signals 

Number of neurons 50 75 100 125 

rmse 

|𝐹⃗| (eV/Å) 
0.208 

(0.210) 

0.201 

(0.205) 

0.196 

(0.194) 

0.194 

(0.198) 

cos(Θ) 
0.085 

(0.082) 

0.081 

(0.081) 

0.080 

(0.083) 

0.080 

(0.082) 

cos(Φ) 
0.111 

(0.112) 

0.106 

(0.103) 

0.104 

(0.110) 

0.104 

(0.110) 

aae 

|𝐹⃗| (eV/Å) 
0.163 

(0.164) 

0.158 

(0.160) 

0.154 

(0.151) 

0.152 

(0.156) 

cos(Θ) 
0.055 

(0.055) 

0.052 

(0.051) 

0.052 

(0.053) 

0.052 

(0.052) 

cos(Φ) 
0.061 

(0.061) 

0.058 

(0.057) 

0.057 

(0.058) 

0.057 

(0.058) 

 

Figure 6. NN-predicted outputs and actual targets of a random 

testing set for three force components: (a) |𝐹⃗|, (b) cos(Θ),  

and (c) cos(Φ). The fit is produced by employing a  

100- hidden-neuron NN 

The authors so far believe that the third strategy is the 

most promising approach even though it is more 

computational demanding in numerical fitting. In practice, 

this NN also costs more computational efforts to extract the 

force than the first two fitting approaches; however, 

compared to direct electronic structure calculations using 

DFT, the utilization of such NN FFs in MD simulations for 

thousands of C atoms is still far more advantageous. 

A large training set (more than 142,000 configurations) 

is built from the original set of data points, and a  

75-hidden-neuron NN is employed to interpolate the new 

data. Indeed, the authors observe no significant 

improvements in the fitting accuracy. The aae for the 

testing set (consisting of nearly 8,000 configurations) for 

|𝐹⃗|, cos(Θ) and cos(Φ) are reported as 0.156 eV/Å, 0.052, 

and 0.059, respectively. Such aae of |𝐹⃗| is close to the 

corresponding aae (0.160 eV/Å) reported when 55,726 

data points are fitted using 75 hidden neurons. Therefore, 

the authors believe that further expansion of database is 

unnecessary to improve fitting accuracy. More 

importantly, the expansion of database also results in much 

higher computational cost. 

4. Summary 

In this study, the authors have developed FFs for a 

graphene monolayer using a new NN fitting strategy. The 

force-field database is obtained by selecting geometry 

configurations and forces from sample DFT calculations of 

a periodic graphene sheet. Then, a force acting on a 

particular C atom is decomposed into three major 

components: |𝐹⃗|, cos(Θ) and cos(Φ), which can be defined 

by the relative positions with the surrounding C atoms. 

The NN fitting technique is employed to approximate 

the force data with three different fitting strategies. In the 

first approach, the authors only consider the involvement 

of three nearest-neighbor C atoms in the FF, which 

consequently results in the participation of six variables in 

the first (input) NN layer. From fitting accuracy analysis, 

it is shown that the first strategy is a premature approach 

and the resultant NNs do not interpolate the FF well. When 

the authors employ a 35-hidden-neuron NN, the best 

testing aae for |𝐹⃗|, cos(Θ) and cos(Φ) are obtained as 0.375 

eV/ Å, 0.092, and 0.085, respectively. In the second 

approach, a NN reading 24 input variables is employed to 

fit |𝐹⃗| and cos(Θ), while cos(Φ) is interpolated by a 

separate six-input-parameter NN. By separating the 

targeted outputs, the authors expect that the smoothness of 

NN functions would increase, and thereby improve fitting 

accuracy significantly. However, the resultant accuracy is 

slightly improved in comparisons with the previous fitting 

strategy. 

In the last approach, 24 input parameters are 

simultaneously introduced into the NNs. Noticeably, the 

fitting accuracy is significantly improved (best aae for a 

testing set are now 0.152 eV/Å, 0.051, and 0.057). 

Compared to the best aae obtained from fitting six input 

variables, it is observed that the improvement in aae ranges 

from 33% to 59%. The obtained aae for |𝐹⃗| is only about 

1% of the maximum force magnitude. Therefore, the 

authors conclude that the FF is best approximated when a 

large interacting environment (with nine surrounding C 

atoms) is considered. Even though the third fitting strategy 

causes higher computational expense, the authors still 

believe that it is much more advantageous for force 

calculations in large-scale graphene rather than direct 

executions of first-principles calculations. 

The FF developed in this study is considered as a step 

toward an ultimate goal, in which molecular dynamics 

investigations of heat spreading process in graphene will be 
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studied. In addition, future development of a FF which can 

describe structural defects in graphene is recognized as an 

important task. From fitting accuracy analysis, the authors 

believe that further expanding the interacting environment 

(more C atoms are involved) and database would increase 

the fitting accuracy. However, the authors should imply that 

the NN employed to deal with 24 input parameters already 

exceeds the maximum computational resource. 

The developed methodologies and insights can 

significantly impact various applications of graphene-

based materials, such as energy storage, thermal 

management, and catalytic processes, demonstrating the 

broad potential of advanced computational techniques in 

material science [21, 22, 23, 24]. 
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