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Abstract - In this paper, our overarching goal is to propose a novel 

technology that will facility to analyze multi-way arrays 

electroencephalogram (EEG) brain signals to forecast epileptic seizure 

activity in the presence of missing entries while most previous 

conventional techniques commonly are restricted to perform the 

forecast epilepsy through 2D-based noninvasive EEG with complete 

channels. As such, the proposed method can forecast future trends of 

epilepsy activity while simultaneously dealing with missing data 

within one framework automatically. The key novelty of the proposed 

method demonstrates (1) exploiting both latent states and time series 

dynamics for detecting patterns trends information in missing 

reconstruction as well as prediction, (2) preserving the nature of tensor 

structure of multiway EEG brain signals. The proposed method 

performs its robustness via demonstrating high seizure forecasting 

accuracy through the comparative study with other techniques on the 

real public dataset with different scenarios of corrupted data. 

 Tóm tắt - Mục tiêu của bài báo là đề xuất công nghệ mới có 

khả năng phân tích các tín hiệu đa chiều của điện não đồ (EEG) 

để dự báo hoạt động co giật động kinh khi có sự hiện diện các 

giá trị bị thiếu khi mà hầu hết các kỹ thuật thông thường trước 

đây thường bị hạn chế với cấu trúc 2D và các kênh hoàn chỉnh. 

Do đó, phương pháp đề xuất dự báo xu hướng bệnh động kinh 

trong tương lai đồng thời tự động xử lý dữ liệu bị thiếu trong 

cùng một khung. Điểm mới lạ chính của phương pháp đề xuất 

gồm (1) khai thác cả trạng thái tiềm ẩn và động lực chuỗi thời 

gian để phát hiện xu hướng mẫu trong quá trình phục hồi dữ 

liệu bị mất cũng như dự đoán, (2) bảo toàn bản chất cấu trúc 

tensor của tín hiệu não EEG đa chiều. Phương pháp được đề 

xuất phát huy tính mạnh mẽ của nó thông qua việc so sánh với 

các kỹ thuật khác trên tập dữ liệu thực tế với các kịch bản dữ 

liệu bị mất khác nhau. 
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1. Introduction 

Time series forecasting involves detecting hidden 

patterns and trends in historical observations to predict 

future values over time. Many conventional studies have 

demonstrated promising results in forecasting with high-

quality time series data and completed measurements. 

Unfortunately, real-world time series data-driven 

problems in prediction systems often faced with the 

challenge of missing values due to malfunctions of 

recording devices or factors related to human errors. To 

tackle the referred aspects, a straightforward solution for 

such data is commonly ignored or discarded because they 

are considered unsuitable for further analysis. Obviously, 

this does not make sense if the data size is small and not 

long enough sample observations for producing 

forecasting. Thus, the effectiveness of forecasting 

systems is required to handle missing values. The 

challenge could be done by recovering these missing 

values problems via the vector/matrix-based completion 

algorithms [1-12]. 

Another critical factor that affects time series 

forecasting is noise and tensor structure. Indeed, modern 

data recording mechanisms are more granular than 

traditional ones via expanding to multi-way 

representation (i.e., tensor) [13-15]. The conventional 

forecasting approaches have been performed forecasting 

with small collections of time series or individual. 

Specifically, linear autoregressive model (AR) is a well-

known prediction for time series that performs its 

robustness on vector representation in prediction. 

However, this method cannot do forecasting when 

missing values occur and is restricted for large-scale 

forecasting in practice [16]. The probabilistic model 

refers to dynamic state space modeling can detect latent 

variables comprising by a state vector at each time point 

and forecast future trends on them. The original algorithm 

is called Kalman Filter (KF) that is suitable for dynamic 

forecasting applications via fitting noise and produce 

temporal modeling. However, this method cannot handle 

missing values and discards high-order property of data 

structure. It means that KF is only utility for the model of 

latent factor and measurements at every time point under 

a vector formulation. A solution for improving KF [19] 

can do forecasting and missing value reconstruction via 

identifying temporal - spatial characteristics of time 

series and handling noise property. However, this 

approach again limits for a short period forecasting over 

time and tensor structure of observations input [17-19]. 

Dynamic Context-ual Matrix Factorization (DCMF) is a 

matrix-based forecasting that enables to encode temporal 

characteristics in time series. However, it is restricted 

when time series data is modeled as tensor structure [20]. 

In summary, although these traditional vector/matrices-

based techniques are quite general but fail to identify 



84 Nguyen Thi Ngoc Anh, Vo Trung Hung 

patterns in tensor data in term of forecasting tasks since 

they break the multi-way representation of tensor time 

series and lead to lose for capturing and interpreting the 

underlying tensor structure. Furthermore, they have been 

applied only on complete time series data. 

In contrast with most matrices-based algorithms, 

many tensor-based approaches directly developed upon 

matrices-based in terms of completion and forecasting by 

preserving multi-way properties of tensor objects. The 

well-known tensor-based decomposition is the TUCKER 

approach. The method discovers the latent factors from a 

tensor form of data observations which can reveal the 

underlying components in each dimension of the multi-

way arrays without unfolding multi-way arrays into 

matrix formulation to applying matrices-based 

factorization. However, the method cannot capture time 

series dynamics or deal with noise characteristic and thus 

cannot exhibit forecasting for future values in time series 

[21]. Dynamic tensor analysis (DTA) [22] Bayesian 

Probabilistic Tensor Factorization (BPTF) was developed 

in Ref. [23] has brought great solution for the tensor time 

series structure. However, they could not easily predict 

future values and cannot deal with arbitrary noise 

properties as well. 

Motivated by studies on brain electrical activity, 

specifically in epileptic seizure prediction applications, we 

propose a robust model for tensor time series analysis, 

whereby there is one tensor per timestamp, to 

understanding the structural properties and patterns for 

appropriately reveal the interactions among multiple 

modes. Consequently, multi-way arrays EEG analyzing for 

epilepsy forecasting task are investigated by introducing 

the mathematical concept and modified models based on 

multi-modal data construction and analysis from the recent 

advanced tensor algebra [25-27]. 

 

Figure 1. An illustration of third-order structure of  

EEG epilepsy dataset: electrodes × trials × time samples 

In summary, the paper hinges on three critical factors 

in forecasting problems in tensor EEG time series-based 

epileptic seizure prediction, as given: (i) missing entries, 

long-term missing values is becoming big challenge for 

boosting forecasting accuracy in practice (ii) noise, in 

which time series forecasting task is affected by unwanted 

noise dramatically while analyzing because noise obscure 

underlying patterns or trends in a time series; (iii) multi-

way representation: the noninvasive EEG-based epileptic 

seizure activity is naturally categorized by channel, epoch 

and time or trial, electrode and time frame, an illustrated  

3-D tensor time series of EEG in Figure 1. 

Problem definition: The general framework for tensor 

time series forecasting with occurrence of missing values 

is defined as follows; the overall graphics of the proposed 

forecasting formulation can be modeled as in Figure 2. 

 
Figure 2. Graphical illustration of the proposed forecasting 

model in 3-D tensor structure with the presence of missing 

values: 1 1,X XT − are observed tensor while 2 ,X XT indicate 

partial observation tensor (missing tensor) 

Given an partially observed multi-way time series data 

X  of finite collection N-th order tensor 1 2 3, , ,...,X X X XT

with time duration T, whereby each tensor 

1 2X NI I I
T

  
 has the dimension with others and it 

indicates as an partially observed tensor at every tth time 

tick. Consequently, the index of 1 2 NI I I    

(1 n N  ) denotes the dimension of the nth mode, each of 

the N dimension is defined the order of the observed/partial 

observed measurements XT . The last mode is the temporal 

mode with T dimensions that present the duration of the 

tensor time series. 

An indicator tensor 1 2W NI I I T
T

   
  to define the 

missing values of observations of XT , given by: 

1 2

1 2

1 2

0

1

N

N

N

i i i

i i i
i i i

if is a missing entry

if is an observed entry

  
=  
  

X
W

X
  (1) 

The proposed method is an extension of original 

Kalman Filter to tensor-based formulation in general for 

multi-way EEG data for epilepsy forecasting with can 

handle missing values simultaneously. The contributions 

of the proposed method can be classified as follows:  

(i) successfully detecting the dynamics relational variables 

among temporal modes that boost the identification of 

strong patterns for predict future seizure activity; (ii) long-

term period missing values can be supported while 

forecasting is performed; (iii) preserving the nature of the 

tensor time series structure of EEG epilepsy dataset. The 

proposed method proves its superiority in terms of long-

term forecasting in the presence of missing values on 

empirical analysis of tensor time series from multi-way 

EEG compared with convention methods. 

2. Proposed method 

2.1. Notation and definition 

Tensor is an generation of vector/matrices into higher-

order form. A multi-dimensional array 1 2X NI I I  
 is 

called N-th order tensor [9, 13, 14, 15, 23]. Table 1 briefly 

introduces symbols used throughout the paper. 
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Table 1. Symbol and definition 

Symbol Definition and description 

a Vector  

A Matrix 

A  Tensor 

 Element-wise multiplication 

  Kronecker product 

 Contracted product 

X  Tensor time series with missing values 

Xo  The observed tensor in X  

Xm  The partial observed tensor in X  

XT  Tensor time series at tth time tick 

WT  Missing indicator tensor  

Z  Latent tensor  

B  The transition tensor 

D  The projection tensor  

Q  Transition tensor covariance  

Qo  Initial tensor covariance 

R  Projection tensor covariance 

( )Xvec  Vectorization of tensor time series X  

( )Xmat  Matricization of tensor X  

2.2. Proposed Tensor-based Kalman Filter 

The key idea of the proposed method is to refine the 

standard Kalman Filter algorithm by extending indicator 

tensor missing value W  and encoding multi-way EEG time 

series for forecasting task. 

Firstly, the proposed approach initializes the latent 

tensor Z  as a tensor normal distribution with the mean Uo

and covariance Qo , formulated in (2). 

( )1 ,Z U Qo oN           (2) 

Consequently, the latent tensor factor 1 2Z
  

 NJ J J
t

is formulated as multi-way Gaussian distribution with multi-

way transition tensor B  and the covariance Q , in (3). 

( )1 1,Z Z B Z Q− −t t tN        (3) 

The transition tensor B  controls the temporal 

smoothness of evolving latent sequence tensor 

1 2, , 1, ,Z Z Z Z−T T
that can be factorized into N factor 

matrices 1 2 3 1, , , , ,B B B B B
−N N , given in (4). 

N N 1 1mat(B)=B B B
−         (4) 

The projection tensor D  connects the sequence of 

observations and latent tensor 
1 2, , 1, ,Z Z Z Z−T T

. The 

conditional distribution of Xt is defined as a multi-way 

normal distribution with the covariance R  with the mean 

is the contracted product of projection tensor and latent 

factor, given as equation (5). 

( ),X Z D Z Rt t tN         (5) 

The projection tensor D  also can be factorizable as in (6). 

N N 1 1mat(D)=D D D
−         (6) 

Herein, our objective is to estimate the model 

probabilistic parameter  o oU ,Q ,Q,B,R,D   and 

search the optimal latent tensor factor 
1 2, , 1, ,Z Z Z Z−T T

that 

able to maximize the following joint distribution of 

o m, andX X Z , as formulated in (7): 

( )

( ) ( ) ( )

o m

T T

t t t t t 1

t 1 t 2

multi way time series temporal dynamics

andX X Z

X Z Z Z Z

argmax p ,

argmax p p p




−

= =

−

=   
 (7) 

The key idea for learning algorithm is to try to seek 

optimal values for maximizing equation (7). However, it is 

difficult because the modal exists the latent variables 

1 2, , 1, ,Z Z Z Z−T T
. Instead of dealing with this way, we 

investigate searching via expectation-maximization (EM) 

mechanism. With the fix set of parameters 

 o oU ,Q ,Q,B,R,D  that are first initialized randomly, 

EM mechanism is then presented until converging the 

required criterion. Specifically, with fixed observations 

and current parameters, the posteriors of the latent factor 

and their sufficient statistics via Kalman Filtering and 

Kalman smoothing procedure are calculated. With fixed 

both o m andX = X X Z , the new parameter of the 

proposed model  o oU ,Q ,Q,B,R,D   are then updated 

by maximizing the expectation of the distribution 

likelihood ( )o margmax E log , andX X Z


 
  . 

E-step: 

Due to the drawback when derived the tensor normal 

distribution, thus with the fixed model parameters 

 o oU ,Q ,Q,B,R,D   and o mX = X X , we first 

unfold the tensor formulation by the vectorizations of 

andX Z  and matricizations of oQ ,Q,B , given following 

equation in (8,9,10). 

( ) ( ) ( )( )1vec vec matZ U , Qo oN         (8) 

( ) ( ) ( ) ( ) ( )( )1 1vec vec mat vec matZ Z B Z , Qt t t− −N (9) 

( ) ( ) ( ) ( ) ( )( )vec vec mat vec matt t tX Z D Z , RN  (10) 

The expectations and its sufficient statistics of latent 

tensor factors are then updated via Kalman Filtering 

(forward) and Kalman smoothing (backward) algorithm, as 

given as in (11,12,13): 

( ) ( )( )vecZ Zt tE E=         (11) 

( )( ) ( ) ( )( )' '
vec vecZ Z Z Zt t t tE E=     (12) 

( )( ) ( ) ( )( )' '

1 1vec vecZ Z Z Zt t t tE E− −=    (13) 

M-step: 

The new model parameter  new
o oU ,Q ,Q,B,R,D 

can be divided into two kinds of formulation to update, 

namely non-multiway parameters and multiway parameters. 
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For case of non-multiway parameters, we take the 

derivation of the expected log-likelihood of the observation 

time sequences w.r.t the parameter to zero, defined as: 

( ) ( )( ),X ,Z X W
X ,X ,Z

m o
o mH E p =      (14) 

By to obtain new non-multiway parameters, as follows: 

( ) ( )( )1vec vecU Z
new
o E=         (15) 

( ) ( ) ( )( ) ( )( ) ( )( )' '

1 1 1 1mat vec vec vec vecQ Z Z Z Z
new
o E E E= −  

(16) 

( )

( ) ( )( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

'

' '

1

''
2

1

'

1

mat

vec vec mat

vec vec
1

1
vec vec mat mat

vec vec mat

Q

Z Z B

Z Z

Z Z B B

Z Z B

new

new
t t

T t t

new newt
t t

new
t t

E

E

T

E

E

−

=
−

−

  −  
  
  

  
=  −   + 

 −  
 

 
   


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(18) 

For case of multiway parameters of transition tensor B  

and projection tensor D , they cannot update as non-

multilinear parameters because they have specific form 

that can be factorized into N matrices. Consequently, we 

propose to maximize the following expected complete log-

likelihood with respect to vector d and b via applying the 

gradient method to obtain projection tensor D  and 

transition tensor B , respectively. 

( )

( ) ( )

( ) ( )( ) ( )

( ) ( )( )

1

' '

1

'

1

mat mat

tr vec vec mat

2 vec vec

R D

Z Z D

X Z

T

t tt

T

t tt

L d E

E

−

=

=

 
 
 
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   
 

  −
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
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 (19) 

( )

( ) ( )
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t tt
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t tt
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 

  −
    





 (20) 

In the last step, the future trend can be forecast easily 

based on the fixed model parameters and the update of 

latent tensors. Specifically, the next latent tensor 1Zt+  and 

new observations 1Xt+  can be predicted as follows: 

1Z B Zt t+            (21) 

1 1X D Zt t+ +           (22) 

During the forecasting tensor performance, the missing 

values can be imputed simultaneously. In particular, the 

missing values are first imputed by linear interpolation and 

then updated by the conditional expectation from the 

training data. The missing values of tensor Xt  can be 

inferred from the corresponding entries of vectorization of 

estimated tensor Xt , defined as follow: 

( ) ( ) ( )vec mat vecX D Zt tE  =        (23) 

Overall, the proposed tensor-based Kalman Filter for 

forecasting with the occurrence of missing values can be 

briefly summarized as in Figure 3: 

 

Figure 3. The flowchart of the proposed tensor-based method 

for multi-way EEG-based epileptic seizure forecasting in the 

presence of missing values 

Model comprehension: 

The proposed model is comprehensive in the sense that 

it simultaneously captures (1) the temporal smoothness 

along the time dimension, (2) noise: allow to model 

arbitrary noise, (3) tensor representation. As such, the 

proposed method includes several existing methods as its 

special cases, including: 

- Kalman Filter: Relationship to KF model, the graphical 

representation of our HOKF becomes the traditional Kalman 

Filter if we set N=1 and the dataset is fully observed. 

- DynaMMo: If we set N=1 and the data contain 

missing values of input observation, the model is similar to 

DynaMMo. 

- Factor Analysis: If matricization of covariance tensor 

of transition tensor and projection tensor are setting to a 

diagonal matrix, the proposed model becomes Factor 

Analysis in case of N = 1. 
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- Probabilistic principal components analysis (PPCA): 

in case of matricization of covariance tensor is set to 

identity matrix, the proposed method is a special case of 

PPCA model. 

3. Experimental results 

3.1. Data description and experiment setting 

The empirical performance is conducted on real 

epilepsy datasets, sourced from the Department of 

Epileptology, University of Bonn, Germany [28] to 

convince the capability of the proposed approach. 

Consequently, the third-order representation of multi-way 

EEG epilepsy can then be performed to discover the 

characteristics of underlying brain activity. 

For generalizing the advantages of proposed algorithm 

for forecasting, experiments with different kinds of 

missing patterns including random missing entries and 

consecutive missing entries are performed, illustrated in 

Figure 4. Furthermore, the effectiveness of the proposed 

method is carried out with different time slices forecasting 

with fixed missing percentages. Specifically, some 

entries/portion of the data is deleted to mimic the data 

containing missing values with containing 20% of missing 

percentage. To reduce the random effect and to conclude a 

fair comparison with other methods, we did each 

simulation 20 times and recorded the average of MAE on 

all algorithms. 

 

Figure 4. Graphical illustration for generating two scenarios of 

artificial missing values patterns 

3.2. Evaluation criteria 

To measure the quality of the proposed method, the root 

mean square error (RMSE) is defined in equation (26) and 

it used as a criterion to perform the effectiveness of the 

forecasting while containing missing values. 

In formulation of matrix-based forecasting and 

reconstruction techniques, we define the RMSE between 

the actual data X and the imputed missing values data X , 

as follows: 

( )( )
( )

2

1

1

W X X

W

itit itit

itit

RMSE
− −

=
−




    (26) 

Our proposed tensor-based method is calculated as a 

similar way, the actual time sequence tensor X  and the 

reconstructed/forecasted tensor time series X  are flatted 

into the vectorization representation. Consequently, the eq. 

(26) is applied to computing the RMSE between them. 

3.3. Experimental results 

In our proposed model, the optimal of latent tensor 

factors throughout the following experiments is decided 

via using the heuristic rule, defined as in equation (25). The 

proposed method is trying to find the initialization of 

optimal number of latent factors for each mode by 

descending order of eigenvalues until satisfy the equation 

(25) with latent factor J = [10,15]. 

We first evaluate the efficiency and effectiveness of the 

proposed tensor Kalman Filter with perfect data (non-

missing values occurrence) on different techniques in 

terms of forecasting. It is note that the proposed method 

(Tensor Kalman Filter) is differ with original Kalman Filter 

in way how the multiway parameter of transition tensor B  

and projection tensor D  are updated. For a fair 

comparison, we define noise with matrices-based form for 

( )mat ,Q ( )mat Qo  and ( )mat R  as isotropic for both the 

standard Kalman Filter and the improved Tensor Kalman 

Filter. The common prediction algorithm in time series 

chosen for comparison is the AR model. Moreover, the 

robust matrix-based of DCMF technique is used since it 

presents the advantage via exploiting the latent factor and 

capture temporal characteristics for forecasting task. 

 

Figure 5. RMSE comparison of proposed method with other 

techniques on complete tensor EEG-based epilepsy with 

different future time slices forecasting 

Figure 5 shows the RMSE error forecasting on four 

techniques where x-axis presents the duration time slices 

in forecasting, whereas the Y-axis performs the RMSE. It 

can be derived from the figure that the proposed method 

demonstrates slightly increase time slices for prediction 

with improvement up to 1.2x, 2x and 3x compared with 

Kalman Filter, DCME and AR, respectively. For all 

methods, the experiments were training with 90% original 

tensor dataset. The proposed method’s performance shows 

significant accuracy since it can successfully capture the 

temporal dynamics and correlation among modes of tensor 

time series. 

It can be noted that the proposed method gives an 

impressive advantage for coping with the missing values 
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naturally during the forecasting process performs. To 

confirm how effectiveness of the proposed method is, two 

types of missing patterns are considered for tensor time 

series structure, including missing entries at random where 

entries are randomly treated as missing values and 

consecutive missing values where a segment is occlusion. 

 

Figure 6. RMSE comparison of proposed method with other 

techniques on incomplete tensor EEG-based epilepsy with 

different future time slices forecasting 

The experimental results have shown in Figure 6 

present the forecasting while increasing different time 

slices prediction with fixed missing percentage up to 20%. 

As mentioned, the proposed model is able to discover the 

underlying relationship between modes of the recovered 

tensor whereas the Kalman Filter is neglected, which 

means that we can boost forecasting accuracy in the best 

way. Indeed, the proposed method, tensor-based Kalman 

Filter, demonstrates more accurate prediction than the 

original technique in imputation in order to boost the 

forecasting accuracy. 

 

Figure 7. RMSE comparison of proposed method with other 

techniques on 150 time slices consecutive missing pattern. 

It is noted that the Kalman Filter, DCMF and AR forecast on the 

reconstructed data from Kalman Filter 

As can be explicitly seen from the Figure 7, the 

experimental results show that the proposed technique has 

a lower RMSE performance even if the missing occlusion 

is consecutive lost with 150 time slices compared to the 

standard Kaman Filter imputation technique. Specifically, 

we implement by fixing 20% of missing percentage with 

150 time slices occlusion and run Kalman Filter and 

proposed method imputation algorithms for reconstruction 

and forecasting. The experimental results from the bar 

chart of Figure 7 demonstrate that our proposed method 

again is visually superior to other competitors since the 

reconstructed signal is not affected much for the prediction. 

In particular, the AR, DCMF and Kalman Filter itself 

predict on the reconstructed data from the Kalman Filter 

with lower prediction accuracy up to 2x, 3x and 4x, 

respectively. To confirm how the proposed method can 

deal with occluded missing values effectively, Figure 8 

performs the reconstruction of Kalman Filter and proposed 

method for comparison. Indeed, the proposed tensor-based 

Kalman Filter is outperforming compared with original 

techniques which is very close to the actual signal. 

 

Figure 8. An illustration of 150-time slices imputation while 

using 90% training data for forecasting: the grey dash indicates 

the ground truth values; from top to bottom: original data with 

occluded data; the reconstructed with proposed method; the last 

is for Kalman Filter method 

4. Conclusion 

In this paper, the tensor-based Kalman Filter utilizing 

the forecasting with incomplete tensor time series has been 

proposed for the multi-way epilepsy EEG dataset.  

The main contribution of this research can be classified:  

(1) temporal dynamics: capturing the smoothness 

successfully among temporal modes that boost the 

discovery of key patterns for predict future seizure activity; 

(ii) incomplete data: handling missing values while 

forecasting process is demonstrated; (iii) tensor 

representation: preserving the original structure of nature 

multiway EEG EEG epilepsy dataset. The prediction 

performances on real multiway EEG epilepsy datasets 

demonstrated the effectiveness of our proposed approach 

that overwhelmingly outperforms compared with the 

matrices-based method in term of missing values 

imputation as well as forecasting tasks. Expectedly,  

the proposed method is a general framework in tensor time 

series with valuable outcomes that boost for extending and 

developing decision-making system for corrupted tensor 

time series on other real-life applications. 
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