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Abstract - This study delves into the energy optimization 

problem in Internet of Things (IoT) networks. We consider the 

downlink from multiple antenna Gateway (GW) and single 

antenna IoT devices. For this challenging nonconvex problem, 

we initially introduced the well-known zero-forcing 

beamforming (ZFBF) to eliminate inter-user interference, 

thereby transforming the energy efficiency maximization 

problem into a concave-convex fractional problem. Then, 

instead of applying a combination of ZFBF with power 

allocation, we propose the Particle Swarm Optimization (PSO) 

algorithm to allocate power to find the optimized beamforming 

matrix. Through extensive numerical analysis, we demonstrate 

the effectiveness of our proposed scheme in terms of energy 

efficiency and power achieved at the GW. The results 

underscore the significant benefits of our approach over 

conventional methods, paving the way for practical and efficient 

energy optimization in IoT networks. 

Key words - IoT; PSO; optimization; energy efficiency; Zero- 

Forcing; Beamforming 

1. Introduction 

The Internet of Things (IoT) is a fast-growing 

technology that connects devices, sensors, and applications 

to collect and exchange data automatically [1]. It has 

applications in various industries, including smart homes, 

cities, industrial automation, and healthcare [2, 3]. 

Since IoT devices are frequently connected and 

continuously transmitting data, this leads to high energy 

consumption demands, making energy efficiency one of 

the key challenges of IoT. Maintaining the operation of 

billions of IoT devices requires a stable and energy-

efficient power source. Additionally, the battery life of 

these devices is also a concern, especially for those that are 

difficult to access for replacement or recharging. 

Developing low-power technologies and improving the 

energy efficiency of the devices are essential to minimizing 

the environmental impact and extending the device’s 

lifespan. Furthermore, optimizing communication 

protocols and utilizing renewable energy sources can also 

help enhance the energy efficiency of IoT systems [4, 5]. 

The concept of energy efficiency addresses the 

challenge of high energy consumption in IoT systems [5]. 

Energy efficiency is defined as the ratio between the total 

data throughput and the total power consumption, which 

encompasses the power required for various stages of 

signal processing and transmission [6]. Our main goal is 

to send the most data (bits) for every unit of energy used 

(Joule). The problem of maximizing energy efficiency 

(EEmax) is like finding the perfect balance between how 

much data we can send (sum rate) and the total amount of 

power we use. This balance gives us the best energy 

efficiency possible [7]. The tradeoff between power and 

throughput has been studied previously [8], but without 

accounting for the circuit power consumption. Authors in 

[8] considered a weighted sum of throughput and power 

to find the convex hull of the achievable region, by 

varying the weighting coefficients. The work [9] studied 

an energy loss optimization scheduling modeling method 

based on a multi-objective fuzzy algorithm approach. The 

energy efficiency maximization problem in multiple-

input single-output (MISO) downlink channel, subject to 

the total power and user-specific SINR constraints, is 

considered in [10].  

In recent years, the application of swarm intelligence 

(SI) techniques for optimization problems has gained 

significant traction. SI techniques mimic the collective 

behavior of natural organisms, such as the flocking of 

birds, the schooling of fish, or the foraging of bees, to 

search for optimal solutions to complex problems [11]. SI 

techniques have been widely applied across diverse 

domains, including Engineering, Finance, Computer 

Science, and Social Sciences [12]. 

Swarm intelligence (SI) is a subfield of artificial 

intelligence (AI) that takes inspiration from the collective 

behavior of social colonies, such as ant colonies, bird 

flocks, fish schools, and bee swarms [13]. The primary 

principle behind SI is that individual agents (or 

“particles”) follow simple rules and interact locally with 

one another and their environment, leading to complex 

global behavior or optimization capabilities without 

centralized control. This decentralized approach allows 

flexibility, robustness, and scalability, making SI suitable 

for solving complex optimization and search problems in 

various domains [14, 15, 16]. 

A prominent algorithm within the field of swarm 

intelligence is Particle Swarm Optimization (PSO) [17]. 

PSO is a heuristic optimization algorithm inspired by the 

collective behavior of bird species [18]. In PSO, a set of 

individuals called particles move through a search space to 

optimize an objective function. 

In this paper, we propose a solution using the PSO 

algorithm to optimize energy efficiency for downlink IoT 

systems with constraints on service quality and maximum 

transmit power. We assessed the proposed algorithm’s 

effectiveness by comparing the performance of our IoT 

downlink system with established benchmarks like the 
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Zero-Forcing Beamforming (ZFBF) algorithm presented in 

[10]. Simulations were conducted, and the numerical 

results confirm that the proposed PSO-based algorithm 

outperforms existing approaches 

The remainder of the paper is organized as follows. In 

Section II, we introduce the IoT downlink system model. 

Section III presents the Zero-Forcing (ZF) beamforming 

design. The proposed PSO-based algorithm is introduced 

in Section IV. Section V validates the effectiveness of the 

proposed algorithm through numerical simulations. 

Finally, conclusions are drawn in Section VI. 

Notations: The following notations are used in this 

paper. Lower-case and upper-case boldface letters are used 

to denote vectors and matrices. CN×M represents the set of all 

N × M complex matrices and IM denotes an M × M identity 

matrix. |X|, XH, and tr(X) denote the determinant, 

Hermitian transpose, and trace of a matrix X, respectively. 

E{·} and ∥·∥ are the expectation and norm operators, 

respectively. A complex Gaussian random vector variable 

z with mean µ and variance σ2 is represented as 𝒛 ∼
 𝒞𝒩(µ, 𝜎2). 

2. System model 

 

Figure 1. IoT downlink system model. 

We consider an IoT system that includes the gateway 

(GW) equipped Nt transmitting antennas and K single 

antenna IoT devices in the download channels, as depicted 

in Figure II. In this system, we consider flat fading 

channels in the links between the GW and IoT devices to 

simplify the analysis. The received signal yk at the i-th 

devices can be expressed: 

𝐲𝑘 = 𝐡𝑘𝐰𝑘𝐱𝑘 + ∑𝐾
𝑘=1,𝑘≠𝑖 𝐡𝑘𝐰𝑘,𝑑𝐱𝑘,𝑑 + 𝐧𝑘,  (1) 

where hk is the channel matrix between the GW and the kth 

IoT device, xk is the transmitted signal for the k-th IoT 

device, wk is the linear precoder, and nk denotes the 

additive white Gaussian (AWGN) with distribution 

𝒞𝒩(0, 𝑁0𝑰). 

Let B be the bandwidth, the signal-to-interference-and 

noise at the k-th IoT device is given by 

𝛾𝑘 =
|𝐡𝑘𝐰𝑘|2

∑ |𝐡𝑘𝐰𝑖|2+𝐵𝑁0
𝐾
𝑖=1,𝑖≠𝑘

,   (2) 

the data rate of the k-th IoT device can be expressed as 

Rk = B log(1 + γk).    (3) 

For the sake of simplicity, we will omit the constant 

term B in the derivation of the algorithms presented in this 

paper. The first problem involves minimizing power while 

satisfying individual quality of service (QoS) constraints. 

𝑆𝑃𝑚𝑖𝑛  = min ∑ |𝐰𝑘|2 𝐾
𝑘=1

𝑠. 𝑡 ⬚ 𝛾𝑘 ≥ 𝛾𝑘̅̅ ̅
,   (4) 

where γk is the threshold associated with the QoS constraint 

of k-th IoT device. 

The second problem aims to maximize spectral 

efficiency while considering certain power constraints. For 

instance, the problem of maximizing spectral efficiency 

with a total transmit power limited by the max transmit 

power P can be formulated as follows: 

  𝑆𝐸𝑚𝑎𝑥 = max ∑𝐾
𝑘=1 𝑅𝑘  

𝑠. 𝑡 ∑𝐾
𝑘=1 |𝐰𝑘|2 ≤ 𝑃.    (5) 

We define the total power consumption at the GW in 

the downlink channel as 

Ptot = 1/ηPdata + NPsync + Psta,   (6) 

where Pdata represents the power consumption associated 

with the transmitted data, η denotes the power amplifier 

efficiency, Psync refers to the dynamic power consumption 

related to the power radiation of all circuit blocks in each 

active RF chain, and Psta represents the static power 

consumed by the cooling system, power supply, and other 

components. 

The problem of energy efficiency maximization with 

peruser SINR constraints can be expressed as 

 𝐸𝐸𝑚𝑎𝑥 =
max ∑𝐾

𝑘=1 𝑅𝑘

1/𝜂 ∑𝐾
𝑘=1 |𝐰𝑘|2+𝑃0

 

 𝑠. 𝑡    ∑𝐾
𝑘=1 |𝐰𝑘|2 ≤ 𝑃, 

𝛾𝑘 ≥ �̅�𝑘 , ∀𝑘 ∈ [1, … , 𝐾].   (7) 

The nonconvex nature of the objective function 

concerning wk in equation (7) presents a challenge in 

determining the optimal design for the EEmax problem. 

3. Zero-forcing beamforming design 

Although the EEmax problem is nonconvex, it can still 

be solved with global convergence and optimality. The 

EEmax problem is a nonlinear fractional program, and the 

parametric solution method based on Dinkelbach’s method 

[19] has been extensively utilized in the field of wireless 

communications design to address similar problems. 

The difficulty in solving equation (7) arises from the 

nonconvex nature of the objective function, which is a 

result of inter-user interference. An effective approach to 

address this challenge is to employ the zero-forcing method 

[20]. It has been demonstrated that the zero-forcing 

beamforming (ZFBF) method is highly effective for 

MIMO systems, thanks to the significant degrees of 

freedom it provides. In ZFBF, the inter-user interference is 

completely eliminated, i.e. 𝒉𝑘𝒘𝑖 = 0, ∀𝑘 ≠ 𝑖 . If we define 

�̃� = [𝒉1
𝑇 , … , 𝒉𝑘−1

𝑇 , 𝒉𝑘+1
𝑇 , … , 𝒉𝐾

𝑇  ]𝑻 , the precoder matrix 

can be chosen to eliminate inter-user interference by 

wk = Mkw˜k [21], where Mk is an orthonormal basis of the 

null space of  �̃�. The EEmax problem with ZFBF reduces 

to the following problem 

 𝐸𝐸𝑚𝑎𝑥 = max
∑𝐾

𝑘=1 log(1+|�̃�𝑘�̃�𝑘|
2

)

1/𝜂 ∑𝐾
𝑘=1 |�̃�𝑘|2+𝑃0

, 

  𝑠. 𝑡   ∑𝐾
 𝑘=1 |�̃�𝑘|2 ≤ 𝑃, 
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 |�̃�𝑘�̃�𝑘|
2

≥ �̅�𝑘, ∀𝑘 ∈ [1, … , 𝐾],    (8) 

where �̃�𝑘 = 𝒉𝑘𝑴𝑘. 

The optimal solution w˜k∗ can be found by solve the 

following optimization problem 

 𝐸𝐸𝑚𝑎𝑥 = max
∑𝐾

𝑘=1 log(1+𝑝𝑘
�̃�𝑘

′

|�̃�𝑘
′ |

)

1/𝜂 ∑𝐾
𝑘=1 |�̃�𝑘|2+𝑃0

, 

  𝑠. 𝑡   ∑𝐾
 𝑘=1 𝑝𝑘 ≤ 𝑃, 

𝑝𝑘|�̃�𝑘
′ | ≥ �̅�𝑘 , ∀𝑘 ∈ [1, … , 𝐾],    (9) 

where pk is the power allocation for k-th IoT device. 

The optimal solution of (9) can be found by the 

bisection method [22]. 

4. Beamforming design based on the particle swarm 

optimization  algorithm 

The advantage of ZFBF is its simplicity, however, the 

use of the bisection method can lead to slow convergence 

and instability for non-smooth objective functions. In this 

section, we proposed energy efficiency maximization 

using the PSO algorithm. 

At each iteration, the position (𝒙𝑖,𝑘) and velocity (𝒗𝑘) 

of each particle k of population i are updated using the 

following equations: 

𝒗𝑖,𝑘
(𝑡+1)

= 𝜔𝒗𝑖,𝑘
(𝑡)

+ 𝑐1𝑟1(𝒑𝑖,𝑘
⬚ − 𝒙𝑖,𝑘) + 𝑐2𝑟2(𝒑𝑔 − 𝒙𝑖,𝑘),  

  (10)  

𝒙𝑖,𝑘
(𝑡+1)

= 𝒙𝑖,𝑘
(𝑡)

+ 𝒗𝑖,𝑘
(𝑡)

,    (11) 

where 𝒗𝑖,𝑘
(𝑡)

denotes the velocity of popolation i particle k at 

iteration t, 𝒙𝑖,𝑘
(𝑡)

 is the position of popolation i particle k at 

iteration t, 𝒑𝑖,𝑘
⬚

 is the personal best position of popolation i 

particle k,  𝒑𝑔  denotes the global best position among all 

particles, 𝜔 is the inertia weight controlling the impact of 

the previous velocity, c1 and c2 are acceleration constants 

controlling the impact of personal and global best 

positions, respectively, r1 and r2 are random numbers 

sampled from a uniform distribution. 

The movement of particles is guided by their own 

experience (𝒑𝑖,𝑘
⬚ ) and the shared knowledge of the swarm 

(𝒑𝑔), allowing them to efficiently explore the search space 

and converge towards optimal solutions. PSO is widely 

used in optimization problems across various domains due 

to its simplicity and effectiveness in finding solutions to 

complex optimization tasks. 

To solve (7), we let 𝐖 = 𝐔𝐏1/2, where  

𝐔 = 𝐇𝐻(𝐈𝐾 + 𝑃/𝐾𝐇𝐇𝐻)−1,   𝐔 = [𝒖1, … , 𝒖𝐾], 
𝐇 = [𝐡1

𝑇 , … , 𝐡𝐾
𝑇 ]𝑇, 𝐏 = diag(𝑝1 , … , 𝑝𝐾) [18, 19]. The 

problem (7) can be restated as follows: 

 𝐸𝐸𝑚𝑎𝑥 = max
∑𝐾

𝑘=1 log(1+𝑝𝑘)

1/𝜂 ∑𝐾
𝑘=1 𝑝𝑘|𝐮𝑘|2+𝑃0

 

 𝑠. 𝑡        ∑𝐾
𝑘=1 𝑝𝑘|𝐮𝑘|2 ≤ 𝑃, 

 𝑝𝑘 ≥ �̅�𝑘, ∀𝑘 ∈ [1, … , 𝐾],   (12) 

Let xk = wk be the beamforming vector to be found 

using the PSO algorithm, which is computed based on the 

cost function of (12). We use the projection method [22] to 

solve the optimization problem with constraint (12) by 

defining the feasible region F as follows: 

ℱ = {𝐱𝑘 = 𝐰𝑘|𝑘=1
𝐾 : ∑ 𝑝𝑘 ≤

𝑃

|𝐮𝑘|2
𝐾
𝑘=1 }  (13) 

If 𝐱𝑘 not in the feasible region ℱ, we project 𝐱𝑘 into the 

feasible region as  

�̂�𝑘 = √
𝑃

∑𝐾
𝑘=1 𝐱𝑘|𝐮𝑘|2 𝐱𝑘    (14) 

We define the objective function as  

𝑜𝑏𝑗_𝑓𝑢𝑛𝑐 =
∑𝐾

𝑘=1 log(1+𝑝𝑘)

1/𝜂 ∑𝐾
𝑘=1 𝑝𝑘|�̃�𝑘|2+𝑃0

.   (15) 

Algorithm 1 Applying PSO algorithm to maximize EE 

Input:  

    - 𝑁, 𝐾, 𝑃, 𝑃0, 𝒉𝑘 , 𝜂, max _𝑖𝑡𝑒𝑟, 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒, �̅�𝑘. 

    - Random : 𝜔, 𝑐1, 𝑐2 

Output:  

    - Power allocation vector 𝒑𝑜𝑢𝑡 = [𝑝1, … , 𝑝𝐾] 

Initialization:  

    - 𝑡 =  0, 𝑓𝑝𝑔
=  −∞, 𝑓𝑘 =  −∞,   

    - Calculation U. 

For 𝑖 = 1 ∶  𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 do 

      For 𝑘 = 1: 𝐾 do 

          Random population 𝒙𝑖,𝑘
⬚  and velocity 𝒗𝑖,𝑘 with 

𝒙𝑖,𝑘 , 𝒗𝑖,𝑘 ≥
�̅�𝑘

𝒖𝑘
. 

       Calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  =  𝑜𝑏𝑗_𝑓𝑢𝑛𝑐  of 𝒙𝑖,𝑘 by (15) 

       If (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  >  𝑓𝑘) then 

            𝒑𝒊,𝒌 =  𝒙𝑖,𝑘  , 𝑓𝑘 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘   

       EndIf 

       If (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  >  𝑓𝑝𝑔
) then 

               𝒑𝑔 =  𝒙𝑖,𝑘  , 𝑓𝑝𝑔
=  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘 

        EndIf 

     EndFor 

EndFor 

 While (𝑡 <  𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) 

    For 𝑖 = 1 ∶  𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 do 

        For 𝑘 = 1: 𝐾 do 

            Determine the velocity 𝒗𝑖,𝑘 of k-th particle by (10) 

            Determine the new position 𝒙𝑖,𝑘  by (11) 

            Bound 𝒙𝑖,𝑘 by lower bound 
�̅�𝑘

𝒖𝑘
 and (14) 

            Calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  =  𝑜𝑏𝑗_𝑓𝑢𝑛𝑐  of 𝒙𝑖,𝑘 by (15) 

       If (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  >  𝑓𝑘) then 

            𝒑𝒊,𝒌 =  𝒙𝑖,𝑘  , 𝑓𝑘 =  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘   

       EndIf 

       If (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘  >  𝑓𝑝𝑔
) then 

               𝒑𝑔 =  𝒙𝑖,𝑘  , 𝑓𝑝𝑔
=  𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑘 

        EndIf 

     EndFor    

   EndFor 

 EndWhile 

Update 𝒑 = 𝒑𝑔 
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5. Numerical results 

In this section, numerical simulation results are 

provided to evaluate the performance of the proposed PSO 

algorithm for the design beamforming matrix in the 

downlink IoT system to maximize energy efficiency. We 

consider quasi-static frequency flat Rayleigh fading 

channels and adopt a macrocell configuration, where the 

path loss in decibels (dB) is modeled as 128.1+37.6log(d) 

with the distance d measured in kilometers [23]. The 

simulation parameters of the system are described in Table 

1. In the simulations, the distance of each IoT device to  

the GW is randomly chosen from the range of 0.1 to 

1 kilometers. The transmit power budget of the gateway 

(GW) over the total bandwidth is B = 10MHz. The noise 

power is BN0 = 104dBm, the circuit power consumption is 

Psta = 33dBm, and the power amplifier efficiency is  

η = 0.35. The shadow fading is modeled as a log-normal 

distribution with a standard deviation of 8dB. Without loss 

of generality, we set the SINR threshold of all IoT 

devices  �̅�𝑘 = 0𝑑𝐵. 

Table 1. System simulation parameters 

Parameters Value 

d 0.1 ÷ 1 (𝑘𝑚) 

B 10 (𝑀𝐻𝑧) 

𝜂 0.35 

�̅�𝑘 0 (𝑑𝐵) 

Psta 33 (𝑑𝐵𝑚) 

𝐵𝑁0 104 (𝑑𝐵𝑚) 

𝑁 16 

𝐾 {2, 4, …, 16} 

P {17, 18, …, 23} 

Figure 2 presents the energy efficiency as a function of 

the maximum transmit power. We can see that the 

proposed approach may significantly improve the energy 

efficiency compared to the ZFBF method, especially when 

the transmit power is low. When the transmission power 

increases, the performances of the proposed and the ZFBF 

methods tend to converge. The reason is that with high 

transmission power, the SNR is high, allowing the ZFBF 

scheme to achieve optimal solutions as it can effectively 

eliminate interference. 

 

Figure 2. The average of the energy efficiency (Mb/J) as a function 

of the maximum transmit power (dBm), where N =16, K =8 

 

Figure 3. The average of the energy efficiency (Mb/J) as 

a function of the number of IoT devices, where N =16 

 

Figure 4. The average of the energy efficiency (Mb/J) as  

a function of the number of IoT devices, where N =16 

In Figure 3, representing energy efficiency by the 

number of IoT devices. In this figure, we see that the PSO 

algorithm has better performance than the ZFBF method in 

the high number of IoT devices. As the number of IoT 

devices increases, finding the optimal solution in the ZFBF 

method becomes more difficult, because the constraints 

become more ”strict”. Meanwhile, the beamforming 

matrix of the proposed method is based on the channel 

direction but was rotated to balance the transmit power and 

is orthogonal to the inter-user channels [19]. 

In Figure 4, we compare the system’s transmit power 

according to the number of IoT devices when changing the 

transmit power constraint. The figure shows that the 

proposed optimization algorithm has a lower output power 

than ZFBF when the constraints are tighter. The proposed 

method is more ”flexible” than ZFBF, especially effective 

when increasing the difficulty of the constraints. That is, 

the power consumption of the proposed method will be 

smaller than that of the ZFBF method. 

6. Conclusion 

This paper addresses the challenge of maximizing 

energy efficiency in an IoT downlink system. A PSO-based 

algorithm is proposed for designing beamforming matrices 

to achieve this goal. Simulations confirmed that the PSO-

based algorithm significantly outperforms Zero-Forcing 
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Beamforming (ZFBF). This finding suggests PSO is a 

promising approach for tackling optimization problems in 

future wireless communication systems. 
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