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Abstract - In the 6G mobile networks, ensuring low latency and 

low energy consumption is paramount. This study explores a 

novel approach for addressing these issues in a backscatter 

communication (BC) - based multiple user unmanned aerial 

vehicle (UAV) - enabled mobile edge computing (MEC) Internet 

of Things (IoT) network. Our proposed framework incorporates 

a partial offloading strategy, a time division multiple access 

(TDMA) scheme, and a radio frequency energy harvesting 

mechanism. We use the channel gains statistical characteristics to 

derive approximate closed-form expressions for the successful 

computation and energy outage probabilities. Using these 

benchmarks, we investigate the impact of critical parameters such 

as transmit power, number of sensor nodes, task division ratio, 

the altitude of the UAV, and threshold tolerance. We validate our 

analysis through computer simulations and provide results to 

support our findings. The study reveals that selecting an optimal 

UAV altitude can significantly improve latency and energy 

consumption performance. 

Key words - Mobile edge computing; partial offloading; 

unmanned aerial vehicle; backscatter; RF energy harvesting. 

1. Introduction 

Mobile edge computing (MEC) is crucial in unlocking 

the potential of 6G networks, supporting various innovative 

applications and services that require ultra-low latency, high 

reliability, and intelligent edge processing capabilities [1], 

[2]. MEC brings computation and storage closer to the edge 

of the network, reducing the latency experienced by mobile 

users. In 6G networks, this could enable real-time 

applications like autonomous vehicles, augmented reality 

(AR), and virtual reality (VR) to operate seamlessly. By 

offloading processing tasks to edge servers, MEC can 

alleviate congestion on the core network, leading to more 

efficient bandwidth utilization. It is crucial as 6G networks 

aim to support massive connectivity and higher data rates. 

MEC can also improve network reliability by distributing 

processing tasks across multiple edge servers, reducing the 

impact of individual server failures. This resilience is 

essential for critical healthcare, transportation, and industrial 

automation applications. With MEC, artificial intelligence 

(AI) and machine learning (ML) models can be deployed 

directly at the network edge, enabling real-time intelligent 

decision-making without relying exclusively on centralized 

cloud infrastructure. It facilitates various use cases, 

including context-aware services and predictive 

maintenance. MEC enables network slicing, allowing 

operators to create virtualized, customized network 

instances tailored to specific application requirements. In 6G 

networks, this capability can support diverse use cases with 

varying performance, security, and resource requirements. 

MEC enables data processing and analytics to be performed 

closer to the data source, reducing the need to transmit 

sensitive information over long distances. It enhances 

privacy and compliance with data localization regulations, 

which are becoming increasingly stringent globally. 

In recent years, we have also seen MEC networks being 

applied more in the IoT field, combining BC technology 

[3]. BC is a method to transmit data by reflecting signals to 

a receiver rather than generating its signals [4]. It is 

commonly used in radio frequency identification (RFID) 

systems and wireless communication devices. In 

backscatter technology, a device modulates and reflects an 

incoming signal to convey information, enabling 

communication without requiring its power source for 

signal transmission. Accordingly, BC is suitable for low-

power communication applications, such as IoT devices 

and wireless sensors [5]. It can lead to significant energy 

savings, extended battery life, and increased deployment 

possibilities for applications in 6G networks [2], [6]. 

Meanwhile, UAVs can be utilized for various 

purposes, such as aerial base stations, edge computing, 

network coverage expansion, traffic monitoring, and 

disaster management [7]. Their ability to quickly deploy 

and navigate rugged terrain makes them valuable assets 

for improving connectivity and computing assistance, 

especially in remote or inaccessible areas. Additionally, 

UAVs can support dynamic network optimization and 

resource management, contributing to the efficiency and 

reliability of 6G networks [2], [8]. In order to prolong the 

lifetime of connectivity, RF (Radio Frequency) energy 

harvesting holds significant potential in 6G networks [9]. 

With the expected proliferation of small cell 

deployments, massive MIMO systems, and mmWave 

technologies in 6G, abundant ambient RF energy will be 

available for harvesting. This energy can power low-

power devices, sensors, and IoT devices, extending their 

battery life or enabling battery-free operation. 

Additionally, RF energy harvesting can contribute to 

sustainability efforts by reducing the need for 

conventional power sources in wireless communication 

networks. However, challenges such as efficient energy 

conversion, RF signal variability, and interference 

mitigation must be addressed to fully leverage the 

potential of RF energy harvesting in 6G networks. 
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This paper explores how backscatter, UAV and RF 

energy harvesting, and MEC technologies can be 

integrated into IoT networks. The main contributions of the 

paper are summarized as follows: 

• We introduce an innovative framework for a UAV-

enabled MEC IoT system utilizing backscatter technology, 

featuring a partial offloading strategy, time division multiple 

access scheme, and RF energy harvesting mechanism. 

• We derive approximate closed-form expressions for 

the successful computation probability (SCP) and energy 

outage probability (EOP) using the statistical 

characteristics of channel gains. 

• We examine how key parameters like transmit power, 

task division ratio, UAV altitude, number of sensor nodes, 

and threshold latency affect the system. Furthermore, we 

offer computer simulation results to validate our analysis. 

2. Related works 

Numerous studies have explored the integration of 

backscatter, UAV and RF energy harvesting, and MEC 

technologies in IoT networks [10]-[18]. In their paper [13], the 

authors introduced a combined architecture integrating 

backscattering and uplink nonorthogonal multiple access 

(NOMA) for MEC IoT networks. They performed joint 

resource allocation, considering the communication capability 

of each IoT node and the computational resources of both the 

nodes and the MEC server. The study described in [14] 

explores the combination of backscattering, RF energy 

harvesting, and intelligent reconfigurable surfaces in the MEC 

network, employing the time-division multiple access 

(TDMA) scheme. The work [15] focused on the computing 

task offloading and resource allocation scheme in UAV-aided 

backscatter MEC networks. The UAV is the RF station, while 

the ground station is the access point. The problem of 

minimizing the total energy consumption of UAVs is 

formulated and solved by the successive convex 

approximation method. The study [16] explored how energy 

efficiency can be improved in an MEC network with UAV 

assistance. The UAV is a mobile energy source and edge 

computing platform, offering ground-based users battery 

charging and computational services. However, this work did 

not utilize the backscattering technology. The study [17] 

investigated a multi-antenna UAV-assisted communication 

system for transmitting short packets using backscatter 

technology. The optimization problems aimed at maximizing 

throughput while considering the number of transmit bits and 

the UAV altitude and minimizing block error rate were 

formulated and solved using the one-dimensional search 

method. Similarly, the work [18] investigated a system's 

performance in which UAV assisted multiple backscattering 

devices in wireless energy charging and data transmission. 

Using a search algorithm, they formulated and solved an 

optimization problem to maximize energy efficiency and 

minimize transmit power. However, the MEC system was not 

taken into account in these two works [17], [18]. 

The studies mentioned in the literature have not 

overlooked the potential advantages of incorporating 

backscatter, RF energy harvesting, and UAV-enabled 

techniques into MEC networks. Our study proposes a 

UAV-enabled MEC IoT network utilizing backscatter 

technology. This network features a partial offloading 

strategy, a time division multiple access scheme, and an RF 

energy harvesting mechanism. In this setup, the UAV 

functions as a mobile edge server, offering computational 

resources for ground users. The ground station, on the other 

hand, provides an unmodulated signal that facilitates task 

offloading from the users to the UAV. 

3. System and Channel Model Description 

3.1. System and Channel Models 

Figure 1 illustrates a backscatter-based multiple smart 

sensor node and unmanned aerial vehicle-enabled MEC in 

the IoT system. It comprises one ground-dedicated RF 

station (denoted as S), one single-antenna UAV access 

point (denoted as U), and K resource-constrained single-

antenna ground smart nodes (denoted as SNs). The U is 

integrated with an edge server and hovers in the sky at an 

altitude zU to assist smart nodes in executing their tasks. The 

station S provides RF signals to SNs for employing BC. 

Assuming that U and SNs operate in haft-duplex mode. The 

static Cartesian coordinate is used to present the location of 

the UAV and each node. Thus, we denote the location of  

U as (xU, yU, zU), the location of kth SNk as (xk, yk, 0) with 

{1,..., }k K , and the location of S as (xS, yS, 0). 

 

Figure 1. System model for BC-based multi-user  

UAV-MEC IoT Network 

We can model the signal fading in ground-to-air (G2A) 

and air-to-ground (A2G) communication channels using 

large-scale and small-scale fading. Large-scale fading 

depends on the probability of a direct line-of-sight (LoS) or 

indirect non-line-of-sight (NLoS) path, as described in [19]. 

Small-scale fading refers to rapid signal fluctuations due to 

local effects, and we can represent it using the Nakagami-m 

distribution with parameter m [20]. Now, considering the 

probability of both LoS and NLoS links between the U and 

the kth SNk, we can express the average path loss as: 
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( )arcsinUk U Ukz d = ,   stands for the path-loss 

exponent, a  and b  represent parameters whose values 

change based on the surrounding environment, and 

( )
1

/ 4A V cc f
−

=  , {LoS, NLoS}A , denotes the 

parameter depended on environment and carrier frequency 

fc, c denotes the speed of light, and V  represents the 

excessive path loss of the LoS and NLoS propagation [21]. 

The channel coefficients of U-SNk, S-SNk and S-U links 

are denoted as 
Ukh , 

Skh  and SUh , respectively. The 

cumulative distribution function (CDF) and the probability 

density function (PDF) of corresponding power channel 

gains, 2| |Ukh , 2| |Skh  and 2| |SUh , are, respectively, as follows: 
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where 
2 2 2{| | | | | }, ,Uk Sk SUX h h h , [ ]X X = E , [.]E stands for 

expectation operator, Xm  0.5 is the fading severity factor. For 

simplicity, 2 21 2| | | |
,

Sk Ukh h
m m m m= = , 2 1| |Skh

 = , 2 2| |Ukh
 = , 

{1,..., }k K  , 
2| |Uk Ukg h= ,

2| |Sk Skg h=  and 
2| |SU SUg h= . 

3.2. Signal Models 

In this study, a TDMA strategy is considered as Figure 

2. For simplicity, the entire operation duration T is divided 

into N equal time slots; thus, the time duration of each slot 

is δ = T/N. The nth ( {1,..., }n N  ) time slot with the length 

of δ is divided again into K small time slots which is 

denoted as [ ]k n , {1,..., }k K  . The length of each slot 

depends on the offloading time for each SN. 

Due to BC, the transmitted carrier signal, represented 

as s[n], from the dedicated S, can cause an interference to 

the received backscattered signal at U. This interference 

can be eliminated by implementing perfect successive 

interference cancellation (pSIC) at U. Therefore, the signal 

received at U can be given by 

[ ] [ ] [ ] [ ] [ ] [ ],k s
k Sk Uk

Uk Sk

P
y n s n n h n h n w n

d


= +  (4) 

Where, Ps is the transmit power of S,   ( 0 1  ) 

denotes the backscattering reflection coefficient SNs, 

[ ] {0,1}k n 
2 2[ [ ] ] [ [ ] ] 1ks n n= =E E , [.]E  stands for the 

expectation operator, Skd  represents the Euclidean 

distances from the 
thk  SN  to S , and w[n] denotes the 

additive white Gaussian noise (AWGN), which has zero 

mean and variance of σ2. The instantaneous signal-to-noise 

ratio (SNR) received at U is obtained as 
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where 
2 =s sP  , ( ) = s Uk Skd  . 

 

Figure 2. Time diagram of work flow for our proposed system 

3.3. Offloading and Edge Computing Models 

In our work, a partial offloading scheme is considered. 

In this scheme, the smart user nodes with limited energy 

and computation resources can handle their partial tasks 

locally and offload the remainders to U for processing 

through deployed BC. We assume that the server at U 

processes the tasks in a pipeline manner. Each SN’s task 

can be divided into two independent 1k k kL L= - bit and 

2 (1 )k k kL L= − -bit subtasks, where 0 1k   is the task 

dividing ratio and Lk represents the total bit length of the 

kth SN's task. According to Figure 2, the workflow of this 

proposed system is described as follows: 

• During the duration [ ]k n , the 
thk  SN  computes its 1kL

-bit subtask locally and offloads its 2kL -bit remainder to U . 

Throughout the remaining time, it harvests energy from S  by 

employing an RF power harvesting scheme. The corresponding 

executing time at the 
thk  SN  can be expressed as 

1 ,c k k k k k
k

k k

c L c L
t

f f


= =  (6) 

where ck and fk denote the CPU cycles for node k to 

compute one bit and its CPU-cycle frequency. The time 

consumption for offloading is calculated as 
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where W denotes the channel bandwidth for each user k. 

• The U receives the offloading data from the kth SN, 

denoted as off

kSN , and processes the previous received data 

from the ( 1)thk −  SN , denoted as pro

1k−SN , simultaneously. In 

other words, the offloading and computing routines for 

each user are executed at U  in two continuous time slots (

k  and 1k + ). The corresponding executing time at the U  

is obtained as 

2 (1 )
,U U k U k k

k

U U

c L c L
t

f f

−
= =  (8) 

where cU and fU denote the CPU cycles per bit computing 

and the CPU-cycle frequency of U's server. 

Note: Assuming that the position of U remains nearly 

unchanged during each time slot δ and across different time 

slots, it can be moved. Accordingly, the position of U at 
thn  time slot is ( [ ]Ux n , [ ]Uy n , [ ]Uz n ), {1,..., }n N  . We 

further assume that the time of result feedback to each SN  

is small compared to [ ]k n . Thus, it is neglected. 
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3.4. Energy Models 

In our work, we propose that the smart nodes can 

harvests the RF energy from RF station. Thus, the 

harvested energy of each SN is obtained as 

( )
2| |

,h off cSk
k s k k

Sk

h
E P t t

d
 = − −  (9) 

where 0 1   denotes the energy conversion efficiency 

of SN. Assuming that all SNs have the same energy 

conversion efficiency. The smart nodes are designed so 

that the harvested energy is utilized to compute the 1kL -

bit subtask, i.e., 0h

kE  . According to [22], the energy 

consumption of the kth SN is calculated as 

2 2

1( ) ( ) ,c

k k k k k k k k kE c f L c f L  = =  (10) 

where   stands for the effective capacitance coefficients 

of CPU with relation to the CPU architecture in the kth SN. 

Therefore, each task can be divided to satisfy 

.h c

k kE E  (11) 

In other words, we can select the value of task dividing 

ratio, k , according to (9). 

The energy consumption of U consists of two parts: One 

is for computing ( c

UE ) and other is for flying ( f

UE ). The total 

energy consumption for executing in U is obtained as 
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Where, U  stands for the effective capacitance coefficients 

of CPU with relation to the CPU architecture in U. 

Consider UAV having multiple rotors, the power 

consumed when flying in the sky due to gravity force can 

given by [20] 
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where, 
UW  stands for the UAV's weight, g  is the standard 

acceleration of gravity,   is the fluid air density,   is the 

rotor disc area, and n  is the number of rotors. 

4. Performance Analysis 

4.1. Successful Computation Probability (SCP) 

This subsection analyzes the performance analysis 

regarding SCP, denoted as . This criterion is the key 

metric to evaluate the latency performance of MEC systems 

[23]. SCP is the probability that the MEC latency, including 

offloading time and computation time, is lower than the pre-

given time. Considering the condition of 0h

kE  , the SCP of 

this considered system can be defined as follows: 
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The approximately closed-form expression of SCP is 

depicted as Theorem 1. 

Theorem 1. The SCP of proposed backscatter-based 

multi-user UAV-enable MEC IoT system is given by: 
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 is the modified Bessel function of the second kind 

with th  order. 

Proof. See Appendix A. 

4.2. Energy Outage Probability (EOP) 

This subsection analyzes the performance analysis 

regarding EOP of the considered system. The energy 

outage event is determined as the event where the energy 

consumption at each SN is larger than the harvested energy 

(
h

kE ), or the power consumption at U  is larger than the 

allocated energy budget accompanying each node, 
th

kE . 

Therefore, we obtain the EOP defined as follows: 
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The approximately closed-form expressions of EOP is 

depicted as Theorem 2. 

Theorem 2. The EOP of proposed backscatter-based 

multi-user UAV-enable MEC IoT system is given by: 
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Proof. See Appendix B.  

5. Numerical Results and Discussion 

This section assessed the backscatter-based UAV-

enabled MEC IoT network's performance through SCP and 

EOP using Monte Carlo simulations. Table 1 summarizes 

the simulation parameters used [20]. 

Table 1. Typical values of simulation parameters 

Parameters Notation 
Typical 

values 

The average transmit SNR S  0 - 20 dB 

The number of SN K 2, 5, 10 

The Nakagami-m severity factor 1 2,m m  1, 2, 3 

The energy conversion efficiency   0.1, 0.5, 0.9 

The backscattering reflection 

coefficient 
  0-1 

The data dividing ratio k  0-1 

The carrier frequency fc 2 GHz 

The excessive path loss coefficients 
LoS , 

NLoS  
1, 20 

The environment-based parameters a, b 
9.6177, 

0.1581 

The MEC servers CPU frequency at U fU 2 GHz 

The SN CPU frequency fk 1 GHz 

The number of CPU cycle to 

compute 1 bit 
ck, cU 2 

The effective CPU architecture of 

SN and U k , U  10-23 

The channel bandwidth W 1 MHz 

The threshold of SN latency th

kT  0.05, 0.1, 0.2 s 

The stored energy budget 
th

kE  1 kJ 

Standard acceleration of gravity g 9.8 m/s2 

Fluid density of air   1.225 kg/m3 

The task length L 50 – 500 kbit 

Area of rotor disk   0.2 m2 

Number of rotors r 6 

Figure 3 depicts the impact of critical parameters, average 

transmit SNR (γS), on the system performance. Firstly, it is 

observed that increasing γS leads to an enhancement in system 

performance. In simpler terms, the SCP tends to improve as 

the transmit power increases, whereas the EOP tends to 

decrease. It indicates that there is no trade-off between these 

two performance metrics. However, it is noteworthy that as 

γS reaches a reasonably high level, the SCP saturates and the 

EOP drops to deficient levels, indicating that the system's 

performance improvement becomes limited. Furthermore, 

Figure 3 investigates the impact of the Nakagami-m severity 

factor, i.e., m1 and m2. The SCP associated with m1 = 1 and 

m2 = 1 is the smallest, and the EOP is the largest; because, in 

this case, the transmission channels follow Rayleigh fading. 

Moreover, we observe that a higher severity factor m 

corresponds to a better system because the channel quality 

improves. 

 

Figure 3. SCP and EOP versus the average transmit SNR with 

different values of Nakagami-m severity factor 

Figure 4 clarifies the impact of two parameters, the 

UAV's altitude (hU) and the energy conversion efficiency 

(η), on the system performance. The findings indicate the 

presence of an optimal flight altitude for the UAV, which 

yields the highest SCP and the lowest EOP. 

 

Figure 4. SCP and EOP versus the UAV’s altitude with different 

values of energy conversion efficiency 

This phenomenon can be attributed to the dynamic 

interaction between LoS and NLoS propagation as the 

UAV's altitude varies. Therefore, the UAV's altitude 

balances enhanced LoS connectivity and controlled 

transmission losses. This trade-off culminates in 

determining an optimal flight altitude that maximizes SCP 

while minimizing EOP. In addition, the results also show 

that increasing hU reduces EOP but does not affect SCP. 

 

Figure 5. SCP and EOP versus the task length with  

different values of number of SNs 

Figure 5 depicts the impact of the task length (L) with 

three different number of SN cases: K = 2, K = 5, and  
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K = 10. The SCP and EOP curves both agree to show that 

increasing the task length will reduce the system 

performance. The noticeable reason is that increasing L 

means that the offloading and computation processes 

require more time and energy. Another observation is that 

increasing K will reduce the system performance. The 

reason is that the number of SN increases, requiring the 

MEC server at U to support more computations. 

 

Figure 6. SCP and EOP versus threshold of SN latency with 

different data dividing ratio 

 

Figure 7. SCP and EOP versus the backscattering reflection 

coefficient with different bandwidth level 

Figure 6 depicts system performance with data division 

ratio (ρk) and the threshold of SN latency (T). In the three 

cases, we assume that SNs all have the same task division 

coefficient, 0.2, 0.5, and 0.8, respectively. The results 

clearly show the significant impact of T on SCP and EOP. 

Specifically, when T is small, resulting in a small time slot 

(δ), the system performance is low, meaning low SCP and 

high EOP. When T is large, the time budget for the system 

to operate is significant, leading to increased SCP and 

decreased EOP. Meanwhile, ρk significantly impacts EOP 

but does not affect SCP. 

In the final simulation, we investigate the system 

performance under the influence of the backscattering 

reflection coefficient (ξ) and bandwidth (W), as shown in 

Figure 7. As ξ increases, the smart sensor node's ability to 

utilize transmitter RF signals to participate in communication, 

thus improving system performance. Figure 7 also shows that 

the system performance improves as W increases. 

6. Conclusion 

In this paper, we investigated a backscatter-based 

multiple sensor node UAV-enabled MEC IoT network. We 

proposed the TDMA scheme, incorporating a partial 

offloading strategy, a backscattering framework, and an RF 

energy harvesting mechanism. Accordingly, we derive the 

approximate closed-form expressions for the SCP and EOP 

and use these two metrics to evaluate system performance. 

We investigated the impact of critical parameters such as 

transmit power, backscattering reflection coefficient, 

number of sensor nodes, task division ratio, UAV altitude, 

energy conversion efficiency, and threshold tolerance. The 

analysis is further validated through Monte-Carlo 

simulations. The findings of this study highlight the 

importance of selecting an optimal UAV altitude to 

improve latency and energy consumption performance. 

These advancements contribute to the overall goal of 

enabling low latency and effective energy consumption, 

paving the way for more reliable and sustainable 6G 

wireless communication systems. 
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APPENDIX A: PROOF OF THEOREM 1 

For further calculation, first we derive the expressions of CDF of 
k

. By the help of (2), (3) and formula 3.471.9 [24], from the expression of 

k  as (5), after some manipulations we can obtain: 
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where 1 2

1 2

m m x


  
= , ( ).  is the modified Bessel function of the second 

kind with 
th  order. 

Deploying from the definition formula (14), we have: 
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Substituting (A-1) into (A-2), we obtain the expression of SCP as 
(15). This concludes our proof. 

APPENDIX B: PROOF OF THEOREM 2 

From the definition formula (17), we can smoothly prove that 0=  when 

c th

U kE E  or c

kt  . The remaining cases are implemented as follows: 
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Next, we calculate the 
1I  in the case 

2 0c
kt − −  : 
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where step (a) is obtained by applying (2) and (3), step (b) is held by 
applying the Gaussian-Chebyshev quadrature method with Q  is the 

complexity-vs-accuracy trade-off coefficient, 
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In the case 2 0c
kt − −  , 1I  is rewritten as follows: 
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where step (c) is held by applying the Gaussian-Chebyshev quadrature 

method with ( )2 1

1

2

q
q

x
l  

+
= − . Using precisely the same method, we 

can calculate 
2I .This ends our proof. 

 


