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Abstract - Recent MLP-Mixer has a good ability to handle long-

range dependencies, however, to have a good performance, one 

requires huge data and expensive infrastructures for the pre-training 

process. In this study, we proposed a novel model for nuclei image 

segmentation namely Axial Convolutional-MLP Mixer, by 

replacing the token mixer of MLP-Mixer with a new operator, 

Axial Convolutional Token Mix. Specifically, in the Axial 

Convolutional Token Mix, we inherited the idea of axial depthwise 

convolution to create a flexible receptive field. We also proposed a 

Long-range Attention module that uses dilated convolution to 

extend the convolutional kernel size, thereby addressing the issue 

of long-range dependencies. Experiments demonstrate that our 

model can achieve high results on small medical datasets, with Dice 

scores of 90.20% on the GlaS dataset, 80.43% on the MoNuSeg 

dataset, and without pre-training. The code will be available at 

https://github.com/thanhthu152/AC-MLP. 

Key words - Depthwise convolution; MLP-Mixer; Nuclei 

segmentation; Token mixing 

1. Introduction 

The distribution and density of nuclei in the tissues are 

important and necessary markers in cancer diagnosis. 

Therefore, the detection and segmentation of cell nuclei is 

getting more and more attention and is an essential task in 

biomedical engineering. Nuclei segmentation aids in tissue 

structure determination, cell growth analysis, and the study 

of cell responses to environmental changes. On this basis, 

researchers can derive cell characteristics, diagnose disease 

severity, and research drugs. 

Studies on cell nuclei identification have been around 

for a long time. First of all, there is the appearance of the 

microscope, which allows people to see cells with a 

microscopic size. Microscopy supports the acquisition of 

images of cells, from which traditional methods such as 

threshold-based, region-based, and edge-based are widely 

utilized to segment cell nuclei. However, the nuclei often 

have tiny sizes and high distribution densities, which 

causes many difficulties for the traditional segmentation 

techniques. 

The emergence of deep learning techniques in the field 

of Computer Vision brings a novel approach to image 

segmentation, particularly in the realm of medical imaging. 

The presence of Convolutional Neural Networks (CNNs) is 

a leap and opens a series of related studies in image 

processing. In 2015, the U-Net model was introduced, which 

utilized a U-shaped architecture to effectively segment 

medical images. This model extracts multi-scale context 

information through its encoder and reconstructs the input 

size through its decoder, while skip connections are used to 

avoid information loss. Since then, many variants of this 

architecture have been proposed to improve performance. 

Some typical models can be mentioned as Double Unet [2], 

Attention Unet [3], Unet++ [4], ResUnet ++ [5], etc. On the 

other hand, concerned with computational cost and real-life 

applications, researchers began to focus on lightweight 

models. Therefore, depthwise separable convolutions are 

now more commonly used as alternatives for conventional 

convolutions to reduce the number of parameters while still 

achieving high performance. For example, DSCA-Net [6] 

combines depthwise separable convolution with an attention 

mechanism in a U-shape architecture to create a lightweight 

network for accurate medical image segmentation. 

MobileNets [7] is another lightweight model which 

employed depthwise convolutions and was successfully 

embedded in mobile visual applications. Most recently, U-

Lite [8] was introduced as an effective model with less than 

1 million parameters, using axial depthwise convolution, 

which can give promising results on medical datasets. 

Recently, the arrival of Vision Transformer [9] has 

attracted a lot of research and overwhelmed CNNs 

dominance in computer vision. Vision Transformer (ViT) 

applied the Transformer from the Natural Language 

Processing (NLP) domain to Computer Vision by dividing 

an image into many patches and flattening them to vectors 

before taking them as input of the Transformer. With the 

self-attention mechanism, ViT has a better ability to learn 

long-range dependencies and extract global context 

information than CNNs. However, Transformer has a large 

amount of computation and may require a lot of resources 

during the training process. Swin Transformer [10] was 

proposed then to reduce the computational cost by limiting 

self-attention computation to non-overlapping local 

windows. Besides Transformers, Multi-layer Perceptrons 

(MLPs) have also been applied to vision tasks, but are less 

common. MLP-Mixer inherits the patch partition of ViT 

and passes embedded patches through several layers of the 

token mixer and channel mixer. Both these mixing 

operators utilize pure MLP, while they can still achieve 

comparable results to those of CNN-based models and 

transformer-based models on classification tasks. Similar 

to ViT, MLP-Mixer is also successful in extracting global 

information from input images. However, both require a 

large enough dataset to achieve good performance. 

In the field of medical image segmentation, obtaining a 

large data set, particularly for nuclei, can be challenging. 

In the nuclei segmentation task, because the density of cells 

is very thick and the size of a cell is small, experts must 
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take great care and spend a significant amount of time 

accurately segmenting cell nuclei in order to produce a 

high-quality dataset. Moreover, because of the small size 

of nuclei, local receptive fields may help aggregate context 

information from nuclei better. To address these 

challenges, we develop a new model that leverages ideas 

from the MLP-Mixer and axial depthwise separable 

convolution of the U-Lite model. By using axial depthwise 

separable convolution to replace the MLP-Mixer token 

mix, our proposed model has achieved the following 

contributions: 

• Propose Axial Convolution Mixer module based on 

the concept of MLP-Mixer. 

• Propose AC-MLP model for image segmentation task 

with two branches of the encoder and adapt attention to the 

decoder. 

• Experimentally, AC-MLP achieves the state-of-the-

art (SOTA) performance on small datasets like GlaS and 

MoNuSeg using a low number of parameters without pre-

trained. 

2. Related work 

2.1. Axial Depthwise Convolution 

U-Lite [8] takes the usage of axial depth-wise 

convolution as the main operator to aggregate spatial 

information of the feature maps. This module is established 

by simply taking the sum of two separated operators 1 × 7 

and 7 × 1 depth-wise convolution, axial depth-wise 

convolution does not overly increase the number of 

learnable parameters as well as the model's complexity. 

However, it can result in a comparable or even slightly 

better performance due to the inductive bias in the 

receptive field. 

2.2. MLP-Mixer 

Besides Transformers and CNNs, MLP-like models 

have been widely used and are known as a recently 

emerging paradigm for Computer Vision. MLP-Mixer is 

the first study that utilized pure MLP as token-mixers on 

spatial and channel representations of the feature map. 

Specifically, for the image classification task, the image is 

first passed through a per-patch fully-connected layer for 

patch embedding. After that, they are adapted to several 

numbers of mixer layers. Each layer comprises two stages 

separately, one is Token-mixer for spatial feature 

extraction, and the remaining one is responsible for 

Channel-mixing, i.e., encoding features along their channel 

dimension. Finally, a classification header is designed in 

the last layer for the classification tasks. Despite having a 

very straightforward architecture, MLP-Mixer can achieve 

promisingly comparable results on ImageNet's 

classification benchmarks. This new paradigm has inspired 

various architectures for performance improvements, 

including ViP [12], CycleMLP [13], and AS-MLP [14]. 

2.3. Progressive Atrous Pyramid Pooling (PASPP) 

PASPP [15] utilizes multiple atrous convolutional 

layers with different dilation rates and progressive 

concatenations to capture multi-scale representations of an 

object in feature maps. It has been experimented that this 

module can impressively achieve a better performance on 

image segmentation tasks compared to the previously 

proposed module ASPP [16]. Based on the belief that the 

larger the dilation rate is, the more global information the 

model can aggregate, PASPP not only provides a larger 

receptive field to the model compared to traditional 3 × 3 

convolutions but also retains the number of computational 

parameters within a limited resource. 

2.4. Convolutional Block Attention Module (CBAM) 

Inspired by Squeeze and Excitation [17], CBAM [18] 

is regarded as a lightweight efficient attention module that 

considerably improves the performance of CNN 

architectures. A CBAM contains two main stages: channel 

attention and spatial attention. The channel attention 

module applies max-pooling and average pooling on every 

spatial dimension to aggregate important information per 

each channel of the feature maps. They are next passed 

through double fully-connected layers, a sigmoid layer, 

and then multiplied again with the input. This mechanism 

helps to determine which channels are more important than 

other ones. The spatial attention module is implemented 

similarly, however, 7 × 7 convolutions are utilized instead 

of fully-connections due to the limitation of calculation, 

which allows the model to precisely focus on spatial 

representations of the feature maps. 

3. Methodology 

Inspired by the architecture of Axial Attention MLP-

Mixer [19], in this study, we proposed a similar 

architecture with some new enhancements, namely Axial 

Convolution-MLP Mixer (AC-MLP). The specific 

architecture of our proposed model is shown in Figure 1. 

Given an input image 𝐼𝑜 ∈  ℝ3×𝐻×𝑊 . The encoder of our 

proposed model consists of two branches to extract 

features. In the first branch, the image is divided into many 

non-overlapping patches of size 𝑝 × 𝑝. After that, all 

patches are projected to vectors of the same size and 

become the input of a network with 12 successive Axial 

Convolution Mixer blocks to produce context information. 

The output of this network undergoes a bottleneck block 

comprising a PASPP module and Multi-Pooling layers, 

working together to synthesize beneficial features. Parallel 

to the first branch, in the second branch, the input image is 

passed through consecutive Conv Block (Figure 4b) and 

MaxPooling layers to extract context information on 

multiple scales. Finally, after having the features from the 

input image, we combine these features in both branches of 

the model and pass them through the decoder and upscale 

to select information and reconstruct the original size of the 

input image before giving the final prediction mask. 

3.1. Proposed Axial Convolution Mixer 

The effectiveness of Axial Depthwise Convolution 

throughout the U-Lite model has motivated us to exploit 

this module to develop a novel spatial mixing operator, 

serving as a replacement for the token mixing mechanism 

of the MLP-Mixer, with the aim of adapting to the task of 

nucleus segmentation. While global information is 

undoubtedly important in image segmentation, we 

hypothesize that, for nucleus segmentation, local 
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information and dense granularity are the features that 

warrant greater focus. Consequently, the parallel use of 

horizontal and vertical kernels, as implemented in Axial. 

 

Firgure 1. General structure of the proposed model 

 

Figure 2. Proposed Axial Convolution Token Mixing module 

Depthwise Convolution, offers a more flexible 

approach to learning local information, in contrast to 

utilizing MLP networks to capture global spatial 

relationships between pixels, as in the token-mixer 

architecture of the MLP-Mixer. Furthermore, compared to 

Transformer-based models, Axial Depthwise Convolution 

enhances the focus on learning local information along the 

horizontal and vertical dimensions of pixels, which aligns 

well with the compact and densely structured nature of 

nuclei. To address the limitations in learning long-range 

dependencies, we propose a long-range attention module 

(Figure 2b) subsequent to Axial Depthwise Convolution, 

employing dilated convolution to expand the receptive 

field. The mathematical formulation of this module is 

presented as follows: 

𝑦 = GELU(BN(ADC(𝑥)))      (1) 

𝑧 = 𝑦 × Sigmoid (DW1×7,𝑟=1 (DW7×1,𝑟=2(𝑦)))   (2) 

where, 𝑥 is the input features with the shape 𝐶 ×
𝐻

𝑝
×

𝑊

𝑝
;  

𝑧 is the output features; BN, ADC and DW stand for Batch 

Normalization, Axial Depthwise Convolution and 

Depthwise Convolution, respectively, and 𝑟 is the dilation 

rate of the convolution. The new spatial mixer mentioned 

above is used to replace token mixer of MLP-Mixer 

architecture and we have a new module, namely Axial 

Convolution Mixer as show in Figure 2 and Figure 4a. 

3.2. Bottleneck Block 

In the bottleneck of AC-MLP, we utilize the PASPP 

[15] and Multi-Pooling to capture multi-scale 

representations of high-level feature maps. As depicted in 

Figure 3, the Multi-Pooling uses three max-pooling layers 

with different sizes of kernel 𝑘 = 2, 4  and 8. These max-

pooled features are passed through point-wise 

convolutions and then interpolated back to the original 

shape. Finally, we concatenate them with the output of 

PASPP, and one gain feed the encoded features to 1 × 1  
convolution to recover the features' dimension. Different 

from PASPP, Multi-Pooling can focus on the most 

representative characteristics of an image, surpass non-

essential information, and thus give the model an inductive 

bias. The intuition here is that depending on each image 

and data, the nuclei may have different shapes and they can 

stand alone or gather in groups, then a combination of 

convolution and max-pooling operators, where the kernel 

size varies flexibly, is an effective way to detect them. 

 

Figure 3. Bottleneck design of AC-MLP model 

3.3. Decoder Block 

After the initial feature extraction process, wherein 

feature maps are obtained from two branches of the 

encoder, we propose a novel decoder architecture that 

capitalizes on an attention mechanism, as illustrated in 

Figure 4c. To begin, we concatenate the feature maps 

derived from the two branches. Subsequently, a pointwise 

convolution operation is employed to transform and adjust 

the channel dimensions, effectively enhancing the 

subsequent processing. Inspired by the Channel and Spatial 

Attention Module (CBAM) concept, our approach 

differentiates itself by reimagining the arrangement of 

Channel Attention and Spatial Attention into parallel 

blocks, in contrast to the linear configuration seen in 

CBAM. This innovative parallel configuration help the 

model to extract and emphasize crucial insights from both 

the spatial and channel dimensions of the feature maps. The 

outputs of these parallel blocks are then concatenated, 

facilitating the cohesive integration of the identified salient 

features. This unified representation then undergoes 

convolution, utilizing a 3 × 3  kernel, as a pivotal step in 

the subsequent stages of feature refinement. 

4. Experiment 

4.1. Implementation Detail 

4.1.1. Dataset 

To evaluate the effectiveness and efficiency of our 

proposed method, we utilize two histopathological nuclei 

datasets for the image segmentation task. The Gland 

Segmentation (GlaS) dataset [20] introduced in the Colon 

Histology Images Challenge Contest, was created to 

promote research in segmentation algorithms on images of 
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hematoxylin and Eosin (H&E) stained slides. This dataset 

consists of 74 benign images and 91 malignant images in 

total, which is divided into 85 images for training and 80 

images for testing. Multi-organ Nucleus Segmentation 

(MoNuSeg) dataset [21], another nuclei dataset, aims to 

look for the best nuclei segmentation techniques on a 

diverse set of H&E stained histology images obtained from 

multiple organs of patients. This dataset includes 30 

images for training and 14 images for testing, with nearly 

30,000 nuclear boundary annotations. In our experiment, 

all the images are resized to 256 × 256. Furthermore, the 

training images are pre-processed before feeding to the 

model through augmentation techniques including image 

rotating, horizontal flipping, and vertical flipping to enrich 

the training data and avoid over-fitting. 

 

Figure 4. The structure of Axial Convolution Mixer,  

Double Convolution and Decoder Block 

4.1.2. Training strategy 

We conducted the proposed model on the PyTorch 

framework running on NVIDIA Tesla T4 GPU with 16GB 

of memory. The training process was implemented on 100 

epochs with a batch size of 16, where the learning rate was 

initialized at 0.001 and decayed by a factor of 2 after every 

10 epochs. During the training phase, we adopted the 

Adam optimizer [22] with the composite loss function 

between Binary Cross-Entropy (BCE) loss and Dice loss. 

Define 1 × 𝐻 × 𝑊 as the shape of the predicted mask and 

𝑁 = 𝐻 × 𝑊 presents its total number of pixels. The loss 

function employed in the experiment is presented as 

follows: 

𝐿Total(𝑦, �̂�) = 𝛾𝐿BCE(𝑦, �̂�) + (1 − 𝛾)𝐿Dice(𝑦, �̂�)   (3) 

𝐿BCE(𝑦, �̂�) = −
1

𝑁
∑ [𝑦𝑖 log �̂�𝑖 + (1 − 𝑦𝑖) log(1 − �̂�𝑖)]𝑁

𝑖=1   (4) 

𝐿Dice = 1 −
2 ∑ 𝑦𝑖 �̂�𝑖

𝑁
𝑖=1

∑ (𝑦𝑖+�̂�𝑖)𝑁
𝑖=1 +𝜀

    (5) 

Where, 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑁} and �̂� = { �̂�1, �̂�2, … , �̂�𝑁} are 

respectively sets of pixels on the ground truth and the 

predicted mask, where 𝑦𝑖 ∈ {0, 1} and �̂�𝑖 ∈ (0, 1) for all 

𝑖 = 1, 2, … , 𝑁. Besides, 𝜀 was added to avoid the zero-

denominator. In our experiment, 𝛾 = 0.5, and 𝜀 = 1.0. 

4.1.3. Evaluation metric 

To quantitatively evaluate the performance, we utilized 

Dice Similarity Coefficient (Dice) and Intersect over 

Union (IoU) metrics, which are standard evaluation 

indicators typically used for calculating the overlap 

between the ground truth and the predicted mask. The 

mathematical representations of Dice and IoU are 

expressed as follows: 

Dice =
2TP

2TP+FP+FN
    (6) 

IoU =
TP

TP+FP+FN
    (7) 

where TP, FP, FN respectively stand for True Positives, 

False Positives and False Negatives between the ground 

truth and the prediction of an image. 

4.2. Representative Results 

Figure 5 and Figure 6 show some segmentation results 

of AC-MLP model on GlaS and MoNuSeg datasets, 

respectively. It is observed that the predictions from our 

model match well with the ground truths. Specifically, the 

model can properly detect the boundary of each nucleus on 

GlaS, and maintain the spatial arrangement of the multi-

organ nuclei on MoNuSeg, even though they are more 

numerous and varied. 

 

Figure 5. Some representative results of AC-MLP for  

Gland Segmentation (GlaS) 

4.3. Comparative Results 

Table 1 and Table 2 evaluate the quantitative results on 

two nuclei datasets GlaS and MoNuSeg, respectively. We 

compared our model with other state-of-the-art 

architectures including both the CNN-based and 

Transformer-based models. As can be seen from the tables, 

our proposed method outperforms the previously proposed 

models in terms of Dice and IoU metrics on both datasets. 

Specifically, AC-MLP reaches Dice scores of 90.20% on 

the GlaS dataset and 80.43% on the MoNuSeg dataset. This 

demonstrates the effectiveness of our approach in 

accurately segmenting nuclei in histopathology images. 
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In Table 3, we further demonstrate the efficiency of the 

AC-MLP model, where its Dice and IoU results surpass 

those of the other MLPs-based variants. One noticeable 

realization is that AC-MLP has significantly fewer 

parameters than MLP-Mixer, with a total of 8.5M 

parameters, while still delivering good performance. 

 

Figure 6. Some representative results of AC-MLP for  

Multi-organ Nucleus Segmentation (MoNuSeg) 

Table 1. Quantitative evaluation results on GlaS dataset 

compared to previously proposed model 

Type Model Dice IoU 

CNNs baselines 

UNet [1] 77.78 65.34 

Unet++ [4] 78.03 65.55 

ConvUNeXt [23] 78.04 64.42 

UneXt [24] 86.49 77.77 

Transformers 

baselines 

Axial Attn Unet [19] 76.30 63.03 

MedT [25] 81.02 69.61 

Swin Unet [26] 88.25 79.86 

Ours AC-MLP 90.20 82.89 

Table 2. Quantitative evaluation results on MoNuSeg dataset 

compared to previously proposed models 

Type Model Dice IoU 

CNNs baselines 

UNet [1] 76.45 62.86 

Unet++ [4] 77.57 66.20 

ConvUNeXt [23] 73.70 60.07 

UneXt [24] 78.04 64.42 

Transformers 

baselines 

Axial Attn Unet [19] 76.83 62.49 

MedT [25] 79.55 64.42 

Swin Unet [26] 78.49 64.72 

Ours AC-MLP 80.43 67.46 

Table 3. Quantitative comparisions with variants of  

MLPs on GlaS dataset 

Methods 
Patch 

size 

Depth 

(layer) 

Params 

(M) 
Dice IoU 

MLP-Mixer [11] 16 24 100 82.83 70.81 

Permutator [12] 8 36 74 84.21 72.80 

AxialAtt-MLP [19] 8 24 29 84.99 73.97 

Ours 8 12 8.5 90.20 82.89 

5. Conclusion 

In this paper, we leverage the primary knowledge about 

Axial Depthwise Convolution and MLP-Mixer 

architecture to propose a new model AC-MLP for 

histopathological nuclei image segmentation. Our novel 

module, Axial Convolution Token Mixing, is designed to 

capture large-scale information and preserve long-range 

dependencies. Experimental results show that AC-MLP 

can achieve SOTAs performance meanwhile having an 

efficient number of computational parameters. In the 

future, we will thoroughly consider the encoder's CNN-

based branch to further improve the model's performance 

for the large use case of medical images on the 

segmentation task. 
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