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Abstract - The rapid development of manufacturing sectors in the 

contemporary Industry 4.0 era has prompted enterprises to adopt 

increasingly systematic, streamlined, and efficient organizational 

structures. In this scenario, production scheduling has arisen as an 

essential function that contributes to the effective allocation of 

organizational resources in the production process, while 

shortening production time and satisfying customer deadlines. 

Consequently, the objective of this study is to develop an advanced 

method to optimize the production scheduling problem. 

Accordingly, this study proposes an innovative genetic algorithm-

based master schedule (GA-MS) focused on minimizing makespan. 

The proposed method is implemented in various benchmark 

datasets on job shop scheduling problems. Compared with some 

benchmark methods such as priority rules-based approaches, 

branch and bound algorithm (B&B), and shifting bottleneck 

algorithm (SB), the proposed GA-MS shows an outstanding 

performance concerning the tested datasets. Its application in 

practical manufacturing factories is highly recommended. 

Key words – Job shop scheduling problem; genetic algorithm; 

master schedule. 

1. Introduction 

In today's competitive environment, production 

scheduling plays a very important role in the sustainability 

of enterprises within the marketplace. To fulfill customer 

demands, such as timely delivery, organizations must 

develop a precise strategy, adeptly allocate, and utilize 

available resources effectively and reasonably. If a firm 

underestimates the importance of production scheduling, it 

may face many difficulties in its operations, resulting in 

resource inefficiency, reduced productivity, and substantial 

cost increases [1]. 

There are many types of production scheduling models 

such as single machine scheduling model, flow shop, job 

shop scheduling model, open shop, and so on. However, 

the job shop scheduling problem (JSSP) is the most popular 

one in practical issues. JSSP is a production or service 

model in which each job has a separate route through 

different machines or equipment. In the JSSP model, there 

is always a conflict over resources such as human resources 

and equipment. Thus, JSSP is a difficult problem among 

all types of scheduling problems [2]. 

The JSSP in manufacturing industries is characterized 

by multifunctional machinery and equipment that produces 

multiple products with a wide range of features processed 

on a variety of machines, each of which can process a large 

number of details [3]. For example, printed circuit boards 

in the semiconductor industry are often produced in the 

form of job shops; orders are usually a certain batch of 

products, carried out through a given route with specific 

execution times. 

The JSSP is classified as the NP-hard (Non-

Polynominal-hard) problem and cannot be solved like 

normal linear programming problems [4]. Various meta-

heuristics approaches have been proposed to solve JSSP, 

such as genetic algorithms (GA) [5, 6], evolutionary 

algorithms [7, 8], ant colony optimization [9], and particle 

swarm optimization (PSO) [10]. Among these meta-

heuristics approaches, GA is the most popular one for 

solving optimization problems [11]. 

Thus, this study proposes an innovative genetic 

algorithm-based master schedule (denoted as GA-MS) to 

optimize the JSSP. A master schedule (MS) is a matrix that 

shows the sequence of jobs processed in each machine. 

Each MS is coded as a chromosome. An innovative method 

is developed to generate numerous MS for the initialization 

of GA procedure in which each MS can avoid infeasible 

solutions due to the job’s sequence constraint. Thereafter, 

the genetic operation is implemented to determine the 

optimal solution to minimize makespan for JSSP. 

2. Related works 

2.1. Overview of JSSP 

Table 1. Notations of JSSP  

n Number of jobs 

m Number of machines  

i Index of machines, i=1, 2,…, m 

j Index of jobs, j=1, 2,…, n 

pij Processing time of job j on machine i 

xij Starting time of job j on machine i 

rj Release date/ Ready date of job j 

dj Due date of job j 

Cj Completion time of job j  

𝐶𝑚𝑎𝑥 Make-span 𝐶𝑚𝑎𝑥= max{Cj: j = 1, 2, …, n} 

Fj Flow time job j 

Lj Lateness (Lj = Cj – dj) 

Tj Tardiness Tj = max (0, Lj). 

The classical JSSP is identified in manufacturing in 

which n different jobs/products are to be scheduled on m 

different machines, subject to two main sets of constraints 

which are the precedence constraints and the conflict 

constraints. Each job has a different sequential operation. 

The processing time of each job on machines is known, 

consistent, and independent of the schedules on machines. 
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The objective of JSP is to sequence jobs on machines and 

specify the starting time and ending time of each job to 

minimize certain performance. In this case, the objective 

function is to minimize makespan. Some notations of JSSP 

are listed in Table 1. 

The problem can be modeled as follows: 

Objective function 

Min 𝐶𝑚𝑎𝑥     (1) 

S.t. 

∑ 𝑌𝑖𝑗𝑗′ = 1𝑛
𝑗′=1
𝑗′≠𝑗

    (2) 

∑ 𝑌𝑖𝑗𝑗′ = 1𝑛
𝑗=1
𝑗≠𝑗′

    (3) 

xij+ pij ≤ xi’j     (4) 

xij+ pij ≤ xij’ + M(1 − Yijj’)   (5) 

xij’+ pij’ ≤ xij + MYijj’    (6) 

xij≥ rj≥ 0     (7) 

Cj = xlj + plj     (8)  

Eq. (1) is used for the objective function that is 

minimizing make-span 𝐶𝑚𝑎𝑥= max{Cj: j = 1, 2, …, n}. 

Eq. (2) indicates that on each machine i, when a job 

completes its processing, only one job in the set of 

available jobs is selected for processing. Eq. (3) means an 

operation of a job should follow only one processor. Eq. 

(4) is used for the precedence constraints. The precedence 

constraints ensure that each operation of a certain job is 

processed sequentially. Eq. (5) and (6) present the conflict 

constraints where M is a constant that is assumed to be a 

big number. The conflict constraints guarantee that each 

machine processes only one job at a time. Eq. (7) is to make 

certain that any job cannot start before its ready time. Eq. 

(8) is a formulation to identify the completion time of each 

job on each machine. Variable “l” in Eq. (8) is the last 

machine that product j is processed on. Eq. (9) explains the 

binary variable 𝑌𝑖𝑗𝑗’. 𝑌𝑖𝑗𝑗’ = 1 if job j is produced before job 

j’ on machine i. Unless, 𝑌𝑖𝑗𝑗’ will get a value of 0.  

2.2. Priority rules-based methods for scheduling problems 

This section introduces some methods to solve the 

scheduling problems based on the priority rules. A priority 

rule is a type of policy that determines a specific 

sequencing choice for each time a machine idles. A priority 

rule is a type of policy that determines a specific 

sequencing choice for each time a machine idles [12]. 

Some priority rule-based methods can be listed as follows: 

(1) Earliest Due Date (EDD): The job with the earliest 

due date is selected to be executed first in which the goal 

is to minimize maximum lateness. 

(2) Longest Processing Time (LPT): the sequence of 

jobs depends on its processing time. The job with the 

largest processing time will be scheduled first. This rule is 

usually applied in parallel machine models to balance the 

workload across machines. 

(3) Weight Shortest Processing Time (WSPT): The job 

with the largest ratio (wj/pj) is done first. This rule aims to 

minimize the total weighted completion time ∑ 𝑤𝑗𝐶𝑗. When 

all weights are equal, the WSPT rule becomes the SPT rule. 

(4) Minimum Slack (MS): When a machine is idle at 

time t, the remaining slack time of each job at that time t is 

defined as: 

Slack = (dj – pj – t)     (10) 

Slack will be negative for late jobs, zero for on-time 

jobs, and positive for early jobs. 

(5) Shortest Set-up Time (SST): This rule selects the job 

that has the smallest set-up time to implement first. 

(6) Least Flexible Job (LFJ): This rule selects the job 

with the least flexibility to process (the least flexible job 

can only be executed on a certain number of machines or 

processed by the fewest number of machines). This rule is 

suitable for the heterogeneous parallel machine model. 

(7) Critical Path (CP): Select the job on the critical 

path to perform first, suitable for jobs with precedence 

constraints. 

(8) Largest Number of Successors (LNS): Choose the 

job with the longest list of following jobs to do first. 

2.3. Heuristic methods for JSSP 

Branch and Bound (B&B): The B&B [13] constitutes 

an enumeration technique whereby all conceivable job 

sequences are cataloged within a hierarchical structure. 

Subsequently, the array of scheduling tables is sequentially 

eliminated by demonstrating that the target values 

associated with all schedules exceed a predetermined lower 

bound. This lower bound is defined as being greater than 

or equal to the target value of a previously attained 

schedule. The B&B is extensively employed to ascertain 

an optimal solution to the scheduling problem. 

Nonetheless, it is characterized by significant time 

consumption, as the number of nodes is often very large. 

Genetic Algorithm (GA): GA [5, 6] aims to develop 

solutions that outperform their parents by utilizing diverse 

methodologies. GA begins with the initialization step, which 

simultaneously creates a population with many solutions. 

The best solutions are then selected from the generated 

alternatives. Thereafter, genetic operators, including 

crossover and mutation processes, are used for these selected 

individuals to generate offspring under the principle of an 

evolutionary process, i.e., the next generation is always 

better than the previous generation. This iterative procedure 

persists until an optimal solution is attained. 

Particle Swarm Optimization Algorithm (PSO): PSO 

[10] is an algorithm designed to address optimization 

problems on an intelligent population model or intelligent 

swarm. PSO is a straightforward but efficient technique for 

optimizing continuous nonlinear objective functions. It has 

been effectively applied to solve numerous function 

extremum problems as well as multi-objective problems. 

This study uses GA-based MS to optimize the JSSP. GA is 

selected among other heuristic methods due to its effectiveness 

has been proven in many optimization problems [5, 6]. 

Y
ijj’

 = 
0   otherwise 

1   if job j is before job j’ on machine i 
 (9) 
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3. Proposed GA-MS for JSSP 

The idea for the proposed GA-MS to solve the JSSP is 

developed based on the MS. Each MS is a solution for the 

JSSP, i.e., a sequence of jobs to be processed on machines. 

The procedure of the proposed GA-MS begins with the 

initialization process based on designing and generating the 

MS. Then, the proposed GA-MS will follow the general 

procedure of genetic operation until obtain optimal solution. 

The details will be presented in the following subsections. 

3.1. Master Schedule 

MS is a combination of schedules for each job/product 

on each machine in the production process. Note that the 

processing time is known, consistent, and independent of 

the schedules on machines. Therefore, the result of the 

JSSP is to know the schedules for jobs/products on all 

machines, which is called the MS. However, each product 

has to follow its processing sequence which is known as 

precedence constraint. Thus, it is necessary to consider 

how one machine's schedule will affect the schedules of the 

remaining machines when generating a feasible MS.  

An example is given to illustrate how to generate an 

MS. Given a JSSP with 3 jobs and 2 machines, the 

sequence of performing each job on the machines is shown 

in Table 2. The number in a row in Table 1 represents the 

order of machines that process jobs. For instance, Job 1 (J1) 

is processed on M1 first, then goes to M2. The sequence of 

Job 2 (J2) is on M2 first then moves to M1. 

Table 2. Sequence matrix in JSSP 

Sequence 
Machine 

M1 M2 

Job 

J1 1 2 

J2 2 1 

J3 1 2 

The processing time of a job on one machine is shown 

in Table 3. It is identified based on the job row and machine 

column. For instance, the processing time of J1 on M1 is 

14; the processing time of J2 on M1 is 6. 

Table 3. Sequence matrix in JSSP 

Processing Time 
Machine 

M1 M2 

Job 

J1 14 16 

J2 6 4 

J3 2 8 

Table 4 illustrates an MS. In the MS matrix, the 

schedule on one machine is represented in an equivalent 

column of the machine. For instance, the sequence of jobs 

processed on machine M1 is J2-J1-J3, and on machine M2 

is J1-J2-J3. 

Table 4. An illustration of an MS 

Master Schedule 
Machine 

M1 M2 

Job 

J1 2 1 

J2 1 2 

J3 3 3 

Referencing the MS in Table 3, the solution is infeasible 

because the schedule conflicts with the processing sequence 

in Table 1. For instance, M1 cannot process J2 first since it 

has to wait for the completion of J2 on M2. However, 

according to the MS, J2 cannot be processed on M2 because 

M2 has to process J1 first. Similarly, J1 cannot be processed 

on M2 due to the processing sequence and J1 needs to go to 

M1 first. As a result, the schedule is blocked. 

Thus, this study develops a method to generate an MS 

that can avoid infeasible solutions. The concept to generate 

the feasible MS is to select one machine as the “Main 

Machine”. Schedules on other machines are based on the 

schedule on the Main Machine and the sequence matrix. 

For the above example, suppose that we select M1 as 

the Main Machine, and assign the schedule on M1 as Table 

4. Then, we will generate the schedule on M2 as follows: 

Step 1: Consider the column M2 of the sequence 

matrix, only J2 is available to be processed in M2, hence 

assign J2 to M2. The result is illustrated in Table 5. 

Table 5. An illustration to generate a feasible MS 

Sequence 
Machine Master 

Schedule 

Machine 

M1 M2 M1 M2 

Job 

J1 1 2 

Job 

J1 2  

J2 2 1 J2 1 1 

J3 1 2 J3 3  

Step 2: Due to Step 1, J2 is assigned to be the first in 

M2; hence J2 can be processed on M2, then on M1. When 

M1 completes J2, it will continue with J1 without violating 

the J1 processing sequence. After J1 is completed, J3 is 

processed on M1 as scheduled on M1 is J2-J1-J3. The 

current schedule is presented in Table 6. In the sequence 

matrix, “0” means already finished jobs while “1” means 

available jobs to be processed. 

Table 6. An illustration to generate a feasible MS  

Sequence 
Machine Master 

Schedule 

Machine 

M1 M2 M1 M2 

Job 

J1 0 1 

Job 

J1 2  

J2 0 0 J2 1 1 

J3 0 1 J3 3  

Step 3: Both J1 and J3 are available, we assign them in 

M2 based on the available time rule, which is the sooner 

the product is available, the higher the probability to be 

assigned before the others. This rule can enhance the 

diversity of solutions to large-scale problems. The 

schedule shown in Table 7 is a feasible MS. 

Table 7. An illustration to generate a feasible MS 

Sequence 
Machine Master 

Schedule 

Machine 

M1 M2 M1 M2 

Job 

J1 0 1 

Job 

J1 2 2 

J2 0 0 J2 1 1 

J3 0 1 J3 3 3 

3.2. Proposed GA-based MS 

3.2.1. Chromosome representation 

A chromosome is coded as a feasible MS. According to 

Section 3.1, a feasible MS is a matrix type where the 
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schedule on each machine is shown in the path 

representation. For instance, the sequence in M1 in Table 

7 is J2→ J1→ J3. Because of precedence constraints, each 

job will follow its processing sequence. It leads to the 

schedules in the path representations that have different 

length sizes. Table 8 illustrates this case.  

Table 8. An MS with different length sizes in each machine 

Machine Job 

M1 J1 J3 J4 J2 

M2 J4 J2 J3  

M3 J2 J3 J1 J4 

Thus, a feasible MS should be coded in the matrix 

representation with the length consistently. From Table 8, 

an MS with the same is transformed and shown in Table 9. 

The number in Table 9 shows the order of jobs that are 

processed in each machine. For instance, J1 is processed in 

M1 first, thus the cell M1J1=1. J1 does not go to M2, so 

the cell M2J1=0. Similarly, J1 is executed in M1 in the 3rd 

order. Thus, the cell M3J1 gets a value of 3. This way is 

used to transform all jobs in Table 8 to Table 9.  

Table 9. An MS in the matrix representation 

Machine Job 

 J1 J2 J3 J4 

M1 1 4 2 3 

M2 0 2 3 4 

M3 3 1 2 4 

3.2.2. Initialization 

Each MS represents a chromosome. To generate a 

population-based MS, the study designs to code a number 

that is equivalent to a schedule on each machine. Following 

the process to generate an MS, after choosing a Main 

Machine, the sequence of jobs processed on the Main 

Machine is determined. The number of possible schedules 

also has to be defined on the Main Machine. For example, 

if we have a job list including n jobs that will be processed 

on the Main Machine; it means we will have n factorial 

permutation schedules of n jobs. Each possible schedule is 

equivalent to one unique value. Based on the population 

situation of each iteration, each individual (chromosome) 

is represented by one value. Converting the value of an 

individual into one unique schedule on the Main Machine 

will be followed in these steps. 

Step 1 

Order the job list including n jobs 

Pick up Value 

Calculate Order = roundup (Value/(n-1)!) 

Select a job on the list as the first order at machine.  

Step 2  

Update Job List: (n-1) jobs 

Order the remaining job list 

Calculate Update Value = previous Value - (n-1)! 

*(previous Order-1) 

Calculate Update Order = roundup (Update 

Value/((n-1)-1)!) 

Select a job on the list as the second order at machine 

Step 3: Repeat step 2 until the final job on the list 

Table 10 shows the possible schedule of 4 jobs on the 

Main Machine. The schedules of these jobs in other 

machines are determined based on the process of 

generating an MS. Then, all possible MSs are used for the 

initial population. 

Table 10. Schedule on Main Machine with n=4 

Value Schedule Value Schedule 

1 1 – 2 – 3 – 4 13 3 – 1 – 2 – 4 

2 1 – 2 – 4 – 3 14 3 – 1 – 4 – 2 

3 1 – 3 – 2 – 4 15 3 – 2 – 1 – 4 

4 1 – 3 – 4 – 2 16 3 – 2 – 4 – 1 

5 1 – 4 – 2 – 3 17 3 – 4 – 1 – 2 

6 1 – 4 – 3 – 2 18 3 – 4 – 2 – 1 

7 2 – 1 – 3 – 4 19 4 – 1 – 2 – 3 

8 2 – 1 – 4 – 3 20 4 – 1 – 3 – 2 

9 2 – 3 – 1 – 4 21 4 – 2 – 1 – 3 

10 2 – 3 – 4 – 1 22 4 – 2 – 3 – 1 

11 2 – 4 – 1 – 3 23 4 – 3 – 1 – 2 

12 2 – 4 – 3 – 1 24 4 – 3 – 2 – 1 

3.2.3. Evaluation of Fitness Value 

The study considers minimizing the value of makespan. 

Makespan is the total time required to complete a set of 

jobs from the beginning of the first job to the end of the 

final job.  

Make-span 𝐶𝑚𝑎𝑥= max{Cj: j = 1, 2, …,n}  (10) 

3.2.4. Genetic operation 

The genetic operation includes the selection, crossover, 

and mutation process. The proposed GA-MS employs the 

Roulette Wheel method for the selection process to choose 

the parent chromosomes for producing the next generation. 

Regarding the crossover process, the traditional one-point 

crossover is utilized in which a random position in two 

selected chromosomes is picked up to perform crossover. 

Similarly, the mutation process is performed on a schedule 

of the Main Machine by randomly selecting two jobs and 

swapping two jobs at selected locations. 

The offspring are produced after the genetic operation. 

The process is repeated to evaluate the fitness values of the 

offspring and continue with the genetic operation to 

reproduce the next generation. This process is repeated 

until the stopping criteria are met.  

Some advances are designed in the proposed GA-MS. 

First, parameters are adjusted to encourage diversity during 

early iterations, thereby enhancing the exploration of the 

global optimum. Additionally, to improve exploitation to 

the local optimum, 10% of the population is replaced by 

very good solutions when the total number of iterations 

exceeds 90% or the best solution consistently persists for 

40% of the total iterations. This strategy enables the 

population to conduct a dense search for the very best 

answers. To cut down on running time, the program is 

designed to self-terminate if the optimal solution remains 

unchanged after 50% of the total iterations. 
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4. Experimental Result 

4.1. Parameter setting 

To implement the proposed GA-MS, some parameters 

need to be set up such as the number of iterations (ItNum), 

population size (Popsize), probability of crossover: 

(Prob_CO), probability of Mutation (Prob_Mut). The 

values of ItNum and Popsize are chosen according to the 

experimental results of some previous research. The 

crossover rate Prob_CO is from 0.8 to 1.0. A high 

crossover rate is selected to lead to premature convergence. 

The mutation rate Prob_Mut is usually from 0.005 to 0.1. 

In this case, the high mutation rate is selected to enhance 

diversity. Finally, we experiment with multi-trials and 

determine the parameter for the proposed GA-MS as 

follows: ItNum = 200, Popsize = 100, Prob_CO = 0.8, and 

Prob_Mut = 0.1 

4.2. Dataset 

Ten tested datasets collected from OR-Library 

(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.

html) are employed to implement and evaluate the 

performance of the proposed GA-MS. These datasets are 

usually used as the benchmarks for JSSP. The tested 

datasets can be classified into three types: 1) small-scale 

problems with n, m  4; 2) medium-scale problems with 

4 < 𝑛, 𝑚  10; 3) large-scale problems with 𝑛, 𝑚 > 10. 

There are three small-scale datasets, four medium-scale 

datasets, and three large-scale datasets.  

4.3. Result analysis 

To evaluate the effectiveness of the proposed GA-MS, 

some benchmark algorithms are also used to compare its 

performance. This study selects the EDD rule since it is the 

most popular one among other priority rule-based methods. 

Besides, B&B and shifting bottleneck (SB) methods are 

also chosen as benchmark algorithms due to their simple 

but straightforward and efficient in solving JSSP.  

Table 11. The experimental result 

Dataset EDD B&B SB GA-MS 

1 32 28 28 29 

2 35 32 31 26 

3 38 33 33 30 

4 461 262 262 273 

5 215 138 150 131 

6 142 110 118 104 

7 837 790 798 736 

8 1286 1022 1022 983 

9 1854 1682 1676 1392 

10 2717 2523 2598 2152 

The proposed GA-MS is implemented 20 times on each 

tested dataset and its average result is obtained. Table 11 

shows the results of the proposed GA-MS with the three 

benchmark algorithms. The value in Table 11 is the 

makespan in which the smaller makespan is the better 

algorithm. The makespan was computed for each method 

based on Eq. (10) with its notation presented in Table 1. 

The result in Table 11 exhibits that the best makespan 

values vary based on the scale of problems. For small-scale 

problems, which are shown by the result of datasets 1 to 3, 

it is obvious that the GA-MS outperforms the other 

benchmarks since it achieves two best makespans on 

datasets 2 and 3. The B&B and SB algorithms rank the 

second order with the best makespan on dataset 1. EDD 

cannot obtain any best makespan on small-scale datasets. 

However, there is not a big difference between these 

algorithms in terms of makespan in these datasets. For 

example, the best makespan of dataset 2 provided by GA-

MS algorithms is 26 while the worst makespan obtained by 

EDD is 35. The gap in makespan between GA-MS and 

B&B is also small with only 6. 

 

Figure 1. The comparison results on different datasets 

Regarding the medium-scale problems from datasets 

4 to 7, the proposed GA-MS is still the best one since it 

obtains the best performance on 3 datasets. Especially, 

the difference in makespan between the proposed GA-MS 

and EDD method is relatively large. This illustrates the 

effectiveness of the proposed GA-MS when the scale of 

problems increases. The result is similar to the large-scale 

problems shown in datasets 8 to 10. It is noted that as 

problem sizes rise, the makespan gaps between the 

suggested GA-MS and B&B and GA-MS and SB also 

widen. Generally, heuristic methods such as EDD, B&B, 

and SB are ineffective for large and complicated 

problems. The proposed GA-MS can find the optimal 

solutions for these JSSPs quickly and efficiently. The 

computational time to implement the proposed GA-MS is 

also promising. It only takes from few seconds for the 

small-scale dataset to less than 5 minutes for the large-

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
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scale datasets. Figure 1 illustrates the experimental result 

for better visualization.  

Figure 2 exhibits the schedule of a JSSP obtained by 

the proposed GA-MS for illustration. In this example, the 

dataset is medium-scale with 10 jobs and 6 machines.  

The jobs are consecutively assigned to machines.  

For instance, the sequence of jobs on machine 1 is J4-J10-

J5-J1-J8. The makespan obtained by the proposed  

GA-MS is 131.  

 

Figure 2. A schedule of a JSSP obtained by GA-MS 

5. Conclusion 

The analytical results obtained in this study 

demonstrate that the implementation of GA-MS in 

addressing the JSSP to minimize makespan has yielded 

more favorable outcomes in comparison to those produced 

by empirical algorithms such as B&B and SB. However, 

due to the nature of the genetic and search mechanism, the 

proposed GA-MS is likely to identify superior solutions 

but does not guarantee optimality in every instance. This 

algorithm is capable of addressing many problems 

characterized by varying scales and significant complexity, 

effectively tackling challenges associated with large-scale 

problems that are difficult to handle when using the B&B 

and SB algorithms. 

The JSSP can be extended in future research with multi-

objective functions such as minimizing maximum lateness 

and makespan simultaneously or considering extending the 

objectives functions such as minimizing tardiness or 

maximizing resource utilization. Besides, the comparison 

result can be performed on various optimization techniques 

such as Particle Swarm Optimization or Simulated 

Annealing. Moreover, there are various constraints on the 

expansion of the problem. For instance, it still assumes that 

there are always enough raw materials during the 

production process. It is also expected that the orders will 

not encounter any problems throughout this period. Thus, 

future research can consider extending these constraints to 

increase the applicability of the JSSP.  
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