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Abstract - This paper demonstrates that, using multiple data 

points around each gateway allows for the creation of accurate 

coverage heat maps by using a proposed LoRaWAN coverage 

estimation algorithm. This method effectively identifies areas 

with varying signal strength across Da Nang City, highlighting 

where additional gateways are needed to improve network 

reliability. Unlike previous studies, this research considers 

environmental factors such as topography and urban structures, 

enhancing prediction accuracy. This technique would be essential 

for optimizing essential for optimizing LPWAN deployments and 

ensuring efficient resource utilization. Future efforts will focus on 

refining neural network models and integrating real-time data to 

support scalable Smart City solutions and a more robust 

connectivity infrastructure, with this work planned for future 

research. 

 Tóm tắt - Bài báo này chứng minh rằng, việc sử dụng nhiều điểm 

dữ liệu xung quanh mỗi gateway cho phép tạo ra các bản đồ nhiệt 

thể hiện vùng phủ sóng chính xác nhờ thuật toán ước lượng phủ 

sóng LoRaWAN được đề xuất. Phương pháp này được áp dụng 

để xác định hiệu quả các khu vực có cường độ tín hiệu khác nhau 

tại thành phố Đà Nẵng, làm nổi bật những vị trí cần thêm gateway 

để cải thiện độ tin cậy của mạng. Khác với các nghiên cứu trước 

đây, nghiên cứu này xem xét các yếu tố như môi trường, địa hình 

và cấu trúc đô thị, giúp nâng cao độ chính xác của dự đoán vùng 

phủ sóng. Kỹ thuật này rất quan trọng để tối ưu hóa việc triển khai 

mạng LPWAN và đảm bảo sử dụng tài nguyên hiệu quả. Các 

nghiên cứu trong tương lai sẽ tập trung vào việc tinh chỉnh các 

mô hình mạng nơ-ron và tích hợp dữ liệu thời gian thực để hỗ trợ 

các giải pháp thành phố thông minh và có thể mở rộng cơ sở hạ 

tầng kết nối một cách nhanh chóng. 
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1. Introduction 

Low Power Wide Area Networks (LPWANs) have 

recently garnered significant attention in Southeast Asia 

due to their distinctive qualities, including low power 

consumption, extensive coverage, and cost-effective 

deployment. Among these, LoRaWAN stands out as a 

globally standardized LPWAN technology, thanks to the 

efforts of the LoRa Alliance. LoRaWAN is particularly 

suitable for various IoT applications such as Smart 

Tourism, Smart Agriculture, and Smart Cities [1]. Da 

Nang, the fifth-largest city in Vietnam with over one 

million inhabitants, serves as the commercial and 

intellectual hub of Central Vietnam and is an ideal 

candidate for implementing such technologies. 

To deploy numerous LoRaWAN gateways around a 

city, for example in a smart city application, accurately 

estimating LoRaWAN network coverage is crucial for 

effective planning and deployment, especially in urban 

and large areas. This estimation allows for the strategic 

placement of gateways to ensure optimal network 

performance and coverage. By understanding the 

coverage areas and potential signal gaps, planners can 

determine the most efficient locations for gateways to 

maximize connectivity and minimize interference. This 

approach not only improves the reliability and quality of 

the network but also ensures cost-effectiveness by 

preventing the over-deployment of gateways. 

Furthermore, accurate coverage estimation helps 

anticipate and address environmental factors and 

topographical challenges that may affect signal strength 

and reliability. Ultimately, thorough coverage estimation 

is essential for the successful implementation and 

scalability of LoRaWAN networks, supporting various 

IoT applications and enhancing the infrastructure of smart 

cities [1]. 

A critical aspect of deploying the Smart City model 

involves ensuring comprehensive network coverage across 

the entire city. The study in [2] investigates LoRaWAN 

network coverage through real-life measurements 

conducted in Oulu, Finland. This research measured the 

received signal strength from various locations within the 

city, demonstrating a maximum communication range of 

over 15 km on land and nearly 30 km on water. Another 

study [3] employs a combination of real-world 

measurements and high-fidelity simulations to show that 

three gateways are sufficient to cover a dense urban area 

within an approximately 15 km radius. 

Research by [4] adopts a different approach by 

evaluating multiple simulation tools, including Xirio, 

Coverage Prediction and Analysis Software, Radio 

Mobile, and Tower Coverage, to determine the most 

suitable tool for LPWAN networks. Their findings indicate 

that the Xirio tool offers the most accurate coverage 

simulation for LoRaWAN technology. However, they 

suggest that the final evaluation should integrate 

simulation results with real-world measurements. 

The study in [5] focuses on the coverage and capacity 

analysis of LoRaWAN for typical massive IoT applications 

in both urban and suburban areas, utilizing the simulation 

tool Forsk Atoll 3.3.2. Similarly, the research in [6] 
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deploys a LoRaWAN network and assesses signal quality 

and coverage to identify blank spots on the map. 

In another study, [7-8] introduces a cost-effective, 

open-source technical solution and measurement 

procedure for evaluating LoRaWAN network coverage in 

dense urban environments. By assessing connection link 

quality parameters, they developed a testing methodology 

to determine the operational coverage of the deployed 

network. The study by [9] implements an assessment of 

radio network coverage, aiming to propose a new 

methodology for selecting measurement points during 

coverage and signal quality assessments. Finally, the 

research in [10] provides recommendations for more 

effective network deployment by optimizing the use of 

LoRaWAN features, while the study in [11] analyzes 

LoRaWAN network signal coverage and quality 

parameters in real-time, using a case study of water quality 

monitoring along the Cikumpa River in Depok City. 

Most of the research has concentrated on LoRaWAN 

network coverage using simulations and real-world 

measurements. However, these studies do not fully account 

for environmental factors influenced by topographical 

conditions. Additionally, the estimation of LoRaWAN 

network coverage based on real environmental conditions 

has not been thoroughly examined. 

In this research, an estimation algorithm is proposed 

based on sparse coverage measurements to estimate 

LPWAN coverage, specifically for LoRaWAN networks. 

These new results are expected to assist in the network 

planning process, which is a crucial step before deploying 

a large number of gateways throughout a city. 

2. LoRaWAN Deployment and Data Collection 

The first step to obtaining a good estimation of network 

coverage is to collect data. To achieve this, an end device 

was used to record the RSSI (Received Signal Strength 

Indicator), SNR (Signal-to-Noise Ratio), and its own 

position. Then, a route through the city was created, which 

is a specific route was planned and mapped through the city 

to facilitate data collection and testing, aiming to gather the 

most relevant data for prediction. To maximize the value 

of the data, we tried to cover the entire city without 

retracing the same roads. While we aimed to maximize the 

spatial coverage by exploring diverse areas of the city, we 

also recognize the importance of collecting multiple 

measurements in the same locations under different 

environmental conditions, including varying weather, 

noise, and topographical influences, to better understand 

their impact on network reliability. 

In this experiment, five LoRaWAN gateways were 

installed in the high building and top of mountain, and 

Gateways were operated on AS923-2 band, which includes 

Rak7240 and Kerlink iBTS with 3dBi Fiberglass Antenna. 

These gateways were installed around Da Nang City with 

location and altitude as shown in Table 1. 

End device use in this experiment is a home-made UCA 

board as shown in Figure 1. This PCB was developed to 

ease connection between an Arduino Mini Pro, and an 

RFM95 LoRa module, an AA battery. The antenna on this 

PCB is a miniaturized, low-cost printed antenna, based on 

a meandered F antenna (IFA) structure with a peak 

directivity of 2.1 dBi and a peak gain of 0.9 dBi. 

Table 1. List of gateways in Da Nang City 

Gateway ID Location Altitude Brand 

Danangdrt 
DRT Da Nang 

building 
45m Rak7240 

rfthings-rak7240-79ed DUT building 35m Rak7240 

7276ff002e06029f DSP building 90m Kerlink iBTS 

7276ff002e0507da 
Son Tra 

mountain 
810m Kerlink iBTS 

trungnam 
Trung Nam 

building 
80m Rak7240 

 

Figure 1. UCA board for data collection in Da Nang City 

 

 

Figure 2. Data collection and terrain information 

Data collection, as described in Figure 2, involved 

traversing the city on a motorbike equipped with a 

calibrated reference antenna, which was modified to be 

suitable for the 920-923 MHz band. The UCA device is 

held by the hand of the person sitting behind. This method 

ensured accurate measurement of RSSI and Signal-to-

Noise Ratio (SNR) across various locations. The 

motorcycle route was meticulously planned to cover 
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diverse urban landscapes, including areas characterized by 

tall buildings, open spaces, and potential signal 

obstructions. 

Our approach focused on capturing comprehensive data 

to support accurate prediction models. By avoiding 

duplicate routes and ensuring geographical diversity in our 

data collection, we aimed to provide a holistic view of 

network performance across Da Nang. This detailed 

dataset serves as the foundation for our ongoing efforts to 

optimize network deployment strategies and enhance 

connectivity reliability in urban environments. 

3. Proposed algorithm 

RSSI ranging methods commonly used are based on 

theoretical models such as the free space propagation path 

loss model and the logarithmic normal shadowing model 

[9]. However, the application environment of wireless 

sensor signals is not in free space but in real-world settings 

such as industrial sites or indoor buildings. In these 

environments, it is necessary to consider factors such as 

shading, obstacle absorption, and interference from 

scattered reflections. The attenuation characteristics of 

channels over long distances follow a lognormal 

distribution, which is commonly modeled using the 

logarithmic normal block model. The path loss model is as 

follows [9]: 

𝑃𝐿 (𝑑0) = 𝑃𝐿(𝑑) + 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋   (1) 

In this formula, PL(d) represents the path loss of the 

received signal at a distance d (meters). It is given as an 

absolute power value in dBm. PL(𝑑0) denotes the path loss 

of the received signal at the reference distance 𝑑0. The term 

n is the path loss exponent specific to the environment, 

indicating the rate at which path loss increases with the 

distance d. 𝑋 is in dB and accounts for the shadowing 

effect, with a standard deviation typically ranging from 4 

to 10 and a mean value of 0. A larger value of implies 

greater model uncertainty. The signal strength at the 

receiving nodes is given by: 

𝑅𝑆𝑆𝐼 = 𝑃𝑡 − 𝑃𝐿(𝑑)     (2) 

In this formula, 𝑃𝑡 represents the signal transmission 

power, and 𝑃𝐿(𝑑) indicates the path loss at a distance d, 

both are measured in dBm. Let A represents the signal 

strength received from reference nodes at the distance 𝑑0. 

The expression for A is as follows: 

𝐴 = 𝑃𝑡 − 𝑃𝐿(𝑑0)     (3) 

The path loss model, measured at the actual distance d 

(meters), is as follows: 

𝑃(𝑑) = 𝑃(𝑑0) − 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) − 𝑋   (4) 

In this formula, PL(d) represents the received signal 

strength when the actual distance measured is d (meters). 

PL(𝑑0)  represents the received signal strength at the 

reference distance 𝑑0. The term 𝑋 denotes a random 

variable following a normal distribution with mean 0 and 

variance 2. 

We set the reference distance 𝑑0 = 1 m, as derived from 

formulas (3) and (5). 

𝑅𝑆𝑆𝐼 = 𝐴 − 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) − 𝑋    (5) 

The distance can be calculated using the formula: 

𝑑 = 10
𝐴−𝑅𝑆𝑆𝐼

10𝑛       (6) 

In our proposed algorithm, we work with each gateway 

separately. For each gateway, we choose an arbitrary point. 

We denote 𝑅𝑆𝑆𝐼𝑟𝑒𝑓 and 𝑑𝑟𝑒𝑓  as its values. 

Let n be the environmental variable related to a point 

and a gateway. Based on the formula (5), the core of the 

algorithm is as follows: 

𝑅𝑆𝑆𝐼 = 𝑅𝑆𝑆𝐼𝑟𝑒𝑓 − 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑𝑟𝑒𝑓
)   (7) 

It means that for any point, if we know its 

environmental variable we can determine its RSSI. To 

determine the environmental variable, we separate the 

dataset on two groups: 

The training dataset and the testing dataset. For each 

training data we can calculate the environmental variable 

because we know its position and its RSSI. 

We use the following equation for the training dataset: 

𝑛𝑡𝑟𝑎𝑖𝑛 =
𝑅𝑆𝑆𝐼𝑟𝑒𝑓−𝑅𝑆𝑆𝐼

10 log(
𝑑

𝑑𝑟𝑒𝑓
)

     (8) 

Now that we know the environmental variable of the 

training set, we can estimate the environment variables for 

each data of the testing set with this equation: 

𝑛𝑡𝑒𝑠𝑡 =
∑ 𝐶𝑜𝑒𝑓𝑓(𝑖)∗𝑛(𝑖)

𝑛
𝑖=0

∑ 𝐶𝑜𝑒𝑓𝑓(𝑖)𝑛
𝑖=0

    (9) 

With n(i) is the environmental variable of the training 

data number i. Coeff(i) is calculated as follow: 

𝐶𝑜𝑒𝑓𝑓(𝑖) = 𝑒(800−𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑛)2−(800−𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖))
2

 (10) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) is the distance between training data 

number i and the testing data. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑖𝑛  is the distance 

between our testing data and its nearest training data. 

This way of calculating 𝑛𝑡𝑒𝑠𝑡takes into account all the 

𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑖𝑛 but will highly prioritize the nearest points, 

where the environment should be similar. 

Now that we have 𝑛𝑡𝑒𝑠𝑡 , we can easily calculate 

𝑅𝑆𝑆𝐼𝑡𝑒𝑠𝑡  with Equation (8). We can use the same method 

to calculate the SNR and we get: 

𝑆𝑖𝑔𝑛𝑎𝑙 =  𝑅𝑆𝑆𝐼 𝑖𝑓 𝑆𝑁𝑅 > 0    (11) 

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑅𝑆𝑆𝐼 + 𝑆𝑁𝑅 𝑖𝑓 𝑆𝑁𝑅 < 0  (12) 

To get the total signal we take the maximum signal of 

all gateways: 

𝑆𝑖𝑔𝑛𝑎𝑙𝑡𝑜𝑡𝑎𝑙 = max (𝑠𝑖𝑔𝑛𝑎𝑙(𝑖))   (13) 

The proposed algorithm was implemented using a 

Python script, which is publicly available on GitHub at the 

following the link: https://github.com/Lic-Tran-

Van/LoRaWANCoverageEstimation.git 

The RSSI depends on the distance between the gateway 

and the measurement point, as shown in Figure 3, and this 

relationship is used in our prediction models. In this figure, 

RSSI typically decreases as the distance between the 

gateway and the end device increases. However, the 

https://github.com/Lic-Tran-Van/LoRaWANCoverageEstimation.git
https://github.com/Lic-Tran-Van/LoRaWANCoverageEstimation.git
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relationship between RSSI and distance is not strictly 

linear. This means that for each doubling of the distance, 

the signal strength does not simply halve but decreases by 

a certain factor, often modeled logarithmically. This 

relationship is influenced by free-space path loss, 

obstacles, environmental interference, and other factors 

that cause signal attenuation [2]. 

In the context of a path loss model, "n" refers to the 

path loss exponent, a key parameter that characterizes 

how the signal strength decays as it propagates through 

the environment. The value of n depends on the specific 

environmental conditions and is influenced by factors 

such as topography, urban structures, and other physical 

obstacles. In free space (i.e., an unobstructed 

environment), n is typically 2, as the signal strength 

decreases proportionally to the square of the distance 

from the transmitter (i.e., inverse square law). In urban or 

indoor environments, n is usually greater than 2, ranging 

from 2.7 to 4 or higher, because of the increased signal 

attenuation caused by factors like buildings, walls, and 

other obstructions. Additionally, n can be influenced by 

weather conditions (e.g., rain or fog), which can further 

attenuate the signal. For instance, in a rainy environment, 

the path loss exponent can increase because the signal is 

absorbed or scattered by raindrops. Similarly, noise from 

other devices or environmental factors can add 

uncertainty to the signal strength, impacting the accuracy 

of path loss models. 

 

Figure 3. Distance vs RSSI

 

Figure 4. Density plot of RSSI 

The data stored in a CSV file via TTN Mapper was used 

to generate the density plots of RSSI and SNR for each 

gateway. Figure 4 shows the density plot of RSSI 

(Received Signal Strength Indicator) values for each 

gateway, as depicted in the attached image, illustrates the 

distribution and concentration of RSSI measurements 

across different gateways. The plot includes six different 

gateways: 'Total', 'danangdrt', 'rfthings-rak7240-79ed', 

'7276ff002e06029f', '7276ff002e0507da', and 'trungnam', 

each represented by a unique color. The black line, 

representing the 'Total' distribution, provides an overall 

view of RSSI values across all gateways, showing a broad 

peak around -110 dBm. 'danangdrt' (purple) and 'trungnam' 

(blue) display similar distributions with peaks slightly left-

shifted relative to the 'Total' distribution, suggesting 

somewhat stronger signals. The 'rfthings-rak7240-79ed' 

(yellow) shows a much wider distribution with a notable 

peak around -95 dBm, indicating varied signal strengths 

with a tendency towards stronger RSSI values. The 

gateways '7276ff002e06029f' (green) and 

'7276ff002e0507da' (red) exhibit the highest peaks around 

-100 dBm and -105 dBm, respectively, indicating very 

strong and concentrated signal strengths. 

 

Figure 5. Density plot of SNR 

These variations highlight the differences in signal 

reception quality among the gateways, with some capturing 

stronger and more consistent signals compared to others. 

The overall shape and spread of the density plots provide 

insights into the reliability and performance of each 

gateway in terms of RSSI. 

The density plot of SNR (Signal-to-Noise Ratio) 

values for each gateway, as shown in Figure 5 illustrates 

the distribution and variability of SNR measurements 

across different gateways. The 'Total' distribution, 

represented by the black line, shows a broad spread of 

SNR values with peaks around -5 dB and another smaller 

peak around 7 dB, indicating a diverse range of signal 

qualities. 'danangdrt' (purple) and 'trungnam' (blue) have 

more dispersed distributions with peaks at different 

points, suggesting varied signal-to-noise environments. 

Specifically, 'trungnam' has a notable peak around 10 dB, 

indicating better signal quality in some instances. 

'Rftthings-rak7240-79ed' (yellow) displays a broad 

distribution with multiple peaks, particularly around  

-7 dB and slightly above 0 dB, reflecting fluctuations in 
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signal quality. The gateways '7276ff002e06029f' (green) 

and '7276ff002e0507da' (red) show more defined peaks, 

with '7276ff002e06029f' having a prominent peak around 

-7 dB, indicating consistent signal reception within a 

narrower range. '7276ff002e0507da' displays multiple 

peaks, with the highest around -6 dB, suggesting it 

experiences various levels of signal quality. The 

gateway's SNR (Signal-to-Noise Ratio) plays a critical 

role in network performance. A high SNR (above 20 dB) 

indicates strong, clear signals, resulting in reliable 

communication, higher throughput, and low latency. A 

moderate SNR (10-20 dB) suggests acceptable 

performance but may experience occasional packet loss 

or slower speeds due to some interference. A low SNR 

(below 10 dB) indicates poor signal quality, leading to 

higher error rates, reduced throughput, increased latency, 

and connection instability, which negatively impacts 

overall network performance. 

The dataset comprises 400 data points divided into two 

subsets: 80 % of the data serves as training data, and the 

remaining 20 % is allocated for testing purposes. The 

prediction model's accuracy, depicted in Figure 6 shows a 

mean error of 4.5, indicating its effectiveness in estimating 

signal strengths across Da Nang City. While this error is 

evident, additional data acquisition is anticipated to notably 

reduce it. 

 

Figure 6. Results of the prediction on the testing data for  

over 400 data points 

To achieve a more uniform and detailed coverage map, 

additional steps in data processing are crucial. This 

includes employing advanced algorithms to refine signal 

predictions based on factors such as topography, building 

density, and environmental conditions. By integrating 

more comprehensive data sets and leveraging sophisticated 

analytical techniques, we aim to enhance the accuracy and 

reliability of our coverage maps. 

Figures 7 and 8 visually display the predicted data 

points for the gateways danangdrt and trungnam, 

respectively. The total coverage of all gateways was 

estimated using Formula 13 and is depicted in Figure 9, 

showing predictions across 10,000 points scattered 

throughout the city. These maps provide a broad 

overview of the predicted coverage, demonstrating that 

our model accurately captures the general signal 

distribution. 

 

Figure 7. Da Nang coverage estimation by the Gateway danangdrt 

 

Figure 8. Da Nang coverage estimation by 

 the Gateway trungnam 

 

 

Figure 9. Da Nang coverage estimation with all gateways and 

Identification of gap zones 

Based on the coverage estimation with all gateways, it 

is easy to identify gap zones, also known as coverage holes 

or dead zones, where the LoRaWAN signal is weak or 
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entirely absent. The gap zones are shown in Figure 10. To 

improve coverage, it is necessary to install additional 

gateways in these gap zones. Once gap zones are identified, 

the next step is to plan the gateway deployment 

strategically. This includes determining areas where 

additional gateways are needed and areas where gateways 

can be relocated for better coverage. This approach helps 

optimize LPWAN deployments and ensures more efficient 

resource utilization. 

4. Conclusion 

The findings demonstrate that employing multiple data 

points around each gateway enables us to generate accurate 

coverage heat maps by proposed LoRaWAN estimation 

coverage algorithm. This tool proves invaluable for 

identifying areas with strong or weak signal coverage 

across Da Nang City. By visualizing these heat maps, 

stakeholders can pinpoint locations where additional 

gateways are necessary to enhance network robustness and 

reliability. Several studies on the evaluation of simulation 

tools for LPWAN coverage have already been published. 

However, these studies do not consider environmental 

factors that depend on the topography of the land. In Da 

Nang, mountainous areas, tall buildings in some 

neighborhoods, and noisy environments impair signal 

strength. It is therefore essential to consider these factors 

to make accurate predictions. Our approach highlights the 

effectiveness of machine learning in predicting signal 

strength variations across urban landscapes. This 

predictive capability is crucial for optimizing LPWAN 

deployment strategies, ensuring efficient utilization of 

resources and improving overall network performance. 

Moving forward, ongoing refinement of our proposed 

algorithm and continuous data collection efforts will be 

pivotal in refining our coverage estimation methodology. 

By integrating real-time data and leveraging advanced 

analytics, we aim to provide scalable solutions that meet 

the evolving demands of Smart City initiatives in Da Nang 

and similar urban environments. 

In conclusion, our study underscores the potential of 

proposed algorithm-based heat mapping as a strategic tool 

for planning and optimizing LPWAN deployments. By 

leveraging these insights, cities can achieve comprehensive 

coverage and enhance connectivity infrastructure to 

support the burgeoning IoT ecosystem effectively. 
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