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Abstract - This paper presents optimization results of the Al6061 

surface roughness in turning ultra-precision based on the central 

composite design method (CCD) and the grey wolf optimization 

algorithm (GWO). The experimental matrix is built with three 

independent variables including spindle speed, feed rate and 

depth of cut. With the experimental data, the roughness regression 

model is established. The ANOVA module is used to evaluate the 

quality of the regression model. The GWO algorithm is used to 

optimize the roughness within the range of pre-determined 

cutting conditions. The most reasonable cutting parameter set is 

found to ensure that the surface roughness of the Al6061 material 

reaches the smallest value. The influence of parameter pairs on 

the roughness is analyzed specifically. The research results are of 

great significance in improving the surface quality of Al6061 

material in turning ultra-precision. 

 Tóm tắt – Bài báo trình bày kết quả nghiên cứu tối ưu hóa độ 

nhám bề mặt cầu vật liệu Al6061 khi tiện siêu chính xác 

(SPDT) dựa trên phương pháp thiết kế tổng hợp trung tâm 

(CCD) và thuật toán tối ưu hóa đàn sói xám (GWO). Ma trận 

thực nghiệm được xây dựng với ba biến độc lập gồm tốc độ 

trục chính, tốc độ chạy dao và chiều sâu cắt. Với dữ liệu của 

các thí nghiệm, mô hình hồi quy độ nhám được thiết lập. Modul 

ANOVA được dùng để đánh giá chất lượng mô hình hồi quy. 

Thuật toán GWO được sử dụng để tối ưu hóa độ nhám trong 

phạm vi chế độ cắt được xác định từ trước. Bộ thông số cắt hợp 

lý nhất được tìm ra nhằm đảm bảo độ nhám mặt cầu đạt giá trị 

nhỏ nhất. Ảnh hưởng của các cặp thông số tới độ nhám được 

phân tích cụ thể. Kết quả nghiên cứu có ý nghĩa quan trọng 

trong việc nâng cao chất lượng bề mặt cầu vật liệu Al6061 khi 

tiện siêu chính xác. 

Key words - Single-Point Diamond Turning (SPDT); surface 

roughness; spherical surface; CCD; GWO. 
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1. Introduction 

In the field of ultra-precision machining, achieving a 

surface with the desired roughness is a critical requirement 

to enhance product quality and meet stringent technical 

standards for the operating conditions of specialized 

components such as optical lenses, lens molds, spherical 

joints, spherical reflective surfaces, and more. Single-Point 

Diamond Turning (SPDT) is an advanced machining 

method widely used to produce highly precise surfaces (in 

the nanometer scale) [1]. Diamond cutting tools are 

employed in SPDT to achieve nanometer-level surface 

finish with specific requirements such as nanometer-scale 

edge sharpness and excellent wear resistance, allowing for 

machining with extremely low dimensional accuracy and 

surface roughness [2]. 

SPDT is commonly applied to machine non-metallic 

materials (e.g., ZnSe, Ge, CaF2, Si) or non-ferrous metals 

such as aluminum and copper. This technology meets the 

demands for manufacturing high-precision components, 

such as spherical surfaces for optical lenses [3], lens molds 

[4], aluminum mirrors [5], and laser guidance systems [6]. 

Nowadays, SPDT has become increasingly popular, 

particularly effective in machining spherical surfaces on 

aluminum materials like Al6061. Studies [7] have 

demonstrated the excellent machinability (including 

surface roughness) of Al6061 spherical mirror surfaces 

when altering vibration frequency branching during the 

SPDT process. 

Surface roughness is a critical technical parameter, 

used to measure the surface's unevenness after machining 

[8]. Numerous studies have focused on the technical 

factors affecting surface roughness, employing various 

predictive models, including the Response Surface 

Methodology (RSM) [9], Artificial Neural Networks 

(ANN) [10], and Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) [11]. Additionally, various algorithms 

have been used as tools to solve single or multi-objective 

optimization problems based on specific input parameters 

and conditions. Frequently applied algorithms include 

Genetic Algorithms (GA) [12-14], swarm-based 

algorithms (PSO, ACO) [15-16], and the Grey Wolf 

Optimization (GWO) algorithm [17-21]. RSM and ANN 

modeling [9-10] were described using 27 experiments, 

where a first-order regression equation was developed to 

predict surface roughness. Furthermore, the GWO 

algorithm is widely used for optimizing parameters or 
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technological processes. In [17], the GWO model was 

utilized to optimize parameters such as temperature, 

friction coefficient, and screw rotation speed in twin-

screw extrusion to minimize material loss due to wear. An 

improved GWO algorithm with reduced computational 

time, faster convergence, and higher accuracy was 

proposed in [18] to optimize the rolling parameters of raw 

materials. Additionally, the GWO algorithm has been 

applied for tool wear prediction in SVR [19], 

performance prediction for desalination plants [20], and 

two-dimensional modeling of direct metal deposition 

processes [21]. In addition, a study [22] proposed a 

Genetic Gray Wolf Optimizer (GGWO) algorithm, which 

combines the principles of Gray Wolf Optimizer (GWO) 

with genetic algorithm operators to optimize wind farm 

layout. Compared with other algorithms such as PSO, 

ABC ACO, GGWO shows improved energy yield, faster 

convergence, and better compliance with layout 

constraints. The hierarchical leadership structure and 

genetic operation of the algorithm enhance the 

exploration and exploitation capabilities, outperforming 

traditional optimization methods. In the study [23], 

Mehdi compared the GWO algorithm with many other 

optimization algorithms such as PSO, GA, HJ, or Hybrid 

Methods in the context of building energy optimization. 

The results have shown that GWO achieved a good 

balance between convergence speed and solution quality, 

surpassing many existing algorithms in building energy 

optimization. Consequently, the GWO algorithm has 

demonstrated its feasibility and effectiveness in 

optimization studies alongside other popular algorithms. 

In SPDT, three technological parameters: spindle 

speed (n- rev/min), feed rate (F- mm/min), and depth of 

cut (ap- µm), have a direct and significant impact on the 

surface quality of the machined component. Taper-

cutting experiments [24] were applied to determine the 

transition depth between ductile and brittle regimes 

during SPDT machining of ZnSe spherical surfaces. The 

results indicated that reducing the feed rate (F) could 

achieve optimal surface roughness without introducing 

surface defects. 

In this study, a regression model was developed to 

describe the relationship between the three SPDT 

parameters and the surface roughness of Al6061 spherical 

surfaces, based on the Central Composite Design (CCD) 

experimental method. Accordingly, the optimal roughness 

and the most suitable technological parameters were 

identified using the Grey Wolf Optimization (GWO) 

algorithm. The influence of parameter pairs on surface 

roughness was visually investigated, serving as a 

foundation for effective SPDT process control in the future 

for Al6061 spherical surfaces, contributing to improving 

the surface quality of ultra-precision products. 

2. Research contents 

2.1. Experimental design using the CCD model 

2.1.1. Experimental model design 

The primary objective of the experimental process is to 

collect data on the surface roughness of spherical surfaces 

corresponding to the technological parameters of different 

machining conditions. The entire machining process for the 

spherical surface of the Al6061 alloy workpiece was 

conducted on the ultra-precision lathe Nanoform® X 

(Figure 1) using a diamond cutting tool NN60R0635m 

WGC-MS0454 (Figure 4). The Al6061 workpiece  

(Figure 3) has the following geometric dimensions: height 

h = 20 mm, outer diameter Ø = 30 mm, and spherical 

radius R = 19.5 mm. The specifications of diamond-cutting 

tool are presented in Table 1. 

   

Figure 1. Nanoform® X ultra-precision 

turning system 

Figure 2. The 3D optical profiler 

ZEGAGE PRO HR 

Figure 3. Al6061 spherical surface 

  

Figure 4. Diamond cutting tool NN60R0635mWGC-MS0454 
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Table 1. Cutting tool specifications 

Specifications 

Cutting 

edge 

radius 

Rake 

angle 

Cutting 

height 

Primary 

Clearance 

Included 

angle 
Waviness 

Dimensions 
0.649  

mm 
-25o 

7.475  

mm 
10o 60o ≤ 2 µm 

Table 2. Chemical compositions of Al6061 

Element Mg Si Fe Cu Cr Mn Zn Ti Al 

wt.% 0.99 0.55 0.33 0.20 0.12 0.10 0.08 0.03 Balance 

The chemical compositions of Al6061 alloy [25] are 

presented in Table 2. 

The SPDT process of the spherical surface of the 

Al6061 workpiece is illustrated in Figure 5. The workpiece 

is mounted on a vacuum chuck and machined using various 

cutting conditions within the experimental investigation 

range. A high-pressure water nozzle (machine mist) is 

employed to remove chips from the workpiece during the 

machining process, ensuring the safety and integrity of the 

spherical workpiece surface. 

 

Figure 5. Lathe system, fixtures, tools, and workpieces 

All measurements of surface roughness values after 

SPDT were performed on the 3D optical profiler ZEGAGE 

PRO HR (Figure 2). In this experiment, the workpieces 

were placed on a flat support. The optical lens with the 

camera was moved close to the position of the workpieces 

and the surface was scanned (Figure 6). The experimental 

surface roughness values summarized in Table 3 are the 

average results of two surface roughness measurements at 

two symmetrical positions on the spherical surface, 

corresponding to each set of technological parameters. 

  

Figure 6. Measurement on the 3D optical profiler  

ZEGAGE PRO HR 

Table 3. Measurement results of the spherical surface roughness 

after machining 

No. 

Exp 
n (rev/min) 

F 

(mm/min) 
ap (µm) Ra (nm) 

1 1000 5 2 5.606 

2 2000 5 2 4.428 

3 1000 25 2 4.218 

4 2000 25 2 4.114 

5 1000 5 8 2.233 

6 2000 5 8 2.965 

7 1000 25 8 6.131 

8 2000 25 8 6.770 

9 823.44 15 5 6.959 

10 2176.56 15 5 4.345 

11 1500 1.47 5 3.766 

12 1500 28.53 5 5.480 

13 1500 15 0.94 4.795 

14 1500 15 9.06 7.228 

15 1500 15 5 7.234 

16 1500 15 5 6.820 

17 1500 15 5 6.808 

2.1.2. Central Composite Design (CCD) method 

The Central Composite Design (CCD) method [26] is 

an experimental design technique widely used in research 

to construct experimental models, analyze data, and 

optimize processes. In this study, seventeen experiments 

measuring the surface roughness of spherical surfaces after 

SPDT were conducted, incorporating three technological 

parameters: depth of cut ap (µm), feed rate F (mm/min), 

and spindle speed n (rev/min). After performing SPDT 

according to the CCD experimental matrix and measuring 

the surface roughness Ra, data analysis and model 

construction were conducted. Statistical software DESIGN 

EXPERT was used to analyze the collected data. A 

quadratic regression model was developed to predict 

surface roughness based on the technological parameters. 

The encoded factor matrix for the CCD experimental 

design with three factors and the corresponding ranges of 

technological parameters are presented in Table 4. In the 

CCD model, factors are assigned high levels (+1), low 

levels (-1), or central levels (0). Additionally, the central 

point spacing with orthogonal quadratic design α = 1.353 

was selected to ensure that the regression parameters 

(linear, interaction, and quadratic) are uncorrelated. This 

enhances the accuracy of data analysis and ensures precise 

evaluation of the regression model's suitability. 

Table 4. Technological parameter ranges  

Tech. 

Parameter 

Corres. 

Variable 

Low. 

(-1) 

Cen. 

(0) 

High 

(+1) 

n (rev/min) A 1000 1500 2000 

F (mm/min) B 5 15 25 

ap (µm) C 2 5 8 

Figure 7 illustrates the distribution of experimental 

points in the CCD model. It can be observed that, with the 

number of experiments N = 17 and the number of 
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influencing factors k = 3, the experimental points are 

arranged around a cube, with three points located at the 

center. Six experiments represent axial points, whose 

distance from the cube is defined by the encoded value 

α = 1.353, and the remaining eight experimental points are 

distributed at the vertices of the cube. 

 

Figure 7. Experimental distribution in the CCC model 

The specialized software DESIGN EXPERT was used 

to construct the regression equation based on the CCD 

experimental model with three input technological 

parameters. Figure 8 demonstrates the high reliability of 

the regression model. The coefficient of determination R2 

[27] is 0.8754, indicating a strong fit between the model 

and the experimental data. Furthermore, an Adeq Precision 

value greater than four 4 indicates that the model is 

adequate for navigating the design space. 

 

Figure 8. Analysis of model fit with experimental data 

 

Figure 9. Results of ANOVA analysis and regression coefficients  

Figure 9 illustrates the ANOVA analysis results and the 

coefficients of the regression equation. At a significance 

level p-value < 0.05, the selected terms are x2, x2.x3, x1
2, x2

2. 

The term x1
2 with p-value = 0.0764 < 0.1 belongs to the 

range of significance values and can be used to describe the 

effect of spindle speed on surface roughness. 

Consequently, the regression equation for surface 

roughness (Ra - nm) in terms of coded variables is 

determined as follows: 

2 2

2 2 3 1 26.92 0.7135 1.18 0.6724 1.23aR x x x x x= + + − −   (1) 

The surface roughness after UPT is significantly 

influenced by three technological parameters: spindle 

speed n (rev/min), feed rate F (mm/min), and depth of cut 

ap (µm). Figure 10 evaluates the effects of these 

parameters on surface roughness. The curvature of the 

graph reflects the rate of change in surface roughness with 

respect to each parameter, indicating whether the change is 

rapid or gradual. 

It can be observed that the surface roughness value  

Ra (nm) is minimally influenced by spindle speed n 

(rev/min). However, feed rate F (mm/min) and depth of cut 

ap (µm) have a significant impact on surface roughness. 

Specifically, roughness increases with an increase in feed 

rate F and decreases with an increase in depth of cut ap. 

 

Figure 10. Influence of parameters on surface roughness  

The above evaluations are qualitative assessments 

based on observations of the graph and the regression 

model. In fact, the technological parameters inherently 

interact with each other and collectively influence surface 

roughness. Moreover, experimental results are subject to 

external noise factors that affect the surface roughness 

measurements. Therefore, it is essential to design an 

optimization problem to confirm the relationship between 

surface roughness and the associated technological 

parameters. 

2.2. Optimization design using GWO algorithm 

2.2.1. Grey Wolf Optimization (GWO) algorithm 

The Grey Wolf Optimization (GWO) algorithm, 

inspired by the predatory behavior of grey wolves, was 

introduced by Mirjalili et al. [28] and has been widely 

applied in various fields. In GWO, the grey wolf pack is 

classified into four main roles: Alpha (α), Beta (β), Delta 

(δ), Omega (ω). Each role contributes to the phases of 

encircling, attacking, and searching for prey within the 

search space to find the optimal solution.  

The hunting process of grey wolves consists of three 

main phases: encircling, searching for prey, and attacking 

prey. In the GWO algorithm, these phases are modeled and 

integrated into its steps. The steps and conditions required 

to implement the GWO algorithm are shown in Figure 11. 

Phase 1: Encircling Prey 

The position of the wolves around the prey is adjusted 

using the following equations: 

. ( ) ( )PD C X t X t= −      (2) 
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( 1) ( ) .PX t X t A D+ = −      (3) 

The coefficient vectors A  and C  calculated with 

vector a  decreases linearly from 2 to 0 over iterations, and 

vector r  are random vectors in [0, 1]. 

2. . ; 2.A a r a C r= − =      (4) 

Phase 2: Searching for Prey 

Grey wolves can identify the position of the prey and 

encircling it. The hunt is primarily guided by Alpha, with 

Beta and Delta providing support. The remaining wolves, 

known as Omega, update their positions based on the three 

leaders. The following equations illustrate this process: 

1 2. ; .D C X X D C X X   = − = −    (5) 

3 1 1. ; .( )D C X X X X A D   = − = −    (6) 

2 2 3 3.( ); .( )X X A D X X A D   = − = −    (7) 

1 2 3( 1)
3

X X X
X t

+ +
+ =      (8) 

Phase 3: Attacking Prey 

When the distance between the wolves and the prey 

becomes sufficiently small, the wolves attack the prey. In 

the GWO algorithm, this process is simulated by reducing 

the value of the vector a  from 2 to 0, thereby reducing the 

value of the vector A  and narrowing the distance between 

the wolves and the prey.  

 

Figure 11. Algorithm implementation steps in GWO 

2.2.2. Optimization results and discussion 

The optimization problem for spherical surface 

roughness is considered, with the objective function 

derived from the established regression equation. The goal 

is to determine the optimal technological parameters to 

minimize the spherical surface roughness during 

machining. 

The GWO algorithm was constructed under the 

conditions:
1 2 31.353 , , 1.353x x x−   + , corresponding to 

the technological parameter limits: 823.44 2176.56n 

(rev/min); 1.47 28.53F  (mm/min); 0.94 9.06ap   

(µm). The algorithm parameters are as follows: size 

population 5AS = , maximum iterations 100.iM =  

The computational program was implemented using 

MATLAB. The optimization results are as follows: the 

optimal value was identified after the 8th iteration, achieving 

a surface roughness of Ra = 0.312 (nm) (Figure 12) with the 

encoded technological parameters: x1 = 1.353, x2 = -1.353, 

x3 = 1.353, corresponding to the actual values: n = 2176.56 

(rev/min), F = 1.47 (mm/min), ap = 9.06 (µm). 

The dependence of the objective function on parameter 

pairs is presented in Figures 13, 14, and 15. 

 

Figure 12. The optimization value of surface roughness 

 

Figure 13. Graph of the objective function ( , )aR ap F  

Figure 13 evaluates the influence of depth of cut (ap) and 

feed rate (F) on surface roughness. At the optimal spindle 

speed x1=1.353 (n = 2176.56 (rev/min), the graph reveals 

that variations in feed rate (F) and depth of cut (ap) have a 

complex effect on surface roughness. When the feed rate (F) 

is fixed, the surface roughness value decreases linearly to a 

minimum point as the depth of cut (ap) increases. 

Conversely, when the depth of cut (ap) is fixed, increasing 

the feed rate (F) causes the surface roughness value to follow 

a parabolic curve, initially increasing to a maximum point 

before gradually decreasing. This indicates that the two 

parameters are interdependent and simultaneously affect 

surface roughness. In UPT, it is necessary to reduce the feed 

rate (F) while increasing the depth of cut (ap) to achieve 

optimal surface roughness value. 

The dependence of surface roughness on spindle speed 

(n) and feed rate (F) is shown in Figure 14. At the optimal 
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depth of cut x3=1.353 (ap = 9.06 µm), the surface 

roughness value changes along a quadratic curve as the 

spindle speed and feed rate. Therefore, the minimum 

surface roughness can be achieved by reducing both the 

spindle speed and feed rate within the considered range. 

 

Figure 14. Graph of the objective function ( , )aR F n  

Similarly, in Figure 15, the surface roughness reaches 

its minimum value when the spindle speed (n) is decreased 

and the depth of cut (ap). Increasing the spindle speed 

causes surface roughness to follow a quadratic curve while 

decreasing the depth of cut leads to a linear increase in 

surface roughness. 

Similarly, in Figure 15, the surface roughness reaches 

its minimum value when the spindle speed (n) is decreased 

and the depth of cut (ap). Increasing the spindle speed 

causes surface roughness to follow a quadratic curve while 

decreasing the depth of cut leads to a linear increase in 

surface roughness. 

 

Figure 15. Graph of the objective function ( , )aR ap n  

With the selected optimal technological parameters:  

n = 2177 (rev/min), F = 1.5 (mm/min), ap = 9 (µm), an 

experiment involving the SPDT of a spherical surface and 

measurements of surface roughness were conducted 

(Figure 16). The results from three measurements of the 

experimental surface roughness values Ra
exp are presented 

in Table 5. Comparing these values with the optimal 

roughness value obtained from the GWO algorithm Ra
pred

0.312=  (nm) reveals that the percentage error between the 

predicted and experimental values is allowable (1-2%), 

demonstrating the high accuracy of the predictive model. 

Table 5. Experimental results of the optimal parameter set  

No.exp exp

aR  (nm) pred

aR  (nm) Error (%) 

1 0.318 0.312 1.88 

2 0.316 0.312 1.26 

3 0.315 0.312 0.95 

 

Figure 16. Ra value with optimal parameter set 

3. Conclusions 

Overall, the modeling problem using the CCD method 

and optimization using the GWO algorithm for surface 

roughness of Al6061 spherical surfaces in SPDT 

machining has been described and detailed. The CCD 

experimental model, based on 17 experimental results of 

surface roughness measurements, was used to construct a 

quadratic regression equation, providing input data for the 

GWO optimization algorithm. The evaluation results, 

through the R2 criterion, demonstrate the high accuracy and 

reliability of the regression model with a sufficiently large 

number of experiments. The optimized surface roughness 

value Ra = 0.312 nm and the corresponding technological 

parameter (n = 2177 rev/min; F = 1.5 mm/min; ap = 9 µm) 

were determined using the GWO algorithm. Furthermore, 

the influence of parameter pairs was analyzed and 

evaluated in detail. Some key findings can be summarized 

as follows: 

- The GWO algorithm develops a highly generalized 

model that effectively captures the complex relationships 

between technological parameters and the impact of 

parameter pairs on the optimal surface roughness value. 

- Based on the coefficients of the regression model, the 

feed rate (F) has the most significant influence on surface 

roughness among the three parameters considered. 

- The depth of cut (ap) has a greater effect on surface 

roughness than spindle speed (n). 

The spherical surface roughness in SPDT is 

simultaneously influenced by all three technological 

parameters. The interactions between these factors affect 

surface roughness and overall surface quality. Within the 

investigation range, achieving optimal surface roughness 

and ensuring the best surface quality requires 

simultaneously reducing spindle speed (n), increasing 

depth of cut (ap), and finally reducing feed rate (F).  

These findings are crucial for selecting appropriate 

technological parameters in terms of priority and value 
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when applying the SPDT method. Furthermore, the surface 

roughness value obtained from the SPDT experiment of the 

spherical surface using the optimal technological 

parameters further reinforces the validity of the conclusion 

and demonstrates the feasibility of the GWO algorithm. 

This is an effective solution for solving single-objective 

optimization problems, showing efficiency in establishing 

optimal solutions. It identifies a set of technological 

parameters that achieve the minimum surface roughness 

value, making it a promising choice for similar 

optimization studies in the future. 

Acknowledgments: This research is funded by Vietnam 

National Foundation for Science and Technology 

Development (NAFOSTED) under grant number 107.01-

2020.15. 

Duong Xuan Bien and Chu Anh My participated in 

coming up with writing ideas and reviewing the article. 

Ngo Viet Hung collected the data and wrote the 

manuscript. 

Le Thanh Binh and Nguyen Kim Hung contributed to 

experimental design and data processing. 

Bui Kim Hoa and Hoang Nghia Duc contributed to the 

interpretation of experimental data. 

REFERENCES 

[1] S. R. Chopade and S. B. Barve, "A single point diamond turning and 

integrated sensory system in nano machining: A survey, research 

issues, and challenges", Materials Today: Proceedings vol. 103, pp. 

401-409, 2024. 

[2] A. Gupta, A. Saini, N. Khatri, and A. Juyal, "Review of single-point 

diamond turning process on IR optical materials", Materials Today: 
Proceedings, vol. 69, pp. 435–440, 2022.  

[3] Y. Dai, J. Jiang, G. Zhang, and T. Luo, "Forced-based tool deviation 

induced form error identification in single-point diamond turning of 

optical spherical surfaces", Precision Engineering, vol. 72, pp. 83–

94, 2021. 

[4] C. Shu, S. Yin, and S. Huang, "Preparation and performance of 

Ti/Ti-DLC composite coatings for precision glass molding", 
Ceramics International, vol. 50, no. 3, pp. 5210–5223, 2024. 

[5] Y. Fu, S. Huang, Y. Yi, H. He, and J. Mao, "Mechanism of the effect of 

plastic deformation at different temperatures on the surface roughness of 

machined aluminum mirrors", Materials and Design, vol. 239, 2024.  

[6] H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. 

Dohi, "Precision-guided surgical navigation system using laser 

guidance and 3D autostereoscopic image overlay", Computerized 
Medical Imaging and Graphics, vol. 34, no. 1, pp. 46–54, 2010.  

[7] G. Zhuang, W. Zong, and Y. Tang, "Statistical analysis and 

suppression of vibration frequency bifurcation in diamond turning 

of Al 6061 mirror", Mechanical Systems and Signal Processing, vol. 

198, 110421, 2023.  

[8] N. R. Sakthivel, J. Cherian, B. B. Nair, A. Sahasransu, L. N. V. P. 

Aratipamula, and S. A. Gupta, "An acoustic dataset for surface roughness 
estimation in milling process", Data in Brief, vol. 111108, 2024.  

[9] S. T. Alam, A. N. M. A. Tomal, and M. K. Nayeem, "High-Speed 

Machining of Ti–6Al–4V: RSM-GA based Optimization of Surface 

Roughness and MRR", Results in Engineering, vol. 17, 100873, 2023.  

[10] V. N. Malleswari, G. K. Manaswy, and P. G. Pragvamsa, "Prediction 

of surface roughness for fused deposition in fabricated work pieces 

by RSM and ANN technique", Materials Today: Proceedings, 2023.  

[11] R. Kumar and N. R. J. Hynes, "Prediction and optimization of 
surface roughness in thermal drilling using integrated ANFIS and 

GA approach", Engineering Science and Technology, an 

International Journal, vol. 23, no. 1, pp. 30–41, 2020. 

[12] K. S. Sangwan, S. Saxena, and G. Kant, "Optimization of machining 

parameters to minimize surface roughness using integrated ANN-

GA approach", Procedia CIRP, vol. 29, pp. 305–310, 2015. 

[13] V. Poonia, R. Kumar, R. Kulshrestha, and K. S. Sangwan, 

"Optimization of specific energy, scrap, and surface roughness in 3D 

printing using integrated ANN-GA approach", Procedia CIRP, vol. 

116, pp. 324–329, 2023.  

[14] V. Gopan, K. L. D. Wins, and A. Surendran, "Integrated ANN-GA 

approach for predictive modeling and optimization of grinding 
parameters with surface roughness as the response", Materials 

Today: Proceedings, vol. 5, no. 5, pp. 12133–12141, 2018.  

[15] K. N. Babu, R. Karthikeyan, and A. Punitha, "An integrated ANN – 

PSO approach to optimize the material removal rate and surface 
roughness of wire cut EDM on INCONEL 750", Materials Today: 

Proceedings, vol. 19, pp. 501–505, 2019.  

[16] A. Chetry, S. S. Phalke, and A. Nandy, "Achieving high precision 

and productivity in laser machining of Ti6Al4V alloy: A 

comprehensive study using a n-predictor polynomial regression 
model and PSO algorithm", International Journal of Lightweight 

Materials and Manufacture, vol. 8, pp. 127-140, 2025. 

[17] P. Vasanthkumar, R. Balasundaram, and N. Senthilkumar, "Sliding-

friction wear of a seashell particulate reinforced polymer matrix 

composite: modeling and optimization through RSM and Grey Wolf 
optimizer", Transactions of the Canadian Society for Mechanical 

Engineering, vol. 46, no. 2, pp. 329–345, 2022.  

[18] W. Lin, J. Wang, B. Ren, J. Yu, X. Wang, and T. Zhang, "Robust 

optimization of rolling parameters of coarse aggregates based on 

improved response surface method using satisfaction function method 
based on entropy and adaptive chaotic gray wolf optimization", 

Construction and Building Materials, vol. 316, 125839, 2022.  

[19] J. Wang, H. Liu, X. Qi, Y. Wang, W. Ma, and S. Zhang, "Tool wear 

prediction based on SVR optimized by hybrid differential evolution 

and grey wolf optimization algorithms", CIRP Journal of 
Manufacturing Science and Technology, vol. 55, pp. 129–140, 2024.  

[20] Y. Yang, C. Wang, S. Wang, Y. Xiao, Q. Ma, X. Tian, C. Zhou, and J. 

Li, "Performance prediction model for desalination plants using 

modified grey wolf optimizer based artificial neural network approach", 

Desalination and Water Treatment, vol. 319, 100411, 2024.  

[21] A. R. Dhar, D. Gupta, S. S. Roy, A. K. Lohar, and N. Mandal, 

"Covariance matrix adapted grey wolf optimizer tuned extreme 
gradient boost for bi-directional modelling of direct metal deposition 

process", Expert Systems with Applications, vol. 199, 116971, 2022.  

[22] M. A. Pinazo, "New genetic gray wolf optimizer with a random 

selective mutation for wind farm layout optimization", Heliyon, vol. 

10, no. 23, 2024. 

[23] M. Ghalambaz, R. Jalilzadeh Yengejeh, and A. H. Davami, 

"Building energy optimization using Grey Wolf Optimizer (GWO)", 
Case Studies in Thermal Engineering, vol. 27, 2021. 

[24] R. Geng, X. Yang, Q. Xie, W. Zhang, J. Kang, Y. Liang, and R. Li, 

"Ultra-precision diamond turning of ZnSe ceramics: Surface 

integrity and ductile regime machining mechanism", Infrared 

Physics and Technology, vol. 115, 2021.  

[25] Z. Liu, J. Bao, W. Hu, and H. Yan, "Microstructure, interfacial 

reaction behavior, and mechanical properties of Ti3AlC2 reinforced 
Al6061 composites", Transactions of Nonferrous Metals Society of 

China, vol. 34, no. 9, pp. 2756–2771, 2024.  

[26] B. Sadhukhan, N. K. Mondal, and S. Chattoraj, "Optimisation using 

central composite design (CCD) and the desirability function for 

sorption of methylene blue from aqueous solution onto Lemna 
major", Karbala International Journal of Modern Science, vol. 2, 

no. 3, pp. 145–155, 2016. 

[27] M. Babič, G. Lesiuk, D. Marinkovic, and M. Calì, "Evaluation of 

microstructural complex geometry of robot laser hardened materials 
through a genetic programming model", Procedia Manufacturing, 

vol. 55, pp. 253–259, 2021.  

[28] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer", 

Advances in Engineering Software, vol. 69, pp. 46–61, 2014.  
 


