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Abstract - Chloride corrosion significantly impacts the durability 

of reinforced concrete (RC) structures. Traditional evaluation 

methods are time-consuming and expensive. Machine Learning 

(ML) offers a promising alternative, providing efficient and 

accurate predictions. This review explores recent ML 

advancements in assessing corrosion in RC structures. Various 

algorithms, such as Artificial Neural Networks (ANNs), Gene 

Expression Programming (GEP), Extreme Gradient Boosting 

(XGBoost), Support Vector Machine (SVM) and Ensemble 

Learning, have shown potential in estimating corrosion processes, 

predicting material properties, and evaluating structural 

durability. Future research should focus on integrating ML with 

physical models to enhance robustness and reliability in service 

life prediction. This review summarizes current trends, 

challenges, and the future potential of ML in predicting chloride 

ingress and its impact on concrete durability. 
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1. Introduction 

The durability and lifespan of reinforced concrete (RC) 

structures have been significant concerns for the 

construction industry in recent decades. Corrosion-induced 

deterioration of RC structures is a widespread and serious 

global issue [1-3]. Especially, in a marine environment, RC 

are exposed to have a higher risk of corrosion due to the 

chloride penetration from seawater. Chloride-induced 

corrosion can cause cracking, staining, loss of cross-

section, and delamination of the protective concrete layer 

in RC structures. These not only affect the appearance, 

stability, and safety of the structure but also create 

economic liability for the stakeholders. It has been reported 

that the maintenance and repair costs of RC structures due 

to corrosion are in the billions of US dollars per year [4]. 

Structures with decreased durability are also unsustainable, 

as maintaining their service life requires the repeated use 

of valuable natural resources. 

From another perspective, continuous corrosion of 

reinforcing bars is also the most common failure mode in 

repaired RC structures, accounting for 37% of the failure 

modes [5-7]. Therefore, researchers are faced with the 

pressing question of what method they can use to 

accurately detect and predict early corrosion in RC 

structures, especially those exposed to chloride-induced 

corrosion in marine environments. 

Conventional methods for assessing chloride ingress 

primarily involve laboratory testing, such as accelerated 

chloride migration or diffusion tests, and empirical models. 

However, these methods present several limitations. For 

instance, laboratory-based tests often require significant 

time and resources, making them expensive and impractical 

for large-scale or real-time applications. Furthermore, 

empirical models such as Fick’s second law oversimplify the 

complex chloride transport mechanisms by assuming a 

constant diffusion coefficient, which does not adequately 

account for varying environmental conditions and the 

evolving properties of concrete over time [8]. 

The time-consuming nature of these tests is especially 

problematic in marine environments, where chloride 

ingress can vary significantly due to factors like 

temperature fluctuations and humidity. As a result, 

traditional approaches struggle to capture these dynamic 

interactions, leading to less accurate predictions of chloride 

ingress and its impact on the durability of concrete 

structures. This inadequacy calls for more efficient, 

flexible, and accurate alternatives. 

Machine learning (ML) techniques address many of 

these drawbacks by offering a data-driven approach to 

predicting chloride ingress. Unlike traditional methods, ML 

models can analyze vast datasets and account for complex, 

non-linear interactions between variables, leading to more 

accurate and faster predictions. For example, ML algorithms 

like artificial neural networks (ANNs), support vector 

machines (SVMs), and ensemble learning methods are 

capable of processing multiple factors simultaneously, such 

as material composition, environmental conditions, and 

exposure time, providing a more comprehensive 

understanding of chloride diffusion in RC structures. These 

models significantly reduce the time and cost associated 

with chloride ingress prediction, while also enhancing the 

precision of service life assessments. 

Given these advantages, the need to transition from 

traditional methods to ML-driven approaches is becoming 

increasingly clear. The integration of ML into chloride 

ingress prediction not only improves the accuracy and 

efficiency of corrosion evaluations but also paves the way 

for more sustainable and resilient concrete structure 

designs [9]. 

Although ML has been widely applied to evaluate the 

corrosion level of RC structures, there are still several gaps 

that remain unaddressed. For example, addressing current 

challenges in corrosion, managing the source and quality 

of the data needed for ML method, and selecting the most 

appropriate and advanced algorithms are critical. 

Enhancing these factors will significantly boost the 
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efficiency of ML models in the future, amplifying their 

benefits in terms of time and cost savings. More crucially, 

accurate predictions of corrosion throughout a structure's 

lifespan can fundamentally improve the corrosion 

resistance of materials and structures, thereby extending 

their durability and sustainability. This, in turn, can lower 

construction and maintenance costs, contributing to 

environmental protection and energy conservation. 

This review paper has three main objectives: (i) to 

provide an overview of machine learning in the context of 

chloride ingress; (ii) to examine the current applications of 

machine learning in predicting chloride ingress in concrete 

in recent years; and (iii) to offer insights into future 

directions that could enhance ML applications in corrosion 

assessment. It is noted that the references used in this study 

come from renowned scientific databases and mostly focus 

on the most recent five-year period from 2019 to 2024. 

2. Overview of machine learning in the context of 

chloride ingress 

Chloride ingress into concrete greatly impacts the 

durability and structural integrity of concrete structures, 

particularly in marine environments. The entry of free 

chloride ions can compromise the passivation of the steel, 

leading to rebar corrosion. This can also result in the 

formation of expansion cracks in the concrete [10]. 

Chloride ions can move quickly through these cracks, 

further speeding up the corrosion process. Factors such as 

the concentration of chloride ions and their rate of 

penetration influence the corrosion conditions of 

reinforcement in RC structures, especially when the 

chloride content on the reinforcement surface exceeds a 

specific threshold value [11]. 

For chloride ingress in concrete, diffusion is the 

primary mechanism where chloride ions move from areas 

of higher concentration to lower concentration through the 

pore structure [1,2]. The diffusion process is expressed 

based on Fick's second law, as shown in Eq. (1). Many 

models based on Eq. (1) have been developed to estimate 

chloride penetration and assess the overall or remaining 

service life of RC structures. However, these models have 

various limitations that introduce uncertainty in predicting 

chloride ingress accurately. For instance, Eq. (1) does not 

consider the effects of factors such as loading, temperature, 

and chemical reactions, which can significantly influence 

the rate and behavior of diffusion in real-world situations. 

Another limitation is the assumption that the non-steady 

diffusion coefficient (𝐷𝑐) remains constant [16-19]. In 

reality, (𝐷𝑐) should not be treated as a constant, as the 

transport properties of chloride depend on the intrinsic 

permeability of the concrete, which evolves over time 

during the cement hydration process. 

𝐶𝑥,𝑡 = 𝐶0 + 𝐶𝑠 (1 − 𝑒𝑟𝑓(𝑥) [
𝑥

2√𝐷𝑐(𝑡)
])  (1) 

where, 𝐶𝑥,𝑡 (kg/m3) is the content of chloride ion measured 

at average depth 𝑥 [m] after exposure time 𝑡[s]; 𝐶𝑠 is the 

calculated content of ions at the exposed surface (kg/m3); 

𝐶0 is the initial content of chloride ion; 𝐷𝑐(t) is the non-

steady state diffusion coefficient of chloride ion [m2/s.]; 

and 𝑒𝑟𝑓(𝑥) is the error function [−]. 

Given the limitations of existing models, traditional 

simulation approaches necessitate the integration of multiple 

factors, complicating the process. In contrast, ML offers a 

significant advancement over traditional empirical models 

for predicting chloride ingress in concrete. ML is widely used 

to improve or replace traditional methods in the design, 

construction, maintenance, and management of RC 

structures. While data is the foundation of ML, the essence 

lies in the algorithmic models that enable machines to process 

and learn from different types of data. Common applications 

include response surface recognition, natural language 

processing, and autonomous driving. ML can be categorized 

into four types based on the learning requirements: 

reinforcement learning, semi-supervised learning, 

unsupervised learning and supervised learning (Figure 1). 

 

Figure 1. Classification of machine learning algorithms 

In the domain of durability evaluation of RC structures. 

Caused by environmental corrosion, supervised learning 

algorithm is the most common one. In supervised learning, 

a function is derived from a given data set, which can then 

be used to make predictions as new data is added. This 

approach relies on both input and output data, referred to 

as features and targets respectively, with the targets being 

pre-labeled by the engineers. By training models with 

historical data, ML algorithms can predict the penetration 

of chloride into concrete with great accuracy and speed. 

Artificial Neural Networks (ANNs), Decision Trees (DTs), 

Gene Expression Programming (GEP), Support Vector 

Machine (SVM), and Ensemble learning have emerged as 

commonly used models due to their ability to handle non-

linear relationships between input parameters and chloride 

diffusion. Besides, surrogate modeling is an application of 

supervised machine learning that could be implemented in 

this context. 

The application of ML to identify key parameters 

related to the penetration of chloride into concrete, such as 

the chloride diffusion coefficient, 𝐷𝑐(t), the chloride 

concentration in the concrete, 𝐶𝑥,𝑡, and the chloride 

concentration at the surface, 𝐶𝑠, represents a significant 

advance in the field of materials science and construction 

(as shown in Figure 2). ML algorithms can analyze 

extensive data sets derived from experimental studies and 

field measurements. This enables the identification of 

complex, non-linear relationships between different factors 

that influence chlorine transport. By training ML models 

on these datasets, researchers can more accurately predict 

the chloride diffusion coefficient, taking into account 

variables such as temperature, moisture, and concrete 

composition that traditional models may overlook. 
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In addition, ML techniques can be used to estimate 

chloride concentrations at different depths and times, 

facilitating real-time monitoring of concrete structures. 

This predictive capability not only improves the 

understanding of the dynamics of chloride intrusion but 

also enables proactive maintenance strategies that 

ultimately extend the life of RC structures. 

 

Figure 2. Machine learning application in chloride penetration 

in concrete 

Moreover, ML models can refine the prediction of 

chloride concentration at the surface by incorporating 

factors such as environmental conditions and the effects of 

protective coatings. This comprehensive approach 

increases the reliability of corrosion assessments and helps 

engineers make informed decisions about material 

selection and design strategies to effectively mitigate 

corrosion risks. Overall, the integration of ML in this 

context represents a transformative shift towards more 

sophisticated, data-driven methods in analyzing the 

durability of concrete. 

Therefore, the focus of this review is on studies dealing 

with the application of ML to predict the key parameters 

mentioned above, which are discussed in more detail in the 

following section. 

3. Proposed DP-FBI-FCM algorithm 

3.1. Prediction of chlodride diffusion coefficients, 𝑫𝒄 

The chloride diffusion coefficient is an important index 

when assessing the durability of concrete structures using 

the performance-based method. However, the prediction of 

this index is difficult due to the influence of many factors, 

such as mix design, substitution of supplementary 

cementitious materials, and choice of binder. Reccently, 

Tran [12] used eight ML models including Support Vector 

Machine (SVM), Extreme Learning Machine (ELM), K-

Nearest Neighbors (KNN), Light Gradient Boosting 

(LGB), Extreme Gradient Boosting (XGB), Random 

Forest (RF), Gradient Boosting (GB) and AdaBoost (AdB) 

to predict the chloride diffusion coefficient of concrete 

containing additional materials such as silica fume, finely 

ground blast furnace slag, and fly ash. The database is 

created with nine input variables and 386 samples. The 

results show that Gradient Boosting (GB) has the highest 

predictive performance while helping to identify important 

input variables, thereby supporting the optimization of mix 

design and binder selection for concrete, which improves 

structural durability. 

In parallel, Taffese and Leal [13] expanded the research 

by working with a larger dataset of 1037 samples, divided 

into subsets ranging from 91 to 176 samples. The authors 

applied XGBoost to predict the chloride diffusion 

coefficient, emphasizing the importance of both fresh and 

hardened concrete properties. Like Tran [12], Taffese and 

Leal highlighted the adaptability of XGBoost (Extreme 

Gradient Boosting) for different dataset sizes and 

complexities, reinforcing the model’s effectiveness. 

Meanwhile, Golafshani et al. [14] extends the 

application of ANNs by integrating metaheuristic 

algorithms like the Whale Optimization Algorithm and 

Jellyfish Search Optimizer to predict the apparent chloride 

diffusion coefficient. This study emphasizes the 

importance of curing time and concrete composition in 

marine environments, analyzing data from 216 records 

across multiple studies. The novel use of metaheuristics 

combined with ANNs allows for greater accuracy in 

predicting concrete performance under varied exposure 

conditions. 

Hosseinzadeh et al. [15] synthesized these findings 

through a comprehensive review of ML applications in 

chloride diffusion studies. Though no new dataset was 

introduced, the review shed light on various studies, 

including Cai et al. [16], Ahmad et al. [17], and Tran [12], 

focusing on input parameters and the versatility of models 

like artificial neural networks (ANN) in handling missing 

data. This work provided an overarching analysis of how 

different ML approaches have been applied in this domain. 

Liu et al. [8] further investigated the chloride diffusion 

coefficient in concrete, using input variables such as coarse 

aggregate content, curing time, and water/cement ratio. 

Although the sample size was not specified, Liu employed 

ML models like back-propagation artificial neural 

networks (BP-ANN), support vector regression (SVR), and 

XGBoost. Interestingly, Liu found that XGBoost 

outperformed other models, a result consistent with 

Taffese and Leal [13]. 

Zhang et al. [18] added to this body of research by 

analyzing chloride diffusion in concrete using a dataset of 

843 samples. Zang tested models such as SVM, ANN, and 

KNN, with SVM producing the most accurate predictions 

for diffusion. This reinforced the findings of Ahmad et al. 

[17] and Liu et al. [8], confirming the reliability of SVM 

for complex prediction tasks. Zang’s use of a large and 

diverse dataset highlighted the benefits of larger sample 

sizes in improving model accuracy. 

Finally, Zheng and Cai [19] explored the chloride ion 

diffusion coefficient in concrete, focusing on the use of 

artificial sand. With a smaller dataset of 82 samples, Zheng 

examined four key input variables, including water-to-

binder ratio and fly ash content, contributing to a niche area 

within chloride migration studies. 

Taken together, these studies show that ML models, 

particularly ANNs, XGBoost and SVM, are becoming 

more sophisticated in handling different data sets and 

complex input variables for the accurate prediction of 

chloride diffusion in concrete. 



94 Quynh-Chau Truong, Anh-Thu Nguyen Vu 

 

3.2. Prediction of chlodride concentrations in concrete, 𝑪𝒙,𝒕 

In the field of chloride concentration prediction in 

concrete, studies such as those by Taffese and Sistonen 

[20], Delgado et al. [21], Liu et al. [22] have significantly 

contributed by examining various aspects of concrete 

composition, curing conditions, and environmental 

exposures. These works utilize artificial neural networks 

(ANNs) and other ML algorithms to model chloride-

related metrics, advancing the understanding of how 

different factors influence chloride ingress and resistance 

in concrete structures. 

Taffese and Sistonen [20] made an early contribution to 

the prediction of chloride ingress in concrete by utilizing 

bagged regression trees to identify the most critical factors 

affecting chloride penetration. By focusing on key 

variables such as the water/cement ratio and exposure time, 

Taffese and Sistonen ' model enhanced prediction accuracy 

by streamlining the analysis to only essential factors, 

offering a more efficient approach to chloride resistance 

evaluation. 

Delgado et al. [21] further advanced this field by 

applying artificial neural networks (ANNs) to predict both 

the depth of chloride penetration and the chloride diffusion 

coefficient. This study emphasized the importance of input 

variables such as cement type, water/cement ratio, and 

curing conditions, demonstrating the strength of ANNs in 

modeling the complex interactions governing chloride 

ingress into concrete. 

Liu et al. [22] expanded the focus by employing 

ensemble ML models to predict chloride resistance in 

recycled aggregate concrete using a dataset of 226 samples. 

Although the ensemble methods proved effective, Liu 

highlighted limitations in dataset size, indicating potential 

challenges in applying these findings to other concrete types. 

Collectively, these studies highlight the progressive 

application of ML models, especially ANNs and ensemble 

methods, in predicting chloride concentrations. By refining 

key variables related to material composition, curing 

conditions, and environmental factors, each study builds on 

the previous ones to improve prediction performance and 

reliability in various concrete types. 

3.3. Prediction of surface chloride concentrations, 𝑪𝒔 

The prediction of chloride surface concentration is 

crucial for assessing the durability of marine concrete 

structures. 

Cai et al. [16] focuses on predicting the surface chloride 

concentration in marine concrete using an ensemble ML 

model. This model integrates predictions from multiple 

individual models to improve accuracy. The study employs 

a substantial dataset of 642 records collected from real-

world structures exposed to marine environments, 

specifically in three zones: submerged, tidal, and splash. 

The model incorporates 12 input variables, including 

concrete composition (cement, fly ash, blast furnace slag, 

silica fume, superplasticizer, water, fine aggregate, and 

coarse aggregate), environmental conditions (annual 

average temperature and chloride concentration in 

seawater), exposure time, and type of exposure. The output 

generated by the model is the surface chloride 

concentration expressed as a percentage of concrete mass. 

Cai's research compares the ensemble ML model 

against five individual models-Linear Regression, 

Gaussian Process Regression, Support Vector Machine, 

Multi-Layer Perceptron Artificial Neural Network (MLP-

ANN), and Random Forest-alongside eight traditional 

quantitative models. Results indicate that the ensemble 

model significantly outperforms its counterparts in 

predicting surface chloride. One notable advantage of the 

ML approach is its capacity to consider multiple variables 

simultaneously, unlike traditional models, which often 

focus on a limited number of factors. The study identifies 

environmental conditions and the water-to-cement ratio as 

the most influential factors affecting 𝐶𝑠. Notably, concrete 

in tidal zones exhibits the highest chloride concentration on 

the concrete surface, followed by splash zones, while 

submerged zones show the lowest levels. Furthermore, an 

increased water-to-cement ratio correlates with higher 𝐶𝑠. 

Ahmad et al. [17] also investigates surface chloride 

concentration in concrete, utilizing 12 input variables 

similar to those in Cai's study. Ahmad employs multiple 

ML models, including Gene Expression Programming 

(GEP), decision trees, and artificial neural networks 

(ANN). The findings reveal that GEP delivers the most 

accurate predictions, although the specific number of data 

samples used remains unspecified. This work emphasizes 

the critical role of ML in predicting chloride behavior and 

enhancing concrete durability, aligning with the broader 

focus of research in this field. Together, these studies 

underscore the growing importance of advanced predictive 

models in assessing the durability of concrete structures 

exposed to chloride-rich environments. 

4. Challenges and future directions in ML application 

Building on previous analyses of chloride diffusion and 

concentration predictions, it is evident that ML plays a 

crucial role in assessing corrosion in concrete structures. 

Despite advancements in ML applications, challenges 

persist, such as the complex interactions among various 

factors and the time-dependent nature of corrosion. This 

section will explore recent developments in ML algorithms 

and their future directions in corrosion assessment, 

emphasizing the need to address these challenges to 

enhance the durability of RC structures. 

4.1. Prediction model considering for the coupling of 

multiple factors 

The degradation of RC structures is a result of the 

complex interaction between various environmental, 

chemical, and physical factors. Understanding how these 

factors couple and influence one another is essential for 

accurately predicting the durability and long-term 

performance of RC structures 

Zhu et al. [23] have shown that the interaction 

between chloride ingress and carbonation can 

significantly influence the corrosion of reinforcement. 

While carbonation compacts the concrete and can reduce 
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chloride diffusion by up to 50%, it initially reduces the 

chloride concentration at the surface. However, as 

carbonation progresses, the chloride ion concentration 

can eventually increase and lead to cracking. The pH 

values after carbonation also influence the chloride 

content. Conversely, chloride-induced corrosion can 

reduce porosity and thus slow down carbonation, while 

chloride-induced cracking can further accelerate the 

carbonation process. 

Moreover, the interactions between steel and concrete 

play a critical role in their deterioration over time. 

Corrosion leads to rust accumulation, which weakens the 

bond between these materials and compromises structural 

strength. Several factors influence this process, including 

the chloride ion concentration, the condition of the 

reinforcement surface, the availability of oxygen and the 

nature of the corrosion products. Although understanding 

the dynamic corrosion rate is fundamental, traditional 

models often oversimplify or ignore these factors, leading 

to inaccuracies in predicting long-term corrosion behavior 

and assessing the durability of RC structures [24]. 

ML, however, can simultaneously account for most 

influencing factors, providing new insights into corrosion 

dynamics. ML algorithms can incorporate time and spatial 

variations of corrosion [25], making them more suitable for 

predicting long-term corrosion changes. Given the gaps in 

current research on chemical and physical degradation, the 

long-term durability of RC structures remains uncertain. 

Complex reactions in RC make it difficult to maintain 

consistent corrosion rates across different components 

[26]. Additionally, traditional methods fall short of 

addressing these issues comprehensively, especially under 

combined corrosion and sustained loads. 

4.2. Incorporating environmental variability 

Chloride ingress and corrosion in RC are significantly 

affected by environmental factors such as temperature 

fluctuations, humidity levels, rainfall, wind speed, and 

exposure to chemical agents like chlorides and sulfates. 

These factors can vary greatly over time and across 

different geographic locations, introducing substantial 

complexity to the modeling of chloride ingress. Traditional 

ML models often struggle to fully capture these dynamic 

and interdependent environmental conditions, which can 

lead to less reliable or inaccurate predictions. 

To enhance the accuracy of ML models, it is crucial to 

incorporate time-series data that reflects the changes in 

environmental conditions over time. This involves 

collecting detailed, continuous data on local climate 

conditions, seasonal variations, and specific exposure 

scenarios that affect the concrete's microstructure and 

chloride diffusion rates. For example, capturing data on 

diurnal temperature variations and their impact on moisture 

transport within the concrete can significantly improve the 

model's ability to predict corrosion progression. By 

utilizing this temporal data, ML models can better 

understand the patterns and trends that drive chloride 

ingress, leading to more realistic predictions under 

fluctuating environmental conditions. 

Furthermore, integrating ML with physical and 

chemical corrosion models can bridge the gap between 

data-driven predictions and fundamental corrosion 

mechanisms. Hybrid models that combine the strengths of 

ML and traditional mechanistic models can leverage the 

predictive power of ML algorithms while still respecting 

the underlying principles of chloride diffusion, hydration, 

and concrete deterioration. For instance, ML models can 

be trained on data derived from mechanistic simulations 

that account for factors like pore structure, chloride binding 

capacity, and water-cement ratios, providing a 

comprehensive understanding of how these factors interact 

under different environmental conditions. 

Advanced approaches such as multi-task learning and 

transfer learning can also play a critical role. Multi-task 

learning allows the ML model to learn from multiple 

related tasks simultaneously, thereby understanding the 

combined effects of various environmental conditions on 

chloride ingress. Meanwhile, transfer learning can help 

adapt models developed for specific climates or conditions 

to new environments with limited data, enhancing their 

applicability across diverse geographical regions. 

Moreover, the integration of Internet of Things (IoT) 

sensors and remote monitoring technologies can provide 

real-time data on environmental conditions, which can be 

fed into ML models to continuously update and refine 

predictions. By leveraging such technologies, it is possible 

to create adaptive, responsive models that dynamically 

adjust their predictions based on current conditions, 

providing more accurate and timely assessments of 

chloride ingress risk. 

4.3. Databases 

Currently, various materials databases have been 

developed through simulations and experimental studies. 

However, many entries do not meet specific requirements 

due to the lack of standardized data collection methods 

across different countries, regions, and applications. This 

inconsistency leads to diverse data that can hinder reliable 

modeling. As Zhai et al. [27] noted, several modeling 

techniques have been explored, including atomistic 

modeling, coarse-grained modeling, and macroscale 

modeling, with ML algorithms showing effectiveness 

across these scales. Multiscale data, influenced by 

microstructures, significantly impact the behavior of RC. 

For example, Wang et al. utilized ML techniques to refine 

elastic constants from density functional theory 

calculations. 

To maximize the effectiveness of ML models, large, 

diverse datasets covering various environmental 

conditions, material properties, and exposure times are 

essential. Unfortunately, existing datasets often have 

narrow scopes, limiting their generalizability. 

Additionally, inconsistencies in data collection-such as 

varying chloride exposure tests and concrete mix designs-

can introduce biases that undermine ML predictions. 

Addressing these challenges requires standardized 

testing protocols to ensure consistency across datasets. 

Developing universal guidelines for data collection,  
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particularly for measuring chloride concentration and 

documenting concrete properties, will improve data 

quality. Comprehensive datasets that capture a wider range 

of conditions and parameters, including those from 

different climates and concrete compositions, are crucial 

for effective ML modeling. 

Moreover, incorporating advanced data collection 

techniques, such as non-destructive testing, remote 

sensing, and embedded sensors, can enhance dataset 

richness by providing detailed information on chloride 

distribution and microstructural changes. Techniques like 

synthetic data generation can fill gaps in real-world data, 

while collaboration among researchers and industry 

stakeholders to create open-access repositories can ensure 

comprehensive datasets. 

In addition, data pre-processing and cleaning are 

essential to remove noise, handle missing values, and 

correct errors in datasets. Advanced data-cleaning 

techniques, such as outlier detection, normalization, and 

imputation methods, can significantly improve the quality 

of data fed into ML models. Additionally, employing 

feature selection and dimensionality reduction techniques 

can help in identifying the most relevant variables that 

influence chloride ingress, thereby optimizing model 

performance and reducing the risk of overfitting. 

Finally, ongoing efforts to enhance data quality should 

be supported by clear documentation and metadata 

standards. This includes providing detailed information on 

data sources, collection methods, assumptions, and 

limitations. Transparent data practices will not only 

improve the reproducibility and reliability of ML models 

but also facilitate their adoption by the broader research 

and engineering community. 

By addressing these data quality and availability issues, 

ML models for predicting chloride ingress can become 

more robust, reliable, and applicable across a wider range 

of conditions, ultimately contributing to better-informed 

decisions in concrete design, maintenance, and durability 

assessment. 

5. Conclusion 

This literature review has highlighted the potential of 

ML techniques for predicting chloride ingress in RC 

structures. Traditional methods for assessing chloride 

resistance, such as accelerated penetration tests and 

empirical models, are often time-consuming, costly, and 

limited in their ability to accurately capture complex real-

world conditions. ML offers a promising alternative by 

leveraging data-driven approaches to predict chloride 

ingress more efficiently and accurately. 

Various ML algorithms, including artificial neural 

networks (ANNs), decision trees, support vector machines 

(SVMs), and ensemble methods, have demonstrated 

considerable potential in estimating corrosion processes, 

predicting key material properties, and evaluating the 

durability of RC structures. These methods excel in 

handling non-linear relationships between input 

parameters and chloride diffusion, providing robust 

solutions for assessing and managing chloride ingress. 

Integrating ML with physical models and leveraging 

advanced data collection techniques can further enhance 

model reliability and applicability across diverse 

environmental conditions. 

However, several challenges remain, including the 

need for high-quality, comprehensive datasets, the 

integration of dynamic environmental variables, and the 

development of standardized data collection protocols. 

Addressing these challenges through improved data 

quality, model integration, and interdisciplinary 

collaboration will be crucial in advancing the use of ML 

for predicting chloride ingress and optimizing concrete 

durability. 
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