
ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 11C, 2024 109

SHORT-TERM PREDICTION OF REGIONAL ENERGY CONSUMPTION BY

METAHEURISTIC OPTIMIZED DEEP LEARNING MODELS

Ngoc-Quang Nguyen*, Phuong-Thao-Nguyen Nguyen, Quynh-Chau Truong

The University of Danang - University of Science and Technology, Viet Nam

*Corresponding author: nnquang@dut.udn.vn

(Received: September 26, 2024; Revised: October 11, 2024; Accepted: October 12, 2024)

DOI: 10.31130/ud-jst.2024.567E

Abstract - Modern civilization is heavily dependent on energy,

which burdens the energy sector. Therefore, a highly accurate

energy consumption forecast is essential to provide valuable

information for efficient energy distribution and storage. This study

proposed a hybrid deep learning model, called I-CNN-JS, by

incorporating a jellyfish search (JS) algorithm into an ImageNet-

winning convolutional neural network (I-CNN) to predict week-

ahead energy consumption. First, numerical data were encoded into

grayscale images for input of the proposed model, showcasing the

novelty of using image data for analysis. Second, a newly

developed metaheuristic optimization algorithm, JS, was used to

improving model accuracy. Results showed that the proposed

method outperformed conventional numerical input methods. The

optimized model yielded a mean absolute percentage error

improvement of 0.5% compared to the default models, indicating

that JS is a promising method for achieving the optimal

hyperparameters. Sensitivity analysis further evaluated the impact

of image pixel orientation on performance model.

Key words - short-term prediction; energy consumption; deep

learning; convolutional neural network; metaheuristic

optimization; machine learning; time-series deep learning

1. Introduction

The energy sector plays a vital role in the global

economy, directly affecting industries, infrastructure, and

social life. Ensuring a stable power supply helps minimize

negative impacts on production and business while

supporting the promotion of industrialization,

modernization, and sustainable development. Forecasting

energy consumption is one of the core factors in the

effective management of the energy system, especially in

the context of increasing scale and volatility in energy

consumption [1].

However, with the increasing integration of renewable

energy sources into the grid, the instability of the energy

supply has become a challenge. The completely

unpredictable nature of sources such as wind and solar,

combined with the ever-changing demand, requires

accurate forecasting tools to support system operators in

decision-making. Therefore, forecasting energy

consumption has become a vital task to optimize energy

distribution, ensuring economic efficiency and

sustainability of the energy system [2].

Traditional methods such as linear regression, time-

based statistical models, or simple machine learning (ML)

techniques have been widely used for many years to forecast

energy consumption [3-5]. However, with the development

of technology and the abundance of data, these methods are

gradually becoming limited when faced with complex and

highly nonlinear energy models [6]. Deep learning (DL) has

emerged as a potential solution due to its ability to learn and

model complex relationships in data. DL can exploit

information from large, multidimensional datasets to

forecast energy consumption more accurately [7].

One of the most widely used DL models is the

convolutional neural network (CNN), thanks to its ability

to capture spatiotemporal relationships as well as time

series features [8]. However, implementing DL models for

energy consumption forecasting also faces significant

challenges, the most important of which is the parameter

optimization process. DL models often require configuring

parameters such as the number of layers, the number of

nodes in each layer, and other hyperparameters, which

directly affect the accuracy and performance of the model.

Optimizing these parameters is often done by trial and error

methods or simple optimization algorithms, but they do not

always guarantee optimal performance for the model.

To improve this optimization, hyperparameter

optimization algorithms have been applied to optimize

hyperparameters and enhance the performance of deep

learning models. These optimization algorithms are

designed to search large parameter spaces, avoiding falling

and local minima, a common problem in traditional

optimization methods, while providing more flexible and

efficient model tuning.

Although DL models have been applied in various

fields, such as image processing, natural language

processing, and medicine, their application in the field of

short-term energy consumption forecasting is still limited

and underexploited. Therefore, this study aims to bridge

this gap by proposing a method that combines I-CNN

models and metaheuristic optimization algorithms for

regional energy consumption forecasting.

Specifically, this study will focus on:

1) Proposing a hybrid DL model based on I-CNN and

JS algorithm to predict energy consumption.

2) Developing an automated process to convert

numerical data into images as input for I-CNN.

3) Conducting sensitivity analysis to examine the effect

of image pixel orientation on model accuracy.

2. Related works

2.1. Convolutional neural network

Convolutional neural networks (CNNs) are a type of

artificial neural network specifically designed to process

110 Ngoc-Quang Nguyen, Phuong-Thao-Nguyen Nguyen, Quynh-Chau Truong

data with a grid structure, such as images and videos.

CNNs are widely used in computer vision, such as object

recognition, image classification, face recognition, and

video analysis. Unlike traditional models that require

manual feature extraction, CNNs automatically learn

features from raw data, especially spatial features, through

the structure of filters.

The basic architecture of CNN typically consists of an

input layer that receives an input image, and several hidden

layers that include three different layers: a convolutional

layer, a pooling layer, a fully-connected layer, and an

output layer that produces the final output. Figure 1

displays a simple CNN architecture. CNN becomes more

and more complicated as it progresses from the

convolutional layer to the FC layer. Thanks to such an

arrangement, CNN can first recognize simpler patterns

(lines, curves) and then more complicated features (faces,

objects) of an image before fully recognizing the pattern

and extracting the useful features.

Figure 1. The architecture of a CNN

The convolutional layer is one of the main and most

characteristic components of a CNN, which helps extract

features from input data, especially images. The

convolutional layer uses one or more filters (also known as

kernels). These filters are small matrices whose values are

learned during training. The filter is passed through the

entire input image, calculating the convolution between the

filter and the corresponding regions of the image, and

creating a feature map.

Figure 2. Convolution operation of the convolution layer

The convolution operation (Figure 2) multiplies each

element of the filter by the corresponding part of the image,

then sums it up and outputs a new value. This calculation

continues as the filter moves through the entire image. The

result of this process is a feature map that is smaller or

equal to the original image, depending on parameters such

as stride, and padding. The convolution operation can be

defined as follows:

𝐶𝑖 = 𝑏𝑖 + ∑ 𝐼𝑗 ∗ 𝐹𝑖𝑗
𝑑𝑖
𝑗=1 , 𝑖 = 1 … 𝑑𝑐 (1)

where, 𝐶𝑖 is the output of convolutional layer or feature

map of size (𝑐𝑤 𝑥 𝑐ℎ) in which (𝑐𝑤 𝑥 𝑐ℎ) = ((𝑣𝑤 − 𝑟𝑤 −
2𝑝)/𝑠 + 1)𝑥((𝑣ℎ − 𝑟ℎ − 2𝑝)/𝑠 + 1) (𝑣𝑤 , 𝑣ℎare the width

and height of input volume, 𝑟𝑤 , 𝑟ℎ are the width and height

of receptive field size, p is the amount of zero padding used

on the border, s is the stride with which they are applied),

𝐵𝑖 is the bias, 𝑑𝑖 is the depth of input, 𝐼𝑗 is the input image,

𝐹𝑖𝑗 is the filter, and 𝑑𝑐 is the depth of convolutional layer.

After convolution, the values in the feature map are

usually passed through an activation function such as

ReLU to nonlinearize, retain important features, and ignore

negative values that are not meaningful to the model. The

general formula of the activation function can be defined

as follows:

𝑌𝑖 = 𝑓(𝐶𝑖) (2)

where, 𝑌𝑖 is the output of the convolutional layer after

applying the activation function and f is the activation

function.

Pooling layer in CNN is a downsampling layer used to

reduce the size of feature maps without losing too much

important information. Pooling reduces the number of

parameters and computations in the network, while

increasing the resistance to changes in the location of

features in the input data, making the model more robust to

local changes in the image. The dimensions of the output

obtained from the pooling layer are as follows:

(𝑐𝑤 − 𝑓𝑤 + 1)/𝑠 𝑥 (𝑐ℎ − 𝑓ℎ + 1)/𝑠 𝑥 𝑐𝑛 (3)

where, 𝑐𝑛 is the number of channels in the feature map and

𝑓𝑤 𝑥 𝑓ℎ is the width and height of the filter.

Average pooling and max pooling are two typical pooling

approaches. Max pooling is the most common type in CNN

networks, which selects the largest value in each small region

of the feature map. Instead of selecting the largest value,

average pooling averages the values in the small regions. This

is less commonly used than max pooling but still has

applications in some cases. Figure 3 presents the illustration

of max pooling and average pooling.

Figure 3. Max pooling and average pooling

A fully-connected (FC) layer is a layer in which each

neuron is connected to all the neurons in the previous layer.

It is the final component of CNN and is often used to

perform tasks such as classification or prediction. After

previous layers, such as convolutional and pooling layers,

have extracted local features from the data, the FC layer

aggregates and processes all of this information, allowing

the network to learn more complex features from the entire

data. In classification models, the FC layer is typically at

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 11C, 2024 111

the end of the network and has as many neurons as there

are labels to classify. In prediction tasks, the FC layer can

predict continuous values, such as in regression problems.

Figure 4 presents the structure of the FC layer.

Figure 4. Structure of a fully-connected layer

2.2. ImageNet-winning convolutional neural network

The ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) is one of the most prestigious

competitions in the field of computer vision, especially in

object recognition in images. The winning CNN models in

this competition have driven significant advances in

computer vision technology. Several popular CNN

architectures have been developed that differ in their

approach and have significantly improved not only the

accuracy but also the efficiency of the model on various

tasks compared to their predecessors. Table 1 shows the I-

CNN architectures used in this study.

Table 1. Overview of I-CNN structures used in this study

Attribute Parameters (million) Size (MB)

VGG19 143.7 549

ResNet50V2 25.6 98

Inceptionv3 23.9 92

MobileNetV2 3.5 14

DenseNet201 20.2 80

NASNetLarge 88.9 343

EfficientNetB0 5.3 29

ConvNeXtTiny - 28.6

2.3. Jellyfish Search Algorithm

The JS algorithm is a metaheuristic optimization

algorithm inspired by the migration and hunting behavior of

jellyfish in the ocean, proposed by Chou et al. in 2020 [9].

The algorithm simulates the two main movements of

jellyfish: random movements as they drift with the ocean

currents and directional movements as they swim in search

of food sources. Combining the exploration and exploitation

of the search space, JS optimizes complex problems by

balancing between exploring new regions and exploiting

potential solutions, avoiding getting stuck in local extrema.

JS has been successfully applied to various

optimization problems, from continuous space

optimization to discrete optimization, and the results show

that JS can achieve higher efficiency and faster

convergence than traditional algorithms. In addition, the

algorithm does not require many complex parameters. The

flowchart and pseudocode of the JS algorithm are shown in

Figures 5 and 6 respectively.

Figure 5. Jellyfish behavior in the ocean

Figure 6. Pseudocode of the jellyfish search algorithm

3. Proposed I-CNN-JS algorithm

3.1. Image conversion process

This study proposes a numerical-to-image data

conversion method that allows the use of image processing

and computer vision techniques to implement I-CNN

models. Each time step is represented as a pixel in the

image, enabling the model to capture spatial relationships

between different time steps, correlations, and

dependencies to identify geographically close regions and

detect similar patterns in energy consumption, which are

difficult to discern from raw digital data alone.

The image conversion process is detailed in Figure 7.

112 Ngoc-Quang Nguyen, Phuong-Thao-Nguyen Nguyen, Quynh-Chau Truong

Initially, n attributes of each observation are used to

generate a n × 1 grayscale image. These initial images are

processed using a sliding window technique with a window

size of k to generate a n+1 × k grayscale image. First, min-

max normalization is performed to scale the numerical data

to values between 0 and 1. Then, the normalized data is

multiplied by 255 and encoded into images with grayscale

values between 0 and 255. Finally, each image is labeled

with the k + mth energy consumption data.

Figure 7. The conversion of numerical data into

grayscale images

3.2. I-CNN-JS algorithm

Figure 8. The proposed optimized hybrid model

The proposed I-CNN-JS algorithm, which combines

the I-CNN architecture with the JS algorithm, not only

aims to leverage the power of the I-CNN architectures in

predicting energy consumption but also can find the global

optimal solution to improve prediction accuracy. The

process of the I-CNN-JS algorithm is depicted in Figure 8.

4. Result analysis

4.1. Dataset and parameter setting

This study collected five-year hourly energy

consumption data from 2019 to 2023 from a power

company by using the Data Miner tool on the PJM website

(https://www.pjm.com/). This dataset includes 43,824 data

points after the kNN imputation method was used to handle

missing data during the data collection.

Table 2 presents the attributes of the energy

consumption dataset used in this study. The time index was

decomposed into time-series characteristics X1-X7 such as

hour, month, quarter, year, day of the week, day of the

month, and day of the year which were used to predict

energy consumption Y.

Table 2. Attributes of the dataset

Attribute Description

Time Index Time data are recorded

Month Month (1, 2, …, 12)

Quarter Quarter (1, 2, …, 4)

Year Year (2019, 2020, …, 2023)

Hour Hours (0, 1, …, 23)

Day of week Day (0, 1, …, 6)

Day of month Day (0, 1, …, 31)

Day of year Day (0, 1, …, 366)

Energy consumption Energy consumption (MWh)

4.2. Validation and performance evaluation

The dataset was divided into 80% for learning (from

2018 to 2022) and 20% for testing (2023). The learning

dataset was then divided into 85% and 15% for training and

validation, respectively. This study uses the time-series

cross-validation method, which divides the data in time

order, ensuring that future data points are not used to predict

past data to preserve the sequentiality of the data [10].

Five widely used regression metrics including the mean

absolute error (MAE), root mean square error (RMSE),

mean absolute percentage error (MAPE), training time, and

synthesis index (SI) were used to evaluate and validate

model performance. Table 3 presents the equation of these

performance metrics.

Table 3. Performance measures

Performance measures Equation

MAE
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1

RMSE √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

MAPE
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1

SI
1

𝑚
∑ (

𝑃𝑖−𝑃(𝑚𝑖𝑛,𝑖)

𝑃(𝑚𝑎𝑥,𝑖)−𝑃(𝑚𝑖𝑛,𝑖)
)𝑚

𝑖=1

where, 𝑛 is the number of predictions, 𝑦𝑖 the predicted

value; 𝑦̂𝑖 is the actual value, 𝑚 is the number of

performance metrics, 𝑃𝑖 is the value of the performance

metric, 𝑃(𝑚𝑎𝑥,𝑖) is the maximum value of performance

metric, and 𝑃(𝑚𝑖𝑛,𝑖) is the minimum value of performance

ISSN 1859-1531 - THE UNIVERSITY OF DANANG - JOURNAL OF SCIENCE AND TECHNOLOGY, VOL. 22, NO. 11C, 2024 113

metric. Their lower values indicate better performance.

4.3. Model establishment

A typical CNN structure normally includes a softmax

activation function at the end of the network for

classification tasks. However, predicting energy

consumption is a regression task. Therefore, the CNN

models in this study were restructured by replacing the

softmax activation function in the final layer with a linear

activation, which allows the network to output continuous

values rather than probabilities.

 While CNN, LSTM, and GRU models were deployed

using the Keras library in Python, ML models were

constructed in Scikit-learn and XGBoost in Python. Table

4 presents the performance results of predictive models for

week-ahead energy consumption.

Table 4. Performance result of models for week-ahead

energy consumption

Model
MAE

(kWh)

RMSE

(kWh)

MAPE

(%)

SI t

(h)

VGG19 388.4 421.6 8.1 (8) 1.52

ResNet50V2 367.6 387.1 7.5 (5) 1.23

Inceptionv3 388.4 413.1 7.9 (7) 1.22

MobileNetV2 372.8 393.6 7.6 (4) 1.02

DenseNet201 365.0 383.2 7.4 (3) 1.19

NASNetLarge 371.5 397.5 7.7 (6) 1.48

EfficientNetB0 363.7 368.9 7.3 (2) 1.00

ConvNeXtTiny 352.1 355.2 7.1 (1) 1.00

ANN 633.2 774.0 11.2 (13) 0.08

RF 622.8 762.5 10.9 (12) 0.09

SVR 645.8 787.6 11.4 (14) 0.08

XGBoost 568.2 686.9 10.3 (11) 0.08

LSTM 569.2 691.6 10.2 (10) 0.16

GRU 564.3 680.8 9.9 (9) 0.15

Note: kWh: kilowatt hours

The results revealed that ConvNeXtTiny, XGBoost, and

GRU were the best-performing models in their categories in

predicting week-ahead energy consumption, with MAPE

values of 7.1%, 10.3%, and 9.9%, respectively. Notably, all

CNN models provided more accurate predictions than the

rest with the MAPE range from 7.1% to 8.1%, occupying

the top 8 out of 14 models according to the SI index, in which

ConvNeXtTiny is the best model. This impressive result

demonstrated that the proposed model outperforms methods

using numerical data.

The running time shows that the CNN models in this

study take significantly longer than other numerical

models. For example, the CNN model takes more than one

hour to predict energy consumption, while the numerical

models only take about 0.8 to 0.9 hour for the ML models

and 0.15 to 0.16 hour for the time-series DL models.

Although CNN models provide better prediction

results, users should choose the model based on their goals,

usage context, and computational resources. For example,

CNN models should be used in cases where accurate

predictions are required for research and measurement

purposes, where high accuracy is the top factor and longer

computation times are accepted. In contrast, numerical

models such as GRU are more suitable for real-time

predictions, where the balance between accuracy and speed

is important.

4.4. Optimization

A validation of the power of optimization algorithms,

namely Jellyfish Search, and two well-known

metaheuristic algorithms, Teaching-Learning-Based

Optimization (TLBO) and Symbiotic Organisms Search

(SOS), was performed before incorporating one of them

into the best model for parameter optimization. Ten

benchmark functions were selected to validate the

effectiveness of these algorithms, namely Step, Trid10,

Zakharov, Foxholes, Michalewicz2, Shubert, Ackley,

Langermann2, and Fletcher Powell10. Hit rate, the ratio

between the number of times the algorithm produces the

optimal result and the number of times the independent

optimization is performed, and the running time were used

to compare the effectiveness of the algorithms.

The results in Table 5 show that JS outperforms SOS

and TLBO in both hit rate and computation time. The hit

rate of JS is 100%, which is 31.02% and 27.88% higher

than SOS and TLBO. As for running time, JS only needs

11.02 seconds to find the optimal values of the benchmark

functions, while the figures for SOS and TLBO are 63.69

and 62.96, respectively. Therefore, JS was then selected as

the best optimization algorithm incorporated into the

ConvNeXtTiny model.

Table 5. Comparison results of benchmark functions in the

optimization algorithms

Criteria JS SOS TLBO

Hit rate (%) 100 68.98 72.12

Running time (sec) 11.02 63.69 62.96

Table 6 shows the results of the model performance

before and after optimization. The results demonstrate that

JS is effective in improving the accuracy of the model, with

MAPE improving by 0.5% compared to the original model.

Table 14 shows the parameters after optimization.

Table 6. Comparison results of model performance before and

after optimization

Model
MAE

(kWh)

RMSE

(kWh)

MAPE

(%)

I-CNN (ConvNeXtTiny) 352.1 355.2 7.1

I-CNN (ConvNeXtTiny) - JS 334.2 336.2 6.6

4.5. Sensitivity analysis of image pixel order

Another numerical experiment was conducted based on

the ConvNeXtTiny model to investigate the influence of

image orientation on prediction accuracy. Two types of

image orientations, including the original pixel array

(randomly arranged) and the pixel array arranged

according to the correlation between input attributes and

energy consumption were adopted in this study.

Specifically, the image data was reformatted in three ways:

arranging the pixels randomly, arranging them in

ascending order, and descending order based on the

correlation value.

Table 6 presents the results of the sensitivity analysis of

image orientation on the prediction model accuracy. It can

114 Ngoc-Quang Nguyen, Phuong-Thao-Nguyen Nguyen, Quynh-Chau Truong

be seen that all evaluation criteria related to the arrangement

in descending order and ascending order of image pixels

give slightly worse results (0.3% difference in MAPE)

compared to when using the originally arranged images on

the same model. Therefore, the analysis results show that the

arrangement of pixels in correlation order during the

conversion of data to image form does not significantly

affect the performance of the prediction model.

Table 6. Sensitivity analysis of image orientation

Criteria

Image orientation

Random
Descending

order

Ascending

order

MAPE (%) 6.62 6.68 6.72

RMSE (%) 336.22 338.32 340.01

MAE (kWh) 334.23 335.87 336.29

5. Conclusion

This study proposed a hybrid DL model called I-CNN-

JS to predict regional energy consumption. The model can

leverage the automatic feature extraction of CNN and

provide more accurate prediction by using a JS optimizer

to find the optimal parameters. Numerical data converted

into grayscale image data were input into the I-CNN

models.to utilize the available I-CNN models. The

proposed model outperformed the ML and time-series DL

models that used numerical data regarding accuracy. The

results of the optimization process also show the

effectiveness of using JS to optimize parameters and

improve model accuracy. Users need to consider the goals

and computational capabilities to choose the appropriate

model because although the proposed model provides

higher accuracy, it also consumes more resources and

computational time.

The size of input images significantly impacts CNN

models' performance and training time. If the images are

too small, they may lack sufficient detail and features,

leading to lower accuracy and weaker generalization. On

the other hand, very large images can increase model

complexity, require more computational power, and may

cause overfitting, especially when working with large

datasets. In this study, the image size was chosen manually

through trial and error. Additionally, the model only used

date index and hourly energy consumption-without

considering other factors like weather or human behavior,

which could influence energy consumption. As a result, the

models may not fully capture the complexity of energy

usage patterns.

Future studies could explore developing an automated

method for selecting the optimal image size to improve

both efficiency and performance. Additionally,

incorporating data on environmental and human-related

factors may further enhance model accuracy and learning.

Future research should also extend the investigation to

other regions or countries, employ alternative prediction

techniques such as mid- and long-term forecasting, and

examine various demand levels, from building to national

scales, to validate the effectiveness and generalizability of

the proposed models.

REFERENCES

[1] J.-S. Chou and D.-N. Truong, “Multistep energy consumption

forecasting by metaheuristic optimization of time-series analysis and

machine learning”, International Journal of Energy Research, vol.
46, no. 15, article 24671, 2022.

[2] J. Z. Zhu, H. J. Dong, W. Y. Zheng, S. L. Li, Y. T. Huang, and L. Xi,

“Review and prospect of data-driven techniques for load forecasting

in integrated energy systems”, Applied Energy, vol. 321, article

119269, 2022.

[3] Z. Ma, C. Ye, and W. Ma, “Support vector regression for predicting

building energy consumption in southern China”, Energy Procedia,
vol. 158, pp. 3433–3438, 2019.

[4] A. D. Pham, N. T. Ngo, T. T. H. Truong, N. T. Huynh, and N. S.

Truong, “Predicting energy consumption in multiple buildings using

machine learning for improving energy efficiency and sustainability”,

Journal of Cleaner Production, vol. 260, article 121082, 2020.

[5] M. Barman, N. B. D. Choudhury, and S. Sutradhar, “A regional hybrid

GOA-SVM model based on similar day approach for short-term load
forecasting in Assam, India”, Energy, vol. 145, pp. 710–720, 2018.

[6] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, and S. Ajayi,

“Building energy consumption prediction for residential buildings

using deep learning and other machine learning techniques”, Journal

of Building Engineering, vol. 45, article 103406, 2022.

[7] Y. He, P. C. Wu, Y. F. Li, Y. L. Wang, F. Tao, and Y. Wang, “A

generic energy prediction model of machine tools using deep learning
algorithms”, Applied Energy, vol. 275, article 115402, 2020.

[8] H. Lee and J. Song, “Introduction to convolutional neural network

using Keras; an understanding from a statistician”, Communications

for Statistical Applications and Methods, vol. 26, no. 6, pp. 591–610,

2019.

[9] J.-S. Chou and D.-N. Truong, “A novel metaheuristic optimizer

inspired by behavior of jellyfish in ocean”, Applied Mathematics and
Computation, vol. 389, article 125535, 2021.

[10] A. Deng, “Time series cross validation: A theoretical result and finite

sample performance”, Economics Letters, Volume 233, 111369,

ISSN 0165-1765, 2023.

